Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Σχετικά έγγραφα
Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Ηλεκτρισμός & Μαγνητισμός

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 3: Το Θεώρημα του Lebesgue. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μικροβιολογία & Υγιεινή Τροφίμων

Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Λογισμός 3. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Ηλεκτρονικοί Υπολογιστές I

Προσομοιώσεις και οπτικοποιήσεις στη μαθησιακή διαδικασία

Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Ηλεκτρισμός & Μαγνητισμός

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 4 Ενότητα 15

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Μαθηματική Ανάλυση ΙI

Ηλεκτρισμός & Μαγνητισμός

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Ενότητα: Ο Δακτύλιος Πολυωνύμων μιας Μεταβλητής. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Εφαρμοσμένη Στατιστική

Εφαρμοσμένη Βελτιστοποίηση

Μαθηματικά Και Στατιστική Στη Βιολογία

Κλασική Ηλεκτροδυναμική Ι

Γενικά Μαθηματικά ΙΙ

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Κλασική Ηλεκτροδυναμική Ι

Λογισμός 3. Ενότητα 10: Παραγώγιση Διανυσματικών Συναρτήσεων. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 4 Ενότητα 12

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά και Φυσική με Υπολογιστές

Επιχειρησιακή Έρευνα

Θέματα Αρμονικής Ανάλυσης

Λογισμός 4 Ενότητα 10

Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ. Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 17: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΑΝΟΙΚΤΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΜΑΘΗΜΑΤΑ Γενικά Μαθηματικά Ι Ενότητα 11 : Ακολουθίες και Σειρές Λουκάς Βλάχος Τμήμα Φυσικής

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 9: Ιδιότητες της κλίσης. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνδυαστική Ανάλυση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Λογισμός 3. Ενότητα 1: Τοπολογία των Ευκλείδειων χώρων. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 6: Εφαρμογές του Fubini. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Διδακτική Απειροστικού Λογισμού

Λογισμός 4 Ενότητα 18

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 2: Ορισμός του ολοκληρώματος. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μιχάλης Παπαδημητράκης. Μιγαδική Ανάλυση. Τμήμα Μαθηματικών. Πανεπιστήμιο Κρήτης

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Μαθηματική Ανάλυση Ι

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συναρτήσεις πολλών μεταβλητών Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

Γενικά Μαθηματικά Ι. Ενότητα 7: Σειρές Taylor, Maclaurin. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Λογισμός 3. Ενότητα 5:Θεώρημα ακραίων τιμών και θεώρημα ενδιάμεσων τιμών- Ομοιόμορφη συνέχεια. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 5: Το Θεώρημα του Fubini. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 4 Ενότητα 19

Μαθηματικά και Φυσική με Υπολογιστές

Μαθηματικά και Φυσική με Υπολογιστές

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.

Γενικά Μαθηματικά Ι. Ενότητα 19: Υπολογισμός Εμβαδού και Όγκου Από Περιστροφή (2 ο Μέρος) Λουκάς Βλάχος Τμήμα Φυσικής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνεχείς τυχαίες μεταβλητές Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

Ηλεκτρισμός & Μαγνητισμός

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Λογισμός 3 Ασκήσεις. Μιχάλης Μαριάς Τμήμα Α.Π.Θ.

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 13: Τύπος του Taylor. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής

Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής

Ηλεκτρισμός & Μαγνητισμός

Γενικά Μαθηματικά Ι. Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Θεωρία μέτρου και ολοκλήρωσης

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Γενικά Μαθηματικά Ι. Ενότητα 6: Ακρότατα Συνάρτησης. Λουκάς Βλάχος Τμήμα Φυσικής

Υπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ

Κλασσική Θεωρία Ελέγχου

Μαθηματική Ανάλυση ΙI

Εφαρμοσμένη Στατιστική

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

Ιστορία της μετάφρασης

Υπόγεια Υδραυλική και Υδρολογία

Μαθησιακές δραστηριότητες με υπολογιστή

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 7: Κλίση και παράγωγος. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Θεωρία μέτρου και ολοκλήρωσης

Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1)

Μαθηματικά και Φυσική με Υπολογιστές

Λογισμός 3. Ενότητα 17: Απόδειξη Θεωρήματος Αντιστροφής. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Transcript:

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΤΟΠΟΛΟΓΙΚΟΙ ΟΡΙΣΜΟΙ ΣΤΟ ΜΙΓΑΔΙΚΟ ΕΠΙΠΕΔΟ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς.

[2] Το μέτρο ενός μιγαδικού αριθμού Το μέτρο z ενός μιγαδικού αριθμού z = x + iy ορίζεται ως εξής: 2 2 z = x + y. (1.3) Στο μιγαδικό επίπεδο το μέτρο του z δεν είναι τίποτα άλλο παρά η απόσταση r του σημείου ( xy, ) από την αρχή των αξόνων (Σχήμα 1.1). Οι βασικές ιδιότητες του μέτρου είναι γνωστές από τα λυκειακά μαθηματικά. Ιδιαίτερα σημαντικές είναι οι τριγωνικές ανισότητες: z1 z2 z1+ z2 z1 + z2 (1.4) όπου z 1 και z 2 είναι δύο τυχόντες μιγαδικοί αριθμοί. Το όρισμα ενός μιγαδικού αριθμού Το όρισμα arg z ενός μη-μηδενικού μιγαδικού αριθμού z = x + iy είναι μια πλειότιμη συνάρτηση του z που ορίζεται ως εξής: y θ arg z = arctan, με z, (1.5) x όπου θ είναι η γωνία που σχηματίζει η επιβατική ακτίνα από την αρχή Ο προς το σημείο z (Σχήμα 1.1). Δύο τυχόντα από τα άπειρα ορίσματα ενός και του αυτού μιγαδικού αριθμού z διαφέρουν μεταξύ τους κατά ένα ακέραιο πολλαπλάσιο του αριθμού 2π. Ως κύρια τιμή του ορίσματος του z ορίζεται η γωνία Θ Argz για την οποία π <Θ π. Κάθε μη-μηδενικός μιγαδικός αριθμός z γράφεται με την βοήθεια του ορίσματος και του μέτρου του z r στην πολική μορφή του (1.1). 2. ΤΟΠΟΛΟΓΙΚΟΙ ΟΡΙΣΜΟΙ ΣΤΟ ΜΙΓΑΔΙΚΟ ΕΠΙΠΕΔΟ. Με τους ορισμούς που ακολουθούν εισάγουμε μερικές απλές τοπολογικές έννοιες στο μιγαδικό επίπεδο που θα μας είναι χρήσιμες στην συνέχεια. Γειτονιά ενός σημείου. Η γειτονιά ενός σημείου z ορίζεται σαν το σύνολο των σημείων z τέτοιων ώστε z z < ε όπου ε είναι ένας τυχόντας θετικός αριθμός. Είναι σαφές ότι η γειτονιά του z αναπαρίσταται από τα σημεία ενός δίσκου με κέντρο στο z και ακτίνα ε από τον οποίο έχουν αφαιρεθεί τα σημεία της περιφέρειάς του. Τρύπια γειτονιά ενός σημείου. Η τρύπια γειτονιά ενός σημείου z ορίζεται σαν το σύνολο των σημείων z τέτοιων ώστε < z z < ε. Δηλαδή η τρύπια γειτονιά είναι μια γειτονιά από την οποία έχει αφαιρεθεί το κέντρο της. Χ. Κολάσης. Χειμερινό εξάμηνο ακαδημαϊκού έτους 213-214

[3] Εσωτερικό σημείο συνόλου. Το σημείο z λέγεται εσωτερικό σημείο του συνόλου S αν υπάρχει γειτονιά του z που όλα της τα σημεία ανήκουν στο S. Εξωτερικό σημείο συνόλου. Το σημείο z λέγεται εξωτερικό σημείο του συνόλου S αν υπάρχει γειτονιά του z που δεν περιέχει σημεία του S. Συνοριακό σημείο συνόλου. Το σημείο z λέγεται συνοριακό σημείο του συνόλου S αν δεν είναι ούτε εσωτερικό ούτε εξωτερικό σημείο του S. Σύνορο συνόλου. Το σύνορο ενός συνόλου είναι το σύνολο των συνοριακών του σημείων. Ανοικτό σύνολο. Ένα σύνολο λέγεται ανοικτό αν δεν περιέχει κανένα συνοριακό του σημείο. Κλειστό σύνολο. Ένα σύνολο λέγεται κλειστό αν περιέχει όλα τα συνοριακά του σημεία. Συνεκτικό σύνολο. Ένα σύνολο λέγεται συνεκτικό αν κάθε ζευγάρι σημείων του μπορεί να ενωθεί με μια πολυγωνική γραμμή πεπερασμένου πλήθους ευθυγράμμων τμημάτων η οποία να κείται εξ ολοκλήρου μέσα στο σύνολο. Απλά συνεκτικό σύνολο. Ένα σύνολο λέγεται απλά συνεκτικό (ή σύνολο απλής συνοχής) αν είναι συνεκτικό και επί πλέον κάθε κλειστή καμπύλη που ανήκει στο σύνολο μπορεί να συρρικνωθεί με συνεχή τρόπο παραμένοντας μέσα στο σύνολο μέχρι να γίνει ένα σημείο. Ποιο παραστατικά, ένα απλά συνεκτικό σύνολο δεν έχει στο εσωτερικό του τρύπες. Χωρίο. Περιοχή. Κάθε ανοικτό συνεκτικό σύνολο λέγεται χωρίο. Κάθε χωρίο μαζί με όλα, μερικά, ή και κανένα από τα συνοριακά του σημεία θα λέγεται περιοχή. Φραγμένο σύνολο. Ένα σύνολο λέγεται φραγμένο αν υπάρχει περιφέρεια z ακτίνας R η οποία να το περικλείει εξ ολοκλήρου. = R πεπερασμένης Χ. Κολάσης. Χειμερινό εξάμηνο ακαδημαϊκού έτους 213-214

[4] Το σημείο. Με την βοήθεια της λεγόμενης στερεογραφικής προβολής μπορούμε να θέσουμε σε μία ένα προς ένα αντιστοιχία τα σημεία του μιγαδικού επιπέδου με τα σημεία της επιφάνειας μιας σφαίρας. Η αντιστοίχηση αυτή γίνεται με τον ακόλουθο τρόπο (Σχήμα 2.1). Θεωρούμε μια μοναδιαία σφαίρα της οποίας το κέντρο το τοποθετούμε στην αρχή των αξόνων Ο (σημείο z = ) του μιγαδικού επιπέδου. Η κάθετος προς το μιγαδικό επίπεδο στο σημείο Ο καθορίζει επί της σφαίρας δύο σημεία: τον βόρειο πόλο Ν και τον νότιο πόλο S. Τώρα, κάθε ημιευθεία από το N που τέμνει την σφαίρα σε ένα σημείο Μ θα τέμνει το μιγαδικό επίπεδο σε ένα σημείο z και επομένως θέτει τα δύο αυτά σημεία σε μια αμφιμονοσήμαντη αντιστοιχία. Η έτσι ορισμένη στερεογραφική προβολή αντιστοιχίζει τα σημεία του μιγαδικού επιπέδου με τα σημεία της σφαίρας ως εξής: «Σημεία του μοναδιαίου κύκλου z = 1» «Σημεία του ισημερινού της σφαίρας» «Σημεία με z < 1» «Σημεία του νότιου ημισφαίριου» (Ειδικότερα, στο Ο S) «Σημεία με z > 1» «Σημεία του βόρειου ημισφαίριου». _ Ν _ Μ _O _ y _ x _ z _ S Σχήμα 2.1 Το μόνο σημείο επί της σφαίρας που δεν έχουμε ακόμα αντιστοιχήσει με κάποιο σημείο του μιγαδικού επιπέδου είναι ο βόρειος πόλος Ν. Επειδή μια ημιευθεία από το Ν που τέμνει την σφαίρα μόνο στο Ν αναγκαστικά εφάπτεται σε αυτήν και επομένως είναι παράλληλη προς το μιγαδικό επίπεδο, είναι προφανές ότι θα τέμνει το μιγαδικό επίπεδο σε ένα σημείο z του οποίου η απόσταση από το Ο θα είναι άπειρη (δηλαδή Χ. Κολάσης. Χειμερινό εξάμηνο ακαδημαϊκού έτους 213-214

[5] z = + ). Το σημείο αυτό λέγεται το επ άπειρον σημείο και συμβολίζεται με το σύμβολο. Έτσι, με την αντιστοιχία N καλύψαμε όλα τα σημεία της σφαίρας. Από τοπολογική άποψη θεωρούμε ότι το μιγαδικό επίπεδο μαζί με το σημείο είναι κλειστό και το ονομάζουμε επεκτεταμένο μιγαδικό επίπεδο. Αντίστοιχα, κλειστό θεωρείται και το σύνολο C των μιγαδικών αριθμών όταν σε αυτό έχουμε συμπεριλάβει και τον μιγαδικό αριθμό. Τα σημεία με z > R, όπου R είναι ένας οποιοσδήποτε θετικός πραγματικός αριθμός διάφορος του +, λέμε ότι αποτελούν μια γειτονιά του σημείου. Τονίζουμε με έμφαση ότι τα σημεία + και της πραγματικής ευθείας είναι διαφορετικές μαθηματικές οντότητες από το σημείο και δεν πρέπει να συγχέονται με αυτό. 3. Η ΠΑΡΑΓΩΓΟΣ. Η ΕΝΝΟΙΑ ΤΗΣ ΑΝΑΛΥΤΙΚΗΣ ΣΥΝΑΡΗΣΗΣ. Η έννοια της συνάρτησης f( z ) Μια συνάρτηση f της μιγαδικής μεταβλητής z είναι μια απεικόνιση ενός υποσυνόλου S του C μέσα στο C. Δηλαδή, f S z w f( z) f( S) C Το σύνολο S λέγεται πεδίο ορισμού της συνάρτησης f. Η εικόνα του S μέσω της f, η f( S ), λέγεται πεδίο τιμών της f και είναι εν γένει ένα υποσύνολο του C. Το z είναι η ανεξάρτητη μεταβλητή της συνάρτησης και το w η εξαρτημένη μεταβλητή ή και εικόνα του z. Στην συνέχεια θα αναφερόμαστε σε μια συνάρτηση f γράφοντας αδιακρίτως «η συνάρτηση w= f( z)» ή «η συνάρτηση f( z ) =...» ή ακόμα ποιο απλά «η συνάρτηση f( z )». Αν στην f( z ) θέσουμε z = x + iy τότε αυτή μπορεί να γραφεί στην μορφή f( z) = uxy (, ) + ivxy (, ) (3.1) όπου uxy (, ) και vxy (, ) είναι πραγματικές συναρτήσεις των δύο ανεξάρτητων πραγματικών μεταβλητών x και y. Γραφική παράσταση για τις μιγαδικές συναρτήσεις μιας μιγαδικής μεταβλητής δεν είναι εφικτή αφού δεν μπορούμε να έχουμε εποπτεία σε τέσσερις διαστάσεις (δύο για την ανεξάρτητη μεταβλητή και άλλες δύο για την εξαρτημένη). Η μόνος τρόπος για να έχουμε μια μερική εποπτεία των ιδιοτήτων μιας συνάρτησης f( z ) είναι να σχεδιάσουμε ξεχωριστά το ένα δίπλα στο άλλο τα μιγαδικά επίπεδα των μεταβλητών z και w (τα οποία θα ονομάζουμε στην συνέχεια z-επίπεδο και w-επίπεδο αντίστοιχα) και να δείξουμε πως απεικονίζεται μέσω της f( z ) ένα σύνολο σημείων του z-επιπέδου στο w-επίπεδο. Μελετώντας κατ αυτό τον τρόπο μια συνάρτηση f( z ) την αντιμετωπίζουμε σαν ένα σημειακό μετασχηματισμό στο μιγαδικό επίπεδο. Το όριο lim f( z) z z Λέμε ότι το όριο της f( z ) καθώς το z τείνει προς το z είναι το w και γράφουμε Χ. Κολάσης. Χειμερινό εξάμηνο ακαδημαϊκού έτους 213-214

Τέλος Ενότητας

Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Ιωαννίνων» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

Σημειώματα

Σημείωμα Ιστορικού Εκδόσεων Έργου Το παρόν έργο αποτελεί την έκδοση 1.. Έχουν προηγηθεί οι κάτωθι εκδόσεις: Έκδοση 1. διαθέσιμη εδώ. http://ecourse.uoi.gr/course/view.php? id=1348.

Σημείωμα Αναφοράς Copyright Πανεπιστήμιο Ιωαννίνων, Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος. «Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί. ΤΟΠΟΛΟΓΙΚΟΙ ΟΡΙΣΜΟΙ ΣΤΟ ΜΙΓΑΔΙΚΟ ΕΠΙΠΕΔΟ». Έκδοση: 1.. Ιωάννινα 214. Διαθέσιμο από τη δικτυακή διεύθυνση: http://ecourse.uoi.gr/course/view.php?i d=1348.

Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά Δημιουργού - Παρόμοια Διανομή, Διεθνής Έκδοση 4. [1] ή μεταγενέστερη. [1] https://creativecommons.org/licenses/ by-sa/4./.