LIST OF FORMULAE STATISTICAL TABLES MATHEMATICS. (List MF1) AND

Σχετικά έγγραφα
Sixth Term Examination Papers MATHEMATICS LIST OF FORMULAE AND STATISTICAL TABLES

Appendix B: Mathematical Formulae and Statistical Tables

MEI EXAMINATION FORMULAE AND TABLES (MF2)

List MF20. List of Formulae and Statistical Tables. Cambridge Pre-U Mathematics (9794) and Further Mathematics (9795)

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

List MF19. List of formulae and statistical tables. Cambridge International AS & A Level Mathematics (9709) and Further Mathematics (9231)

DIPLOMA PROGRAMME MATHEMATICS SL INFORMATION BOOKLET

p n r

Probability theory STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN15/MASM23 TABLE OF FORMULÆ. Basic probability theory

Homework for 1/27 Due 2/5

Rectangular Polar Parametric

physicsandmathstutor.com

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review


Presentation of complex number in Cartesian and polar coordinate system

Homework 8 Model Solution Section

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

Solutions: Homework 3

Solution Series 9. i=1 x i and i=1 x i.

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

Spherical Coordinates

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

1. For each of the following power series, find the interval of convergence and the radius of convergence:

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

FORMULAS FOR STATISTICS 1

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Trigonometric Formula Sheet

PhysicsAndMathsTutor.com

Core Mathematics C12

1999 by CRC Press LLC

α β

Solve the difference equation

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

Other Test Constructions: Likelihood Ratio & Bayes Tests

Parameter Estimation Fitting Probability Distributions Bayesian Approach

Second Order Partial Differential Equations

IIT JEE (2013) (Trigonomtery 1) Solutions

Review Exercises for Chapter 7

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Areas and Lengths in Polar Coordinates

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

Biostatistics for Health Sciences Review Sheet

Quadratic Expressions

Outline. Detection Theory. Background. Background (Cont.)

Solutions to Exercise Sheet 5

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

The Equivalence Theorem in Optimal Design

true value θ. Fisher information is meaningful for families of distribution which are regular: W (x) f(x θ)dx

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Solution to Review Problems for Midterm III

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Inverse trigonometric functions & General Solution of Trigonometric Equations

The ε-pseudospectrum of a Matrix

DERIVATION OF MILES EQUATION Revision D

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

Core Mathematics C34

The Heisenberg Uncertainty Principle

4. Απαγορεύεται η χρήση υπολογιστή χειρός. Απαγορεύεται η χρήση κινητού, και ως υπολογιστή χειρός.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

CRASH COURSE IN PRECALCULUS

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Parametrized Surfaces

Areas and Lengths in Polar Coordinates

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Homework 3 Solutions

ECE Notes 21 Bessel Function Examples. Fall 2017 David R. Jackson. Notes are from D. R. Wilton, Dept. of ECE

(6,5 μονάδες) Θέμα 1 ο. Τμήμα Πολιτικών Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Διεθνές Πανεπιστήμιο Ελλάδος ΟΝΟΜΑΤΕΠΩΝΥΜΟ

Probability and Random Processes (Part II)

Math 6 SL Probability Distributions Practice Test Mark Scheme

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

HermiteHGeneral. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Lifting Entry (continued)

Differential equations

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Trigonometry 1.TRIGONOMETRIC RATIOS

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

STAT 330(Winter ) Mathematical Statistics

Rectangular Polar Parametric

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

B.A. (PROGRAMME) 1 YEAR

Lecture 3: Asymptotic Normality of M-estimators

TRIGONOMETRIC FUNCTIONS

Statistical Inference I Locally most powerful tests

Differentiation exercise show differential equation

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Κεφάλαιο 2 ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ. 2.1 Σηµειακή Εκτίµηση. = E(ˆθ) και διασπορά σ 2ˆθ = Var(ˆθ).

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

LAD Estimation for Time Series Models With Finite and Infinite Variance

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

ECE 468: Digital Image Processing. Lecture 8

Transcript:

ADVANCED SUBSIDIARY GENERAL CERTIFICATE OF EDUCATION ADVANCED GENERAL CERTIFICATE OF EDUCATION MATHEMATICS LIST OF FORMULAE AND STATISTICAL TABLES (List MF) MF CST5 Jauary 007

Pure Mathematics Mesuratio Surface area of sphere = 4πr Area of curved surface of coe = πr slat height Trigoometry a = b + c bc cos A Arithmetic Series u = a +( )d S = (a + l) = {a +( )d} Geometric Series u = ar S = a( r ) r S = a for r < r Summatios r= r= r = ( + )( + ) 6 r 3 = 4 ( + ) Biomial Series ( r ) + ( r + ) = ( + r + ) (a + b) = a + ( ) a b + ( ) a b +... + ( r ) a r b r +... + b ( ), where ( r ) = C r = ( + x) = + x +! r!( r)! ( ) x +... +. ( )... ( r + ) x r +.....3... r ( x <, ) Logarithms ad expoetials e x l a = a x Complex Numbers {r(cos θ + isiθ)} = r (cos θ + isiθ) e iθ = cos θ + isiθ πki The roots of = aregiveby =e,fork = 0,,,...,

Maclauri s Series f(x) =f(0)+xf (0)+ x! f (0)+... + xr r! f (r) (0)+... e x = exp(x) = + x + x xr +... + +...! r! forallx l( + x) =x x + x3 3... x r +( )r+ +... r ( < x ) si x = x x3 3! + x5 5!... x r+ +( )r +... (r + )! forallx cos x = x! + x4 4!... x r +( )r (r)! +... forallx ta x = x x3 3 + x5 5... x r+ +( )r +... ( x ) r + sih x = x + x3 3! + x5 xr+ +... + +... forallx 5! (r + )! cosh x = + x! + x4 xr +... + 4! (r)! +... forallx tah x = x + x3 3 + x5 xr+ +... + +... ( < x < ) 5 r + Hyperbolic Fuctios cosh x sih x = sih x = sihxcosh x cosh x = cosh x + sih x cosh x = l{x + (x )} (x ) sih x = l{x + (x + )} tah x = Coordiate Geometry + x l ( ) ( x <) x The perpedicular distace from (h, k) to ax + by + c = 0is ah + bk + c (a + b ) The acute agle betwee lies with gradiets m ad m is ta m m + m m Trigoometric Idetities si(a ± B) =si A cos B ± cos A si B cos(a ± B) =cos A cos B si A si B ta A ± ta B ta(a ± B) = ta A ta B (A ± B (k + )π) For t = ta A: sia = t si A + si B = si A + B si A si B = cos A + B cos A + cos B = cos A + B cos A cos B = si A + B t,cosa = + t + t cos A B si A B cos A B si A B 3

Vectors The resolved part of a i the directio of b is a.b b The poit dividig AB i the ratio λ : µ is µa + λb λ + µ a b 3 a 3 b = ( a 3 b a b 3 ) a b a b i a b Vector product: a b = a b si θ ˆ = j a b k a 3 b 3 If A is the poit with positio vector a = a i + a j + a 3 k ad the directio vector b is give by b = b i + b j + b 3 k, the the straight lie through A with directio vector b has cartesia equatio x a b = y a b = a 3 b 3 (= λ ) The plae through A with ormal vector = i + j + 3 k has cartesia equatio x + y + 3 +d = 0, where d = a. The plae through o-colliear poits A, B ad C has vector equatio r = a + λ (b a)+µ(c a) =( λ µ)a + λb + µc The plae through the poit with positio vector a ad parallel to b ad c has equatio r = a + sb + tc The perpedicular distace of (α, β, γ ) from x + y + 3 +d = 0is α + β + 3 γ + d ( + + 3 ) Matrix trasformatios Aticlockwise rotatio through θ about O: ( cos θ si θ si θ cos θ ) cos θ si θ Reflectioitheliey =(ta θ)x: ( si θ cos θ ) Differetiatio f(x) ta kx si x cos x ta x sec x cot x cosec x sihx cosh x tah x sih x cosh x f (x) k sec kx ( x ) ( x ) + x sec x ta x cosec x cosec x cot x cosh x sih x sech x ( + x ) (x ) tah x x If y = f(x) dy the g(x) dx = f (x)g(x) f(x)g (x) {g(x)} 4

Itegratio ( + costat; a > 0 where relevat) f(x) f(x) dx sec kx ta kx k ta x l sec x cot x l si x cosec x l cosec x + cot x =l ta x sec x l sec x + ta x =l ta(x + π) 4 sih x cosh x cosh x sih x tah x l cosh x (a x ) si ( x ) a ( x < a) a + x a ta ( x a ) (x a ) cosh ( x a ) or l{x + (x a )} (x > a) (a + x ) sih ( x a ) or l{x + (x + a )} a x a l a + x a x = a tah ( x ) ( x < a) a x a a l x a x + a u dv dx dx = uv v du dx dx Area of a sector A = r dθ (polar coordiates) A = (x dy dt y dx dt ) dt (parametric form) Numerical Mathematics Numerical itegratio b The trapezium rule: y dx h{(y 0 + y )+(y + y +... + y b a )}, whereh = a b Simpso s Rule: y dx h{(y 3 0 + y )+4(y + y 3 +... + y )+(y + y 4 +... + y )}, a where h = b a ad is eve Numerical Solutio of Equatios The Newto-Raphso iteratio for solvig f(x) =0: x + = x f(x ) f (x ) 5

Mechaics Motio i a circle Trasverse velocity: v = r θ Trasverse acceleratio: v = r θ Radial acceleratio: r θ = v r Cetres of Mass (for uiform bodies) Triagular lamia: 3 alogmediafromvertex Solid hemisphere, radius r: 3 r from cetre 8 Hemispherical shell, radius r: r from cetre Circular arc, radius r, agleatcetreα: r si α α Sector of circle, radius r, agleatcetreα: r si α 3α from cetre from cetre Solid coe or pyramid of height h: h above the base o the lie from cetre of base to vertex 4 Coical shell of height h: h above the base o the lie from cetre of base to vertex 3 Momets of Iertia (for uiform bodies of mass m) Thi rod, legth l, about perpedicular axis through cetre: 3 ml Rectagular lamia about axis i plae bisectig edges of legth l: 3 ml Thi rod, legth l, about perpedicular axis through ed: 4 3 ml Rectagular lamia about edge perpedicular to edges of legth l: 4 3 ml Rectagular lamia, sides a ad b, about perpedicular axis through cetre: 3 m(a + b ) Hoop or cylidrical shell of radius r about axis: mr Hoop of radius r about a diameter: mr Disc or solid cylider of radius r about axis: mr Disc of radius r about a diameter: 4 mr Solid sphere, radius r, about diameter: 5 mr Spherical shell of radius r about a diameter: 3 mr Parallel axes theorem: I A = I G + m(ag) Perpedicular axes theorem: I = I x + I y (foralamiaithex-y plae) 6

Probability & Statistics Probability P(A B) =P(A)+P(B) P(A B) P(A B) =P(A)P(B A) P(A B) = P(B A)P(A) P(B A)P(A)+P(B A )P(A ) Bayes Theorem: P(A j B) = P(A j )P(B A j ) ΣP(A i )P(B A i ) Discrete distributios For a discrete radom variable X takig values x i with probabilities p i Expectatio (mea): E(X) =µ = Σ x i p i Variace: Var(X) =σ = Σ(x i µ) p i = Σ x i p i µ For a fuctio g(x): E(g(X)) = Σ g(x i )p i The probability geeratig fuctio of X is G X (t) =E(t X ),ad E(X) =G X () Var(X) =G X ()+G X () {G X ()} For Z = X + Y,whereX ad Y are idepedet: G Z (t) =G X (t)g Y (t) Stadard discrete distributios Distributio of X P(X = x) Mea Variace P.G.F. Biomial B(, p) ( x ) px ( p) x p p( p) ( p + pt) Poisso Po(λ ) e λ λ x x! Geometric Geo(p) o,, p( p) x p λ λ e λ(t ) p p pt ( p)t Cotiuous distributios For a cotiuous radom variable X havig probability desity fuctio f Expectatio (mea): E(X) =µ = xf(x) dx Variace: Var(X) =σ = (x µ) f(x) dx = x f(x) dx µ For a fuctio g(x): E(g(X)) = g(x)f(x) dx x Cumulative distributio fuctio: F(x) =P(X x) = f(t) dt The momet geeratig fuctio of X is M X (t) =E(e tx ) ad E(X) =M X (0) E(X )=M () X (0) Var(X) =M X (0) {M X (0)} For Z = X + Y,whereX ad Y are idepedet: M Z (t) =M X (t)m Y (t) 7

Stadard cotiuous distributios Distributio of X P.D.F. Mea Variace M.G.F. Uiform (Rectagular) o [a, b] b a Expoetial λe λx λ Normal N(µ, σ ) (a + b) (b e bt e at a) (b a)t λ λ λ t σ ( x µ (π) e σ ) µ σ e µt+ σ t Expectatio algebra Covariace: Cov(X, Y) =E((X µ X )(Y µ Y )) = E(XY) µ X µ Y Var(aX ± by) =a Var(X)+b Var(Y)±ab Cov(X, Y) Product momet correlatio coefficiet: ρ = Cov(X, Y) σ X σ Y If X = ax + b ad Y = cy + d, the Cov(X, Y) =ac Cov(X, Y ) For idepedet radom variables X ad Y E(XY) =E(X)E(Y) Var(aX ± by) =a Var(X)+b Var(Y) Samplig distributios For a radom sample X, X,..., X of idepedet observatios from a distributio havig mea µ ad variace σ X is a ubiased estimator of µ, with Var(X) = σ S is a ubiased estimator of σ,wheres = Σ(X i X) For a radom sample of observatios from N(µ, σ ) X µ σ/ N(0, ) X µ S/ t (also valid i matched-pairs situatios) If X is the observed umber of successes i idepedet Beroulli trials i each of which the probability of success is p, ady = X,the p( p) E(Y) =p ad Var(Y) = For a radom sample of x observatios from N(µ x, σ ) ad, idepedetly, a radom sample of x y observatios from N(µ y, σ y ) (X Y) (µ x µ y ) ( σ x + σ N(0, ) y ) x y If σ x = σ y = σ (ukow) the (X Y) (µ x µ y ) {Sp ( + )} x y t x + y, where S p = ( x )S x +( y )S y x + y 8

Correlatio ad regressio For a set of pairs of values (x i, y i ) S xx = Σ(x i x) = Σ x i (Σ x i ) S yy = Σ(y i y) = Σ y i (Σ y i ) S xy = Σ(x i x)(y i y) =Σ x i y i (Σ x i )(Σ y i ) The product momet correlatio coefficiet is r = S xy (Sxx S yy ) = Σ(x i x)(y i y) {(Σ(xi x) )(Σ(y i y) )} = Spearma s rak correlatio coefficiet is r s = (Σ x Σ x i y i i )(Σ y i ) {(Σ x i (Σ x i ) 6Σ d ( ) The regressio coefficiet of y o x is b = S xy S xx = Σ(x i x)(y i y) Σ(x i x) Least squares regressio lie of y o x is y = a + bx where a = y bx )(Σ y i (Σ y i ) )} Distributio-free (o-parametric) tests (O Goodess-of-fit test ad cotigecy tables: i E i ) χ ν Approximate distributios for large samples Wilcoxo Siged Rak test: T N( ( + ), ( + )( + )) 4 4 Wilcoxo Rak Sum test (samples of sizes m ad, withm ): W N( m(m + + ), m(m + + )) E i 9

CUMULATIVE BINOMIAL PROBABILITIES = 5 p 0.05 0. 0.5 /6 0. 0.5 0.3 /3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 /3 0.7 0.75 0.8 5/6 0.85 0.9 0.95 x = 0 0.7738 0.5905 0.4437 0.409 0.377 0.373 0.68 0.37 0.60 0.0778 0.0503 0.033 0.085 0.00 0.0053 0.004 0.004 0.000 0.0003 0.000 0.000 0.0000 0.0000 0.9774 0.985 0.835 0.8038 0.7373 0.638 0.58 0.4609 0.484 0.3370 0.56 0.875 0.3 0.0870 0.0540 0.0453 0.0308 0.056 0.0067 0.0033 0.00 0.0005 0.0000 0.9988 0.994 0.9734 0.9645 0.94 0.8965 0.8369 0.790 0.7648 0.686 0.593 0.5000 0.4069 0.374 0.35 0.099 0.63 0.035 0.0579 0.0355 0.066 0.0086 0.00 3.0000 0.9995 0.9978 0.9967 0.9933 0.9844 0.969 0.9547 0.9460 0.930 0.8688 0.85 0.7438 0.6630 0.576 0.539 0.478 0.367 0.67 0.96 0.648 0.085 0.06 4.0000.0000 0.9999 0.9999 0.9997 0.9990 0.9976 0.9959 0.9947 0.9898 0.985 0.9688 0.9497 0.9 0.8840 0.8683 0.839 0.767 0.673 0.598 0.5563 0.4095 0.6 5.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 = 6 p 0.05 0. 0.5 /6 0. 0.5 0.3 /3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 /3 0.7 0.75 0.8 5/6 0.85 0.9 0.95 x = 0 0.735 0.534 0.377 0.3349 0.6 0.780 0.76 0.0878 0.0754 0.0467 0.077 0.056 0.0083 0.004 0.008 0.004 0.0007 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.967 0.8857 0.7765 0.7368 0.6554 0.5339 0.40 0.35 0.39 0.333 0.636 0.094 0.069 0.040 0.03 0.078 0.009 0.0046 0.006 0.0007 0.0004 0.000 0.0000 0.9978 0.984 0.957 0.9377 0.90 0.8306 0.7443 0.6804 0.647 0.5443 0.445 0.3438 0.553 0.79 0.74 0.00 0.0705 0.0376 0.070 0.0087 0.0059 0.003 0.000 3 0.9999 0.9987 0.994 0.993 0.9830 0.964 0.995 0.8999 0.886 0.808 0.7447 0.6563 0.5585 0.4557 0.359 0.396 0.557 0.694 0.0989 0.063 0.0473 0.059 0.00 4.0000 0.9999 0.9996 0.9993 0.9984 0.9954 0.989 0.98 0.9777 0.9590 0.9308 0.8906 0.8364 0.7667 0.6809 0.6488 0.5798 0.466 0.3446 0.63 0.35 0.43 0.038 5.0000.0000.0000.0000 0.9999 0.9998 0.9993 0.9986 0.998 0.9959 0.997 0.9844 0.973 0.9533 0.946 0.9 0.884 0.80 0.7379 0.665 0.69 0.4686 0.649 6.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 = 7 p 0.05 0. 0.5 /6 0. 0.5 0.3 /3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 /3 0.7 0.75 0.8 5/6 0.85 0.9 0.95 x = 0 0.6983 0.4783 0.306 0.79 0.097 0.335 0.084 0.0585 0.0490 0.080 0.05 0.0078 0.0037 0.006 0.0006 0.0005 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9556 0.8503 0.766 0.6698 0.5767 0.4449 0.394 0.634 0.338 0.586 0.04 0.065 0.0357 0.088 0.0090 0.0069 0.0038 0.003 0.0004 0.000 0.000 0.0000 0.0000 0.996 0.9743 0.96 0.904 0.850 0.7564 0.647 0.5706 0.533 0.499 0.364 0.66 0.59 0.0963 0.0556 0.0453 0.088 0.09 0.0047 0.000 0.00 0.000 0.0000 3 0.9998 0.9973 0.9879 0.984 0.9667 0.994 0.8740 0.867 0.800 0.70 0.6083 0.5000 0.397 0.898 0.998 0.733 0.60 0.0706 0.0333 0.076 0.0 0.007 0.000 4.0000 0.9998 0.9988 0.9980 0.9953 0.987 0.97 0.9547 0.9444 0.9037 0.847 0.7734 0.6836 0.580 0.4677 0.494 0.359 0.436 0.480 0.0958 0.0738 0.057 0.0038 5.0000.0000 0.9999 0.9999 0.9996 0.9987 0.996 0.993 0.990 0.98 0.9643 0.9375 0.8976 0.844 0.766 0.7366 0.6706 0.555 0.433 0.330 0.834 0.497 0.0444 6.0000.0000.0000.0000.0000 0.9999 0.9998 0.9995 0.9994 0.9984 0.9963 0.99 0.9848 0.970 0.950 0.945 0.976 0.8665 0.7903 0.709 0.6794 0.57 0.307 7.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 = 8 p 0.05 0. 0.5 /6 0. 0.5 0.3 /3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 /3 0.7 0.75 0.8 5/6 0.85 0.9 0.95 x = 0 0.6634 0.4305 0.75 0.36 0.678 0.00 0.0576 0.0390 0.039 0.068 0.0084 0.0039 0.007 0.0007 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.948 0.83 0.657 0.6047 0.5033 0.367 0.553 0.95 0.69 0.064 0.063 0.035 0.08 0.0085 0.0036 0.006 0.003 0.0004 0.000 0.0000 0.0000 0.0000 0.0000 0.994 0.969 0.8948 0.865 0.7969 0.6785 0.558 0.468 0.478 0.354 0.0 0.445 0.0885 0.0498 0.053 0.097 0.03 0.004 0.00 0.0004 0.000 0.0000 0.0000 3 0.9996 0.9950 0.9786 0.9693 0.9437 0.886 0.8059 0.744 0.7064 0.594 0.4770 0.3633 0.604 0.737 0.06 0.0879 0.0580 0.073 0.004 0.0046 0.009 0.0004 0.0000 4.0000 0.9996 0.997 0.9954 0.9896 0.977 0.940 0.9 0.8939 0.863 0.7396 0.6367 0.530 0.4059 0.936 0.586 0.94 0.38 0.0563 0.0307 0.04 0.0050 0.0004 5.0000.0000 0.9998 0.9996 0.9988 0.9958 0.9887 0.9803 0.9747 0.950 0.95 0.8555 0.7799 0.6846 0.57 0.538 0.448 0.35 0.03 0.348 0.05 0.038 0.0058 6.0000.0000.0000.0000 0.9999 0.9996 0.9987 0.9974 0.9964 0.995 0.989 0.9648 0.9368 0.8936 0.8309 0.8049 0.7447 0.639 0.4967 0.3953 0.348 0.869 0.057 7.0000.0000.0000.0000.0000.0000 0.9999 0.9998 0.9998 0.9993 0.9983 0.996 0.996 0.983 0.968 0.960 0.944 0.8999 0.83 0.7674 0.775 0.5695 0.3366 8.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 0

CUMULATIVE BINOMIAL PROBABILITIES = 9 p 0.05 0. 0.5 /6 0. 0.5 0.3 /3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 /3 0.7 0.75 0.8 5/6 0.85 0.9 0.95 x = 0 0.630 0.3874 0.36 0.938 0.34 0.075 0.0404 0.060 0.007 0.00 0.0046 0.000 0.0008 0.0003 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.988 0.7748 0.5995 0.547 0.436 0.3003 0.960 0.43 0. 0.0705 0.0385 0.095 0.009 0.0038 0.004 0.000 0.0004 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.996 0.9470 0.859 0.87 0.738 0.6007 0.468 0.377 0.3373 0.38 0.495 0.0898 0.0498 0.050 0.0 0.0083 0.0043 0.003 0.0003 0.000 0.0000 0.0000 0.0000 3 0.9994 0.997 0.966 0.950 0.944 0.8343 0.797 0.6503 0.6089 0.486 0.364 0.539 0.658 0.0994 0.0536 0.044 0.053 0.000 0.003 0.00 0.0006 0.000 0.0000 4.0000 0.999 0.9944 0.990 0.9804 0.95 0.90 0.855 0.883 0.7334 0.64 0.5000 0.3786 0.666 0.77 0.448 0.0988 0.0489 0.096 0.0090 0.0056 0.0009 0.0000 5.0000 0.9999 0.9994 0.9989 0.9969 0.9900 0.9747 0.9576 0.9464 0.9006 0.834 0.746 0.6386 0.574 0.39 0.3497 0.703 0.657 0.0856 0.0480 0.0339 0.0083 0.0006 6.0000.0000.0000 0.9999 0.9997 0.9987 0.9957 0.997 0.9888 0.9750 0.950 0.90 0.8505 0.768 0.667 0.68 0.537 0.3993 0.68 0.783 0.409 0.0530 0.0084 7.0000.0000.0000.0000.0000 0.9999 0.9996 0.9990 0.9986 0.996 0.9909 0.9805 0.965 0.995 0.8789 0.8569 0.8040 0.6997 0.5638 0.4573 0.4005 0.5 0.07 8.0000.0000.0000.0000.0000.0000.0000 0.9999 0.9999 0.9997 0.999 0.9980 0.9954 0.9899 0.9793 0.9740 0.9596 0.949 0.8658 0.806 0.7684 0.66 0.3698 9.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 = 0 p 0.05 0. 0.5 /6 0. 0.5 0.3 /3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 /3 0.7 0.75 0.8 5/6 0.85 0.9 0.95 x = 0 0.5987 0.3487 0.969 0.65 0.074 0.0563 0.08 0.073 0.035 0.0060 0.005 0.000 0.0003 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.939 0.736 0.5443 0.4845 0.3758 0.440 0.493 0.040 0.0860 0.0464 0.033 0.007 0.0045 0.007 0.0005 0.0004 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9885 0.998 0.80 0.775 0.6778 0.556 0.388 0.99 0.66 0.673 0.0996 0.0547 0.074 0.03 0.0048 0.0034 0.006 0.0004 0.000 0.0000 0.0000 0.0000 0.0000 3 0.9990 0.987 0.9500 0.9303 0.879 0.7759 0.6496 0.5593 0.538 0.383 0.660 0.79 0.00 0.0548 0.060 0.097 0.006 0.0035 0.0009 0.0003 0.000 0.0000 0.0000 4 0.9999 0.9984 0.990 0.9845 0.967 0.99 0.8497 0.7869 0.755 0.633 0.5044 0.3770 0.66 0.66 0.0949 0.0766 0.0473 0.097 0.0064 0.004 0.004 0.000 0.0000 5.0000 0.9999 0.9986 0.9976 0.9936 0.9803 0.957 0.934 0.905 0.8338 0.7384 0.630 0.4956 0.3669 0.485 0.3 0.503 0.078 0.038 0.055 0.0099 0.006 0.000 6.0000.0000 0.9999 0.9997 0.999 0.9965 0.9894 0.9803 0.9740 0.945 0.8980 0.88 0.7340 0.677 0.486 0.4407 0.3504 0.4 0.09 0.0697 0.0500 0.08 0.000 7.0000.0000.0000.0000 0.9999 0.9996 0.9984 0.9966 0.995 0.9877 0.976 0.9453 0.9004 0.837 0.7384 0.7009 0.67 0.4744 0.3 0.48 0.798 0.070 0.05 8.0000.0000.0000.0000.0000.0000 0.9999 0.9996 0.9995 0.9983 0.9955 0.9893 0.9767 0.9536 0.940 0.8960 0.8507 0.7560 0.64 0.555 0.4557 0.639 0.086 9.0000.0000.0000.0000.0000.0000.0000.0000.0000 0.9999 0.9997 0.9990 0.9975 0.9940 0.9865 0.987 0.978 0.9437 0.896 0.8385 0.803 0.653 0.403 0.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 = p 0.05 0. 0.5 /6 0. 0.5 0.3 /3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 /3 0.7 0.75 0.8 5/6 0.85 0.9 0.95 x = 0 0.5404 0.84 0.4 0. 0.0687 0.037 0.038 0.0077 0.0057 0.00 0.0008 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.886 0.6590 0.4435 0.383 0.749 0.584 0.0850 0.0540 0.044 0.096 0.0083 0.003 0.00 0.0003 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9804 0.889 0.7358 0.6774 0.5583 0.3907 0.58 0.8 0.53 0.0834 0.04 0.093 0.0079 0.008 0.0008 0.0005 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 3 0.9978 0.9744 0.9078 0.8748 0.7946 0.6488 0.495 0.393 0.3467 0.53 0.345 0.0730 0.0356 0.053 0.0056 0.0039 0.007 0.0004 0.000 0.0000 0.0000 0.0000 0.0000 4 0.9998 0.9957 0.976 0.9636 0.974 0.844 0.737 0.635 0.5833 0.438 0.3044 0.938 0.7 0.0573 0.055 0.088 0.0095 0.008 0.0006 0.000 0.000 0.0000 0.0000 5.0000 0.9995 0.9954 0.99 0.9806 0.9456 0.88 0.83 0.7873 0.665 0.569 0.387 0.607 0.58 0.0846 0.0664 0.0386 0.043 0.0039 0.003 0.0007 0.000 0.0000 6.0000 0.9999 0.9993 0.9987 0.996 0.9857 0.964 0.9336 0.954 0.848 0.7393 0.68 0.473 0.3348 0.7 0.777 0.78 0.0544 0.094 0.0079 0.0046 0.0005 0.0000 7.0000.0000 0.9999 0.9998 0.9994 0.997 0.9905 0.98 0.9745 0.947 0.8883 0.806 0.6956 0.568 0.467 0.3685 0.763 0.576 0.076 0.0364 0.039 0.0043 0.000 8.0000.0000.0000.0000 0.9999 0.9996 0.9983 0.996 0.9944 0.9847 0.9644 0.970 0.8655 0.7747 0.6533 0.6069 0.5075 0.35 0.054 0.5 0.09 0.056 0.00 9.0000.0000.0000.0000.0000.0000 0.9998 0.9995 0.999 0.997 0.99 0.9807 0.9579 0.966 0.8487 0.889 0.747 0.6093 0.447 0.36 0.64 0.09 0.096 0.0000.0000.0000.0000.0000.0000.0000.0000 0.9999 0.9997 0.9989 0.9968 0.997 0.9804 0.9576 0.9460 0.950 0.846 0.75 0.687 0.5565 0.340 0.84.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 0.9999 0.9998 0.999 0.9978 0.9943 0.993 0.986 0.9683 0.933 0.8878 0.8578 0.776 0.4596.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000

CUMULATIVE BINOMIAL PROBABILITIES = 4 p 0.05 0. 0.5 /6 0. 0.5 0.3 /3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 /3 0.7 0.75 0.8 5/6 0.85 0.9 0.95 x = 0 0.4877 0.88 0.08 0.0779 0.0440 0.078 0.0068 0.0034 0.004 0.0008 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.8470 0.5846 0.3567 0.960 0.979 0.00 0.0475 0.074 0.005 0.008 0.009 0.0009 0.0003 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9699 0.846 0.6479 0.5795 0.448 0.8 0.608 0.053 0.0839 0.0398 0.070 0.0065 0.00 0.0006 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 3 0.9958 0.9559 0.8535 0.8063 0.698 0.53 0.355 0.6 0.05 0.43 0.063 0.087 0.04 0.0039 0.00 0.0007 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 4 0.9996 0.9908 0.9533 0.930 0.870 0.745 0.584 0.4755 0.47 0.793 0.67 0.0898 0.046 0.075 0.0060 0.0040 0.007 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 5.0000 0.9985 0.9885 0.9809 0.956 0.8883 0.7805 0.6898 0.6405 0.4859 0.3373 0.0 0.89 0.0583 0.043 0.074 0.0083 0.00 0.0004 0.000 0.0000 0.0000 0.0000 6.0000 0.9998 0.9978 0.9959 0.9884 0.967 0.9067 0.8505 0.864 0.695 0.546 0.3953 0.586 0.50 0.0753 0.0576 0.035 0.003 0.004 0.0007 0.0003 0.0000 0.0000 7.0000.0000 0.9997 0.9993 0.9976 0.9897 0.9685 0.944 0.947 0.8499 0.744 0.6047 0.4539 0.3075 0.836 0.495 0.0933 0.0383 0.06 0.004 0.00 0.000 0.0000 8.0000.0000.0000 0.9999 0.9996 0.9978 0.997 0.986 0.9757 0.947 0.88 0.7880 0.667 0.54 0.3595 0.30 0.95 0.7 0.0439 0.09 0.05 0.005 0.0000 9.0000.0000.0000.0000.0000 0.9997 0.9983 0.9960 0.9940 0.985 0.9574 0.90 0.838 0.707 0.5773 0.545 0.458 0.585 0.98 0.0690 0.0467 0.009 0.0004 0.0000.0000.0000.0000.0000.0000 0.9998 0.9993 0.9989 0.996 0.9886 0.973 0.9368 0.8757 0.7795 0.7388 0.6448 0.4787 0.308 0.937 0.465 0.044 0.004.0000.0000.0000.0000.0000.0000.0000 0.9999 0.9999 0.9994 0.9978 0.9935 0.9830 0.960 0.96 0.8947 0.839 0.789 0.559 0.405 0.35 0.584 0.030.0000.0000.0000.0000.0000.0000.0000.0000.0000 0.9999 0.9997 0.999 0.997 0.999 0.9795 0.976 0.955 0.8990 0.80 0.7040 0.6433 0.454 0.530 3.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 0.9999 0.9998 0.999 0.9976 0.9966 0.993 0.98 0.9560 0.9 0.897 0.77 0.53 4.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 = 6 p 0.05 0. 0.5 /6 0. 0.5 0.3 /3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 /3 0.7 0.75 0.8 5/6 0.85 0.9 0.95 x = 0 0.440 0.853 0.0743 0.054 0.08 0.000 0.0033 0.005 0.000 0.0003 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.808 0.547 0.839 0.7 0.407 0.0635 0.06 0.037 0.0098 0.0033 0.000 0.0003 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.957 0.789 0.564 0.4868 0.358 0.97 0.0994 0.0594 0.045 0.083 0.0066 0.00 0.0006 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 3 0.9930 0.936 0.7899 0.79 0.598 0.4050 0.459 0.659 0.339 0.065 0.08 0.006 0.0035 0.0009 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 4 0.999 0.9830 0.909 0.8866 0.798 0.630 0.4499 0.339 0.89 0.666 0.0853 0.0384 0.049 0.0049 0.003 0.0008 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 5 0.9999 0.9967 0.9765 0.96 0.983 0.803 0.6598 0.5469 0.4900 0.388 0.976 0.05 0.0486 0.09 0.006 0.0040 0.006 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 6.0000 0.9995 0.9944 0.9899 0.9733 0.904 0.847 0.7374 0.688 0.57 0.3660 0.7 0.4 0.0583 0.09 0.059 0.007 0.006 0.000 0.0000 0.0000 0.0000 0.0000 7.0000 0.9999 0.9989 0.9979 0.9930 0.979 0.956 0.8735 0.8406 0.76 0.569 0.408 0.559 0.43 0.067 0.0500 0.057 0.0075 0.005 0.0004 0.000 0.0000 0.0000 8.0000.0000 0.9998 0.9996 0.9985 0.995 0.9743 0.9500 0.939 0.8577 0.744 0.598 0.437 0.839 0.594 0.65 0.0744 0.07 0.0070 0.00 0.00 0.000 0.0000 9.0000.0000.0000.0000 0.9998 0.9984 0.999 0.984 0.977 0.947 0.8759 0.778 0.6340 0.478 0.39 0.66 0.753 0.0796 0.067 0.00 0.0056 0.0005 0.0000 0.0000.0000.0000.0000.0000 0.9997 0.9984 0.9960 0.9938 0.9809 0.954 0.8949 0.804 0.67 0.500 0.453 0.340 0.897 0.087 0.0378 0.035 0.0033 0.000.0000.0000.0000.0000.0000.0000 0.9997 0.999 0.9987 0.995 0.985 0.966 0.947 0.8334 0.708 0.6609 0.550 0.3698 0.08 0.34 0.079 0.070 0.0009.0000.0000.0000.0000.0000.0000.0000 0.9999 0.9998 0.999 0.9965 0.9894 0.979 0.9349 0.866 0.834 0.754 0.5950 0.409 0.709 0.0 0.0684 0.0070 3.0000.0000.0000.0000.0000.0000.0000.0000.0000 0.9999 0.9994 0.9979 0.9934 0.987 0.9549 0.9406 0.9006 0.809 0.648 0.53 0.4386 0.08 0.049 4.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 0.9999 0.9997 0.9990 0.9967 0.990 0.9863 0.9739 0.9365 0.8593 0.778 0.76 0.4853 0.89 5.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 0.9999 0.9997 0.9990 0.9985 0.9967 0.9900 0.979 0.9459 0.957 0.847 0.5599 6.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000

CUMULATIVE BINOMIAL PROBABILITIES = 8 p 0.05 0. 0.5 /6 0. 0.5 0.3 /3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 /3 0.7 0.75 0.8 5/6 0.85 0.9 0.95 x = 0 0.397 0.50 0.0536 0.0376 0.080 0.0056 0.006 0.0007 0.0004 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.7735 0.4503 0.4 0.78 0.099 0.0395 0.04 0.0068 0.0046 0.003 0.0003 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.949 0.7338 0.4797 0.407 0.73 0.353 0.0600 0.036 0.036 0.008 0.005 0.0007 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 3 0.989 0.908 0.70 0.6479 0.500 0.3057 0.646 0.07 0.0783 0.038 0.00 0.0038 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 4 0.9985 0.978 0.8794 0.838 0.764 0.587 0.337 0.3 0.886 0.094 0.04 0.054 0.0049 0.003 0.0003 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 5 0.9998 0.9936 0.958 0.9347 0.867 0.775 0.5344 0.4 0.3550 0.088 0.077 0.048 0.083 0.0058 0.004 0.0009 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 6.0000 0.9988 0.988 0.9794 0.9487 0.860 0.77 0.6085 0.549 0.3743 0.58 0.89 0.0537 0.003 0.006 0.0039 0.004 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 7.0000 0.9998 0.9973 0.9947 0.9837 0.943 0.8593 0.7767 0.783 0.5634 0.395 0.403 0.80 0.0576 0.0 0.044 0.006 0.00 0.000 0.0000 0.0000 0.0000 0.0000 8.0000.0000 0.9995 0.9989 0.9957 0.9807 0.9404 0.894 0.8609 0.7368 0.5778 0.4073 0.57 0.347 0.0597 0.0433 0.00 0.0054 0.0009 0.000 0.000 0.0000 0.0000 9.0000.0000 0.9999 0.9998 0.999 0.9946 0.9790 0.9567 0.9403 0.8653 0.7473 0.597 0.4 0.63 0.39 0.076 0.0596 0.093 0.0043 0.00 0.0005 0.0000 0.0000 0.0000.0000.0000.0000 0.9998 0.9988 0.9939 0.9856 0.9788 0.944 0.870 0.7597 0.6085 0.4366 0.77 0.33 0.407 0.0569 0.063 0.0053 0.007 0.000 0.0000.0000.0000.0000.0000.0000 0.9998 0.9986 0.996 0.9938 0.9797 0.9463 0.88 0.774 0.657 0.4509 0.395 0.783 0.390 0.053 0.006 0.08 0.00 0.0000.0000.0000.0000.0000.0000.0000 0.9997 0.999 0.9986 0.994 0.987 0.959 0.893 0.79 0.6450 0.5878 0.4656 0.85 0.39 0.0653 0.049 0.0064 0.000 3.0000.0000.0000.0000.0000.0000.0000 0.9999 0.9997 0.9987 0.995 0.9846 0.9589 0.9058 0.84 0.7689 0.6673 0.483 0.836 0.68 0.06 0.08 0.005 4.0000.0000.0000.0000.0000.0000.0000.0000.0000 0.9998 0.9990 0.996 0.9880 0.967 0.97 0.8983 0.8354 0.6943 0.4990 0.35 0.798 0.098 0.009 5.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 0.9999 0.9993 0.9975 0.998 0.9764 0.9674 0.9400 0.8647 0.787 0.5973 0.503 0.66 0.058 6.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 0.9999 0.9997 0.9987 0.9954 0.993 0.9858 0.9605 0.9009 0.87 0.7759 0.5497 0.65 7.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 0.9999 0.9996 0.9993 0.9984 0.9944 0.980 0.964 0.9464 0.8499 0.608 8.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 = 0 p 0.05 0. 0.5 /6 0. 0.5 0.3 /3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 /3 0.7 0.75 0.8 5/6 0.85 0.9 0.95 x = 0 0.3585 0.6 0.0388 0.06 0.05 0.003 0.0008 0.0003 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.7358 0.397 0.756 0.304 0.069 0.043 0.0076 0.0033 0.00 0.0005 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.945 0.6769 0.4049 0.387 0.06 0.093 0.0355 0.076 0.0 0.0036 0.0009 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 3 0.984 0.8670 0.6477 0.5665 0.44 0.5 0.07 0.0604 0.0444 0.060 0.0049 0.003 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 4 0.9974 0.9568 0.898 0.7687 0.696 0.448 0.375 0.55 0.8 0.050 0.089 0.0059 0.005 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 5 0.9997 0.9887 0.937 0.898 0.804 0.67 0.464 0.97 0.454 0.56 0.0553 0.007 0.0064 0.006 0.0003 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 6.0000 0.9976 0.978 0.969 0.933 0.7858 0.6080 0.4793 0.466 0.500 0.99 0.0577 0.04 0.0065 0.005 0.0009 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 7.0000 0.9996 0.994 0.9887 0.9679 0.898 0.773 0.665 0.600 0.459 0.50 0.36 0.0580 0.00 0.0060 0.0037 0.003 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 8.0000 0.9999 0.9987 0.997 0.9900 0.959 0.8867 0.8095 0.764 0.5956 0.443 0.57 0.308 0.0565 0.096 0.030 0.005 0.0009 0.000 0.0000 0.0000 0.0000 0.0000 9.0000.0000 0.9998 0.9994 0.9974 0.986 0.950 0.908 0.878 0.7553 0.594 0.49 0.493 0.75 0.053 0.0376 0.07 0.0039 0.0006 0.000 0.0000 0.0000 0.0000 0.0000.0000.0000 0.9999 0.9994 0.996 0.989 0.964 0.9468 0.875 0.7507 0.588 0.4086 0.447 0.8 0.099 0.0480 0.039 0.006 0.0006 0.000 0.0000 0.0000.0000.0000.0000.0000 0.9999 0.999 0.9949 0.9870 0.9804 0.9435 0.869 0.7483 0.5857 0.4044 0.376 0.905 0.33 0.0409 0.000 0.008 0.003 0.000 0.0000.0000.0000.0000.0000.0000 0.9998 0.9987 0.9963 0.9940 0.9790 0.940 0.8684 0.7480 0.584 0.3990 0.3385 0.77 0.08 0.03 0.03 0.0059 0.0004 0.0000 3.0000.0000.0000.0000.0000.0000 0.9997 0.999 0.9985 0.9935 0.9786 0.943 0.870 0.7500 0.5834 0.507 0.390 0.4 0.0867 0.037 0.09 0.004 0.0000 4.0000.0000.0000.0000.0000.0000.0000 0.9998 0.9997 0.9984 0.9936 0.9793 0.9447 0.8744 0.7546 0.708 0.5836 0.388 0.958 0.08 0.0673 0.03 0.0003 5.0000.0000.0000.0000.0000.0000.0000.0000.0000 0.9997 0.9985 0.994 0.98 0.9490 0.888 0.8485 0.765 0.585 0.3704 0.33 0.70 0.043 0.006 6.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 0.9997 0.9987 0.995 0.9840 0.9556 0.9396 0.899 0.7748 0.5886 0.4335 0.353 0.330 0.059 7.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 0.9998 0.999 0.9964 0.9879 0.984 0.9645 0.9087 0.7939 0.673 0.595 0.33 0.0755 8.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 0.9999 0.9995 0.9979 0.9967 0.994 0.9757 0.9308 0.8696 0.844 0.6083 0.64 9.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 0.9998 0.9997 0.999 0.9968 0.9885 0.9739 0.96 0.8784 0.645 0.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 3

CUMULATIVE BINOMIAL PROBABILITIES = 5 p 0.05 0. 0.5 /6 0. 0.5 0.3 /3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 /3 0.7 0.75 0.8 5/6 0.85 0.9 0.95 x = 0 0.774 0.078 0.07 0.005 0.0038 0.0008 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.644 0.7 0.093 0.069 0.074 0.0070 0.006 0.0005 0.0003 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.879 0.537 0.537 0.887 0.098 0.03 0.0090 0.0035 0.00 0.0004 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 3 0.9659 0.7636 0.47 0.386 0.340 0.096 0.033 0.049 0.0097 0.004 0.0005 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 4 0.998 0.900 0.68 0.5937 0.407 0.37 0.0905 0.046 0.030 0.0095 0.003 0.0005 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 5 0.9988 0.9666 0.8385 0.770 0.667 0.3783 0.935 0.0 0.086 0.094 0.0086 0.000 0.0004 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 6 0.9998 0.9905 0.9305 0.8908 0.7800 0.56 0.3407 0.5 0.734 0.0736 0.058 0.0073 0.006 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 7.0000 0.9977 0.9745 0.9553 0.8909 0.765 0.58 0.3703 0.306 0.536 0.0639 0.06 0.0058 0.00 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 8.0000 0.9995 0.990 0.9843 0.953 0.8506 0.6769 0.5376 0.4668 0.735 0.340 0.0539 0.074 0.0043 0.0008 0.0004 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 9.0000 0.9999 0.9979 0.9953 0.987 0.987 0.806 0.6956 0.6303 0.446 0.44 0.48 0.0440 0.03 0.009 0.006 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000.0000 0.9995 0.9988 0.9944 0.9703 0.90 0.80 0.77 0.5858 0.3843 0. 0.0960 0.0344 0.0093 0.0056 0.008 0.000 0.0000 0.0000 0.0000 0.0000 0.0000.0000.0000 0.9999 0.9997 0.9985 0.9893 0.9558 0.908 0.8746 0.733 0.546 0.3450 0.87 0.0778 0.055 0.064 0.0060 0.0009 0.000 0.0000 0.0000 0.0000 0.0000.0000.0000.0000 0.9999 0.9996 0.9966 0.985 0.9585 0.9396 0.846 0.6937 0.5000 0.3063 0.538 0.0604 0.045 0.075 0.0034 0.0004 0.000 0.0000 0.0000 0.0000 3.0000.0000.0000.0000 0.9999 0.999 0.9940 0.9836 0.9745 0.9 0.873 0.6550 0.4574 0.677 0.54 0.098 0.044 0.007 0.005 0.0003 0.000 0.0000 0.0000 4.0000.0000.0000.0000.0000 0.9998 0.998 0.9944 0.9907 0.9656 0.9040 0.7878 0.657 0.44 0.88 0.780 0.0978 0.097 0.0056 0.00 0.0005 0.0000 0.0000 5.0000.0000.0000.0000.0000.0000 0.9995 0.9984 0.997 0.9868 0.9560 0.885 0.7576 0.5754 0.3697 0.3044 0.894 0.073 0.073 0.0047 0.00 0.000 0.0000 6.0000.0000.0000.0000.0000.0000 0.9999 0.9996 0.999 0.9957 0.986 0.946 0.8660 0.765 0.533 0.464 0.33 0.494 0.0468 0.057 0.0080 0.0005 0.0000 7.0000.0000.0000.0000.0000.0000.0000 0.9999 0.9998 0.9988 0.994 0.9784 0.936 0.8464 0.6939 0.697 0.488 0.735 0.09 0.0447 0.055 0.003 0.0000 8.0000.0000.0000.0000.0000.0000.0000.0000.0000 0.9997 0.9984 0.997 0.974 0.964 0.866 0.7785 0.6593 0.4389 0.00 0.09 0.0695 0.0095 0.000 9.0000.0000.0000.0000.0000.0000.0000.0000.0000 0.9999 0.9996 0.9980 0.994 0.9706 0.974 0.8880 0.8065 0.67 0.3833 0.80 0.65 0.0334 0.00 0.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 0.9999 0.9995 0.9977 0.9905 0.9680 0.9538 0.9095 0.7863 0.5793 0.4063 0.379 0.0980 0.007.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 0.9999 0.9995 0.9976 0.9903 0.985 0.9668 0.9038 0.7660 0.684 0.589 0.364 0.034.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 0.9999 0.9996 0.9979 0.9965 0.990 0.9679 0.908 0.83 0.7463 0.469 0.7 3.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 0.9999 0.9997 0.9995 0.9984 0.9930 0.976 0.937 0.9069 0.788 0.3576 4.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 0.9999 0.999 0.996 0.9895 0.988 0.98 0.76 5.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 4

CUMULATIVE BINOMIAL PROBABILITIES = 30 p 0.05 0. 0.5 /6 0. 0.5 0.3 /3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 /3 0.7 0.75 0.8 5/6 0.85 0.9 0.95 x = 0 0.46 0.044 0.0076 0.004 0.00 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5535 0.837 0.0480 0.095 0.005 0.000 0.0003 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.8 0.44 0.54 0.08 0.044 0.006 0.00 0.0007 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 3 0.939 0.6474 0.37 0.396 0.7 0.0374 0.0093 0.0033 0.009 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 4 0.9844 0.845 0.545 0.443 0.55 0.0979 0.030 0.0 0.0075 0.005 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 5 0.9967 0.968 0.706 0.664 0.475 0.06 0.0766 0.0355 0.033 0.0057 0.00 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 6 0.9994 0.974 0.8474 0.7765 0.6070 0.348 0.595 0.0838 0.0586 0.07 0.0040 0.0007 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 7 0.9999 0.99 0.930 0.8863 0.7608 0.543 0.84 0.668 0.38 0.0435 0.0 0.006 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 8.0000 0.9980 0.97 0.9494 0.873 0.6736 0.435 0.860 0.47 0.0940 0.03 0.008 0.006 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 9.0000 0.9995 0.9903 0.9803 0.9389 0.8034 0.5888 0.437 0.3575 0.763 0.0694 0.04 0.0050 0.0009 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9999 0.997 0.9933 0.9744 0.8943 0.7304 0.5848 0.5078 0.95 0.350 0.0494 0.038 0.009 0.0004 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000.0000.0000 0.999 0.9980 0.9905 0.9493 0.8407 0.739 0.6548 0.43 0.37 0.00 0.0334 0.0083 0.004 0.0007 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000.0000.0000 0.9998 0.9995 0.9969 0.9784 0.955 0.8340 0.780 0.5785 0.359 0.808 0.074 0.0 0.0045 0.005 0.0006 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 3.0000.0000.0000 0.9999 0.999 0.998 0.9599 0.90 0.8737 0.745 0.505 0.93 0.356 0.048 0.04 0.007 0.00 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 4.0000.0000.0000.0000 0.9998 0.9973 0.983 0.9565 0.9348 0.846 0.6448 0.478 0.309 0.097 0.030 0.088 0.0064 0.0008 0.000 0.0000 0.0000 0.0000 0.0000 5.0000.0000.0000.0000 0.9999 0.999 0.9936 0.98 0.9699 0.909 0.769 0.57 0.355 0.754 0.065 0.0435 0.069 0.007 0.000 0.0000 0.0000 0.0000 0.0000 6.0000.0000.0000.0000.0000 0.9998 0.9979 0.998 0.9876 0.959 0.8644 0.7077 0.4975 0.855 0.63 0.0898 0.040 0.008 0.0009 0.000 0.0000 0.0000 0.0000 7.0000.0000.0000.0000.0000 0.9999 0.9994 0.9975 0.9955 0.9788 0.986 0.89 0.6408 0.45 0.98 0.660 0.0845 0.06 0.003 0.0005 0.000 0.0000 0.0000 8.0000.0000.0000.0000.0000.0000 0.9998 0.9993 0.9986 0.997 0.9666 0.8998 0.7673 0.5689 0.345 0.76 0.593 0.0507 0.0095 0.000 0.0008 0.0000 0.0000 9.0000.0000.0000.0000.0000.0000.0000 0.9998 0.9996 0.997 0.986 0.9506 0.8650 0.7085 0.49 0.45 0.696 0.057 0.056 0.0067 0.009 0.000 0.0000 0.0000.0000.0000.0000.0000.0000.0000.0000 0.9999 0.999 0.9950 0.9786 0.9306 0.837 0.645 0.5683 0.4 0.966 0.06 0.097 0.0097 0.0005 0.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 0.9998 0.9984 0.999 0.9688 0.9060 0.7753 0.740 0.5685 0.364 0.87 0.0506 0.078 0.000 0.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 0.9996 0.9974 0.9879 0.9565 0.876 0.833 0.786 0.4857 0.39 0.37 0.0698 0.0078 0.000 3.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 0.9999 0.9993 0.9960 0.988 0.944 0.96 0.8405 0.659 0.3930 0.35 0.56 0.058 0.0006 4.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 0.9998 0.9989 0.9943 0.9767 0.9645 0.934 0.7974 0.575 0.3836 0.894 0.073 0.0033 5.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 0.9998 0.9985 0.995 0.9878 0.9698 0.90 0.7448 0.5757 0.4755 0.755 0.056 6.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 0.9997 0.998 0.9967 0.9907 0.966 0.8773 0.7604 0.6783 0.356 0.0608 7.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 0.9997 0.9993 0.9979 0.9894 0.9558 0.897 0.8486 0.5886 0.878 8.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 0.9999 0.9997 0.9980 0.9895 0.9705 0.950 0.863 0.4465 9.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 0.9998 0.9988 0.9958 0.994 0.9576 0.7854 30.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 5

CUMULATIVE POISSON PROBABILITIES λ 0.0 0.0 0.03 0.04 0.05 0.06 0.07 0.08 0.09 x = 0 0.9900 0.980 0.9704 0.9608 0.95 0.948 0.934 0.93 0.939.0000 0.9998 0.9996 0.999 0.9988 0.9983 0.9977 0.9970 0.996.0000.0000.0000.0000.0000.0000 0.9999 0.9999 0.9999 3.0000.0000.0000.0000.0000.0000.0000.0000.0000 λ 0.0 0.0 0.30 0.40 0.50 0.60 0.70 0.80 0.90 x = 0 0.9048 0.887 0.7408 0.6703 0.6065 0.5488 0.4966 0.4493 0.4066 0.9953 0.985 0.963 0.9384 0.9098 0.878 0.844 0.8088 0.775 0.9998 0.9989 0.9964 0.99 0.9856 0.9769 0.9659 0.956 0.937 3.0000 0.9999 0.9997 0.999 0.998 0.9966 0.994 0.9909 0.9865 4.0000.0000.0000 0.9999 0.9998 0.9996 0.999 0.9986 0.9977 5.0000.0000.0000.0000.0000.0000 0.9999 0.9998 0.9997 6.0000.0000.0000.0000.0000.0000.0000.0000.0000 λ.00.0.0.30.40.50.60.70.80.90 x = 0 0.3679 0.339 0.30 0.75 0.466 0.3 0.09 0.87 0.653 0.496 0.7358 0.6990 0.666 0.668 0.598 0.5578 0.549 0.493 0.468 0.4337 0.997 0.9004 0.8795 0.857 0.8335 0.8088 0.7834 0.757 0.7306 0.7037 3 0.980 0.9743 0.966 0.9569 0.9463 0.9344 0.9 0.9068 0.893 0.8747 4 0.9963 0.9946 0.993 0.9893 0.9857 0.984 0.9763 0.9704 0.9636 0.9559 5 0.9994 0.9990 0.9985 0.9978 0.9968 0.9955 0.9940 0.990 0.9896 0.9868 6 0.9999 0.9999 0.9997 0.9996 0.9994 0.999 0.9987 0.998 0.9974 0.9966 7.0000.0000.0000 0.9999 0.9999 0.9998 0.9997 0.9996 0.9994 0.999 8.0000.0000.0000.0000.0000.0000.0000 0.9999 0.9999 0.9998 9.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 λ.00.0.0.30.40.50.60.70.80.90 x = 0 0.353 0.5 0.08 0.003 0.0907 0.08 0.0743 0.067 0.0608 0.0550 0.4060 0.3796 0.3546 0.3309 0.3084 0.873 0.674 0.487 0.3 0.46 0.6767 0.6496 0.67 0.5960 0.5697 0.5438 0.584 0.4936 0.4695 0.4460 3 0.857 0.8386 0.894 0.7993 0.7787 0.7576 0.7360 0.74 0.699 0.6696 4 0.9473 0.9379 0.975 0.96 0.904 0.89 0.8774 0.869 0.8477 0.838 5 0.9834 0.9796 0.975 0.9700 0.9643 0.9580 0.950 0.9433 0.9349 0.958 6 0.9955 0.994 0.995 0.9906 0.9884 0.9858 0.988 0.9794 0.9756 0.973 7 0.9989 0.9985 0.9980 0.9974 0.9967 0.9958 0.9947 0.9934 0.999 0.990 8 0.9998 0.9997 0.9995 0.9994 0.999 0.9989 0.9985 0.998 0.9976 0.9969 9.0000 0.9999 0.9999 0.9999 0.9998 0.9997 0.9996 0.9995 0.9993 0.999 0.0000.0000.0000.0000.0000 0.9999 0.9999 0.9999 0.9998 0.9998.0000.0000.0000.0000.0000.0000.0000.0000.0000 0.9999.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 λ 3.00 3.0 3.0 3.30 3.40 3.50 3.60 3.70 3.80 3.90 x = 0 0.0498 0.0450 0.0408 0.0369 0.0334 0.030 0.073 0.047 0.04 0.00 0.99 0.847 0.7 0.586 0.468 0.359 0.57 0.6 0.074 0.099 0.43 0.40 0.3799 0.3594 0.3397 0.308 0.307 0.854 0.689 0.53 3 0.647 0.648 0.605 0.5803 0.5584 0.5366 0.55 0.494 0.4735 0.453 4 0.853 0.798 0.7806 0.766 0.744 0.754 0.7064 0.687 0.6678 0.6484 5 0.96 0.9057 0.8946 0.889 0.8705 0.8576 0.844 0.830 0.856 0.8006 6 0.9665 0.96 0.9554 0.9490 0.94 0.9347 0.967 0.98 0.909 0.8995 7 0.988 0.9858 0.983 0.980 0.9769 0.9733 0.969 0.9648 0.9599 0.9546 8 0.996 0.9953 0.9943 0.993 0.997 0.990 0.9883 0.9863 0.9840 0.985 9 0.9989 0.9986 0.998 0.9978 0.9973 0.9967 0.9960 0.995 0.994 0.993 0 0.9997 0.9996 0.9995 0.9994 0.999 0.9990 0.9987 0.9984 0.998 0.9977 0.9999 0.9999 0.9999 0.9998 0.9998 0.9997 0.9996 0.9995 0.9994 0.9993.0000.0000.0000.0000 0.9999 0.9999 0.9999 0.9999 0.9998 0.9998 3.0000.0000.0000.0000.0000.0000.0000.0000.0000 0.9999 4.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 6

CUMULATIVE POISSON PROBABILITIES λ 4.00 4.0 4.0 4.30 4.40 4.50 4.60 4.70 4.80 4.90 x = 0 0.083 0.066 0.050 0.036 0.03 0.0 0.00 0.009 0.008 0.0074 0.096 0.0845 0.0780 0.079 0.0663 0.06 0.0563 0.058 0.0477 0.0439 0.38 0.38 0.0 0.974 0.85 0.736 0.66 0.53 0.45 0.333 3 0.4335 0.44 0.3954 0.377 0.3594 0.343 0.357 0.3097 0.94 0.793 4 0.688 0.6093 0.5898 0.5704 0.55 0.53 0.53 0.4946 0.4763 0.458 5 0.785 0.7693 0.753 0.7367 0.799 0.709 0.6858 0.6684 0.650 0.6335 6 0.8893 0.8786 0.8675 0.8558 0.8436 0.83 0.880 0.8046 0.7908 0.7767 7 0.9489 0.947 0.936 0.990 0.94 0.934 0.9049 0.8960 0.8867 0.8769 8 0.9786 0.9755 0.97 0.9683 0.964 0.9597 0.9549 0.9497 0.944 0.938 9 0.999 0.9905 0.9889 0.987 0.985 0.989 0.9805 0.9778 0.9749 0.977 0 0.997 0.9966 0.9959 0.995 0.9943 0.9933 0.99 0.990 0.9896 0.9880 0.999 0.9989 0.9986 0.9983 0.9980 0.9976 0.997 0.9966 0.9960 0.9953 0.9997 0.9997 0.9996 0.9995 0.9993 0.999 0.9990 0.9988 0.9986 0.9983 3 0.9999 0.9999 0.9999 0.9998 0.9998 0.9997 0.9997 0.9996 0.9995 0.9994 4.0000.0000.0000.0000 0.9999 0.9999 0.9999 0.9999 0.9999 0.9998 5.0000.0000.0000.0000.0000.0000.0000.0000.0000 0.9999 6.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 λ 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 x = 0 0.0067 0.004 0.005 0.005 0.0009 0.0006 0.0003 0.000 0.000 0.000 0.0404 0.066 0.074 0.03 0.0073 0.0047 0.0030 0.009 0.00 0.0008 0.47 0.0884 0.060 0.0430 0.096 0.003 0.038 0.0093 0.006 0.004 3 0.650 0.07 0.5 0.8 0.088 0.059 0.044 0.030 0.0 0.049 4 0.4405 0.3575 0.85 0.37 0.730 0.3 0.0996 0.0744 0.0550 0.0403 5 0.660 0.589 0.4457 0.3690 0.3007 0.44 0.9 0.496 0.57 0.0885 6 0.76 0.6860 0.6063 0.565 0.4497 0.378 0.334 0.56 0.068 0.649 7 0.8666 0.8095 0.7440 0.678 0.5987 0.546 0.4530 0.3856 0.339 0.687 8 0.939 0.8944 0.847 0.796 0.79 0.660 0.595 0.53 0.4557 0.398 9 0.968 0.946 0.96 0.8774 0.8305 0.7764 0.766 0.6530 0.5874 0.58 0 0.9863 0.9747 0.9574 0.933 0.905 0.86 0.859 0.7634 0.7060 0.6453 0.9945 0.9890 0.9799 0.966 0.9467 0.908 0.888 0.8487 0.8030 0.750 0.9980 0.9955 0.99 0.9840 0.9730 0.9573 0.936 0.909 0.8758 0.8364 3 0.9993 0.9983 0.9964 0.999 0.987 0.9784 0.9658 0.9486 0.96 0.898 4 0.9998 0.9994 0.9986 0.9970 0.9943 0.9897 0.987 0.976 0.9585 0.9400 5 0.9999 0.9998 0.9995 0.9988 0.9976 0.9954 0.998 0.986 0.9780 0.9665 6.0000 0.9999 0.9998 0.9996 0.9990 0.9980 0.9963 0.9934 0.9889 0.983 7.0000.0000 0.9999 0.9998 0.9996 0.999 0.9984 0.9970 0.9947 0.99 8.0000.0000.0000 0.9999 0.9999 0.9997 0.9993 0.9987 0.9976 0.9957 9.0000.0000.0000.0000.0000 0.9999 0.9997 0.9995 0.9989 0.9980 0.0000.0000.0000.0000.0000.0000 0.9999 0.9998 0.9996 0.999.0000.0000.0000.0000.0000.0000.0000 0.9999 0.9998 0.9996.0000.0000.0000.0000.0000.0000.0000.0000 0.9999 0.9999 3.0000.0000.0000.0000.0000.0000.0000.0000.0000 0.9999 4.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 7

CUMULATIVE POISSON PROBABILITIES λ 0.00.00.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 x = 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.008 0.00 0.0005 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 3 0.003 0.0049 0.003 0.00 0.0005 0.000 0.000 0.0000 0.0000 0.0000 4 0.093 0.05 0.0076 0.0037 0.008 0.0009 0.0004 0.000 0.000 0.0000 5 0.067 0.0375 0.003 0.007 0.0055 0.008 0.004 0.0007 0.0003 0.000 6 0.30 0.0786 0.0458 0.059 0.04 0.0076 0.0040 0.00 0.000 0.0005 7 0.0 0.43 0.0895 0.0540 0.036 0.080 0.000 0.0054 0.009 0.005 8 0.338 0.30 0.550 0.0998 0.06 0.0374 0.00 0.06 0.007 0.0039 9 0.4579 0.3405 0.44 0.658 0.094 0.0699 0.0433 0.06 0.054 0.0089 0 0.5830 0.4599 0.347 0.57 0.757 0.85 0.0774 0.049 0.0304 0.083 0.6968 0.5793 0.466 0.353 0.600 0.848 0.70 0.0847 0.0549 0.0347 0.796 0.6887 0.5760 0.463 0.3585 0.676 0.93 0.350 0.097 0.0606 3 0.8645 0.783 0.685 0.5730 0.4644 0.363 0.745 0.009 0.46 0.0984 4 0.965 0.8540 0.770 0.675 0.5704 0.4657 0.3675 0.808 0.08 0.497 5 0.953 0.9074 0.8444 0.7636 0.6694 0.568 0.4667 0.375 0.867 0.48 6 0.9730 0.944 0.8987 0.8355 0.7559 0.664 0.5660 0.4677 0.375 0.90 7 0.9857 0.9678 0.9370 0.8905 0.87 0.7489 0.6593 0.5640 0.4686 0.3784 8 0.998 0.983 0.966 0.930 0.886 0.895 0.743 0.6550 0.56 0.4695 9 0.9965 0.9907 0.9787 0.9573 0.935 0.875 0.8 0.7363 0.6509 0.5606 0 0.9984 0.9953 0.9884 0.9750 0.95 0.970 0.868 0.8055 0.7307 0.647 0.9993 0.9977 0.9939 0.9859 0.97 0.9469 0.908 0.865 0.799 0.755 0.9997 0.9990 0.9970 0.994 0.9833 0.9673 0.948 0.9047 0.855 0.793 3 0.9999 0.9995 0.9985 0.9960 0.9907 0.9805 0.9633 0.9367 0.8989 0.8490 4.0000 0.9998 0.9993 0.9980 0.9950 0.9888 0.9777 0.9594 0.937 0.8933 5.0000 0.9999 0.9997 0.9990 0.9974 0.9938 0.9869 0.9748 0.9554 0.969 6.0000.0000 0.9999 0.9995 0.9987 0.9967 0.995 0.9848 0.978 0.954 7.0000.0000 0.9999 0.9998 0.9994 0.9983 0.9959 0.99 0.987 0.9687 8.0000.0000.0000 0.9999 0.9997 0.999 0.9978 0.9950 0.9897 0.9805 9.0000.0000.0000.0000 0.9999 0.9996 0.9989 0.9973 0.994 0.988 30.0000.0000.0000.0000 0.9999 0.9998 0.9994 0.9986 0.9967 0.9930 3.0000.0000.0000.0000.0000 0.9999 0.9997 0.9993 0.998 0.9960 3.0000.0000.0000.0000.0000.0000 0.9999 0.9996 0.9990 0.9978 33.0000.0000.0000.0000.0000.0000 0.9999 0.9998 0.9995 0.9988 34.0000.0000.0000.0000.0000.0000.0000 0.9999 0.9998 0.9994 35.0000.0000.0000.0000.0000.0000.0000.0000 0.9999 0.9997 36.0000.0000.0000.0000.0000.0000.0000.0000 0.9999 0.9998 37.0000.0000.0000.0000.0000.0000.0000.0000.0000 0.9999 38.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000 8

THE NORMAL DISTRIBUTION FUNCTION If Z has a ormal distributio with mea 0 ad variace the, for each value of, the table gives the value of Φ( ), where Φ( ) = P(Z ). For egative values of use Φ( ) = Φ( ). 0 3 4 5 6 7 8 9 3 4 5 6 7 8 9 ADD 0.0 0.5000 0.5040 0.5080 0.50 0.560 0.599 0.539 0.579 0.539 0.5359 4 8 6 0 4 8 3 36 0. 0.5398 0.5438 0.5478 0.557 0.5557 0.5596 0.5636 0.5675 0.574 0.5753 4 8 6 0 4 8 3 36 0. 0.5793 0.583 0.587 0.590 0.5948 0.5987 0.606 0.6064 0.603 0.64 4 8 5 9 3 7 3 35 0.3 0.679 0.67 0.655 0.693 0.633 0.6368 0.6406 0.6443 0.6480 0.657 4 7 5 9 6 30 34 0.4 0.6554 0.659 0.668 0.6664 0.6700 0.6736 0.677 0.6808 0.6844 0.6879 4 7 4 8 5 9 3 0.5 0.695 0.6950 0.6985 0.709 0.7054 0.7088 0.73 0.757 0.790 0.74 3 7 0 4 7 0 4 7 3 0.6 0.757 0.79 0.734 0.7357 0.7389 0.74 0.7454 0.7486 0.757 0.7549 3 7 0 3 6 9 3 6 9 0.7 0.7580 0.76 0.764 0.7673 0.7704 0.7734 0.7764 0.7794 0.783 0.785 3 6 9 5 8 4 7 0.8 0.788 0.790 0.7939 0.7967 0.7995 0.803 0.805 0.8078 0.806 0.833 3 5 8 4 6 9 5 0.9 0.859 0.886 0.8 0.838 0.864 0.889 0.835 0.8340 0.8365 0.8389 3 5 8 0 3 5 8 0 3.0 0.843 0.8438 0.846 0.8485 0.8508 0.853 0.8554 0.8577 0.8599 0.86 5 7 9 4 6 9. 0.8643 0.8665 0.8686 0.8708 0.879 0.8749 0.8770 0.8790 0.880 0.8830 4 6 8 0 4 6 8. 0.8849 0.8869 0.8888 0.8907 0.895 0.8944 0.896 0.8980 0.8997 0.905 4 6 7 9 3 5 7.3 0.903 0.9049 0.9066 0.908 0.9099 0.95 0.93 0.947 0.96 0.977 3 5 6 8 0 3 4.4 0.99 0.907 0.9 0.936 0.95 0.965 0.979 0.99 0.9306 0.939 3 4 6 7 8 0 3.5 0.933 0.9345 0.9357 0.9370 0.938 0.9394 0.9406 0.948 0.949 0.944 4 5 6 7 80.6 0.945 0.9463 0.9474 0.9484 0.9495 0.9505 0.955 0.955 0.9535 0.9545 3 4 5 6 7 8 9.7 0.9554 0.9564 0.9573 0.958 0.959 0.9599 0.9608 0.966 0.965 0.9633 3 4 4 5 6 7 8.8 0.964 0.9649 0.9656 0.9664 0.967 0.9678 0.9686 0.9693 0.9699 0.9706 3 4 4 5 6 6.9 0.973 0.979 0.976 0.973 0.9738 0.9744 0.9750 0.9756 0.976 0.9767 3 4 4 5 5.0 0.977 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.98 0.987 0 3 3 4 4. 0.98 0.986 0.9830 0.9834 0.9838 0.984 0.9846 0.9850 0.9854 0.9857 0 3 3 4. 0.986 0.9864 0.9868 0.987 0.9875 0.9878 0.988 0.9884 0.9887 0.9890 0 3 3.3 0.9893 0.9896 0.9898 0.990 0.9904 0.9906 0.9909 0.99 0.993 0.996 0.4 0.998 0.990 0.99 0.995 0.997 0.999 0.993 0.993 0.9934 0.9936 0 0.5 0.9938 0.9940 0.994 0.9943 0.9945 0.9946 0.9948 0.9949 0.995 0.995 0 0 0.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.996 0.996 0.9963 0.9964 0 0 0 0.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.997 0.997 0.9973 0.9974 0 0 0 0 0.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.998 0 0 0 0 0 0 0.9 0.998 0.998 0.998 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 0 0 0 0 0 0 0 0 0 If Z has a ormal distributio with mea 0 ad variace the, for each value of p,thetablegives the value of such that P(Z )=p. Critical values for the ormal distributio p 0.75 0.90 0.95 0.975 0.99 0.995 0.9975 0.999 0.9995 0.674.8.645.960.36.576.807 3.090 3.9 9

CRITICAL VALUES FOR THE t DISTRIBUTION If T has a t distributio with v degrees of freedom the, for each pair of values of p ad v, the table gives the value of t such that P(T t) =p. p 0.75 0.90 0.95 0.975 0.99 0.995 0.9975 0.999 0.9995 v =.000 3.078 6.34.7 3.8 63.66 7.3 38.3 636.6 0.86.886.90 4.303 6.965 9.95 4.09.33 3.60 3 0.765.638.353 3.8 4.54 5.84 7.453 0..9 4 0.74.533.3.776 3.747 4.604 5.598 7.73 8.60 5 0.77.476.05.57 3.365 4.03 4.773 5.894 6.869 6 0.78.440.943.447 3.43 3.707 4.37 5.08 5.959 7 0.7.45.895.365.998 3.499 4.09 4.785 5.408 8 0.706.397.860.306.896 3.355 3.833 4.50 5.04 9 0.703.383.833.6.8 3.50 3.690 4.97 4.78 0 0.700.37.8.8.764 3.69 3.58 4.44 4.587 0.697.363.796.0.78 3.06 3.497 4.05 4.437 0.695.356.78.79.68 3.055 3.48 3.930 4.38 3 0.694.350.77.60.650 3.0 3.37 3.85 4. 4 0.69.345.76.45.64.977 3.36 3.787 4.40 5 0.69.34.753.3.60.947 3.86 3.733 4.073 6 0.690.337.746.0.583.9 3.5 3.686 4.05 7 0.689.333.740.0.567.898 3. 3.646 3.965 8 0.688.330.734.0.55.878 3.97 3.60 3.9 9 0.688.38.79.093.539.86 3.74 3.579 3.883 0 0.687.35.75.086.58.845 3.53 3.55 3.850 0.686.33.7.080.58.83 3.35 3.57 3.89 0.686.3.77.074.508.89 3.9 3.505 3.79 3 0.685.39.74.069.500.807 3.04 3.485 3.768 4 0.685.38.7.064.49.797 3.09 3.467 3.745 5 0.684.36.708.060.485.787 3.078 3.450 3.75 6 0.684.35.706.056.479.779 3.067 3.435 3.707 7 0.684.34.703.05.473.77 3.057 3.4 3.689 8 0.683.33.70.048.467.763 3.047 3.408 3.674 9 0.683.3.699.045.46.756 3.038 3.396 3.660 30 0.683.30.697.04.457.750 3.030 3.385 3.646 40 0.68.303.684.0.43.704.97 3.307 3.55 60 0.679.96.67.000.390.660.95 3.3 3.460 0 0.677.89.658.980.358.67.860 3.60 3.373 0.674.8.645.960.36.576.807 3.090 3.9 0