Βασικές έννοιες οικονομικής αξιολόγησης

Σχετικά έγγραφα
ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΑΠΟΦΑΣΕΩΝ

Τι ενδιαφέρει τον ιδιώτη

Αξιολόγηση Επενδυτικών Σχεδίων

Χρονική αξία του χρήματος

ΚΕΦΑΛΑΙΟ 3 ΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ

ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ & ΔΙΟΙΚΗΤΙΚΗ Ε.ΜΙΧΑΗΛΙΔΟΥ - 1 ΤΟΜΟΣ Β ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ & ΔΙΟΙΚΗΤΙΚΗ

C n = D [(l + r) n - 1]/r. D = C n r/[(l + r) n - 1]

Αξιολόγηση Επενδυτικών Σχεδίων

ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝΔΥΣΕΩΝ

(3) ... (2) Ο συντελεστής Προεξόφλησης (ΣΠΑ) υπολογίζεται από τον Πίνακα Π.2. στο Παράρτηµα.

Τεχνοοικονομική Μελέτη

ΚΕΦΑΛΑΙΟ 3 Ο : ΔΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΧΡΗΜΑΤΟΣ Δ.Α.Π-Ν.Δ.Φ.Κ ΠΡΩΤΗ ΚΑΙ ΚΑΛΥΤΕΡΗ ΑΣΚΗΣΕΙΣ ΠΑΡΑΔΕΙΓΜΑΤΑ

Ο Ι ΚΟ Ν Ο Μ Ι Κ Α / Σ ΤΑΤ Ι Σ Τ Ι Κ Η

Οικονομικά Μαθηματικά

1 Ο Κεφάλαιο ΑΝΑΛΥΣΗ ΔΑΝΕΙΩΝ

Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος)

Οικονομικά Μαθηματικά

Χρονική Αξία Χρήµατος Στη Χρηµατοοικονοµική, κεφάλαιο ονοµάζουµε εκείνο το χρηµατικό ποσό που µπορούµε να διαθέσουµε σε µια επένδυση για όποιο χρονικό

ΔΙΑΛΕΞΗ 6 η H ΔΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ (ΑΝΑΤΟΚΙΣΜΟΣ, ΠΑΡΟΥΣΑ ΑΞΙΑ, ΣΥΝΤΕΛΕΣΤΗΣ ΠΡΟΕΞΟΦΛΗΣΗΣ)

ΣΤΑ ΚΕΦΆΛΑΙΑ ΠΟΥ ΑΚΟΛΟΥΘΟΎΝ ΘΑ ΑΣΧΟΛΗΘΟΎΜΕ με την αξιολόγηση διάφορων ΔΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ. κεφάλαιο 2

, όταν ο χρόνος αντιστοιχεί σε ακέραιες περιόδους

Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος)

Χρηματοοικονομική Ι. Ενότητα 5: Η Χρονική Αξία του Χρήματος (2/2) Ιωάννης Ταμπακούδης. Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ Ι

Οικονομικά Μαθηματικά

Θεοδωράκη Ελένη Μαρία

Υπολογισμός αρχικού ποσού C 0, όταν είναι γνωστό το τελικό ποσό C t Από την εξίσωση (2) και επιλύνοντας ως προς C 0 ή από την εξίσωση (3) λαμβάνουμε:

Κεφάλαιο Δάνεια Γενικά Δάνεια εξοφλητέα εφάπαξ Αν οι τόκοι καταβάλλονται στο τέλος κάθε περιόδου

ΚΕΦΑΛΑΙΟ 2ο ΔΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ

ΟΙΚΟΝΟΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

Χαρακτηριστικά μεταλλευτικής

Τράπεζα ABC (Ισολογισμός σε εκ. Ευρώ) Ε: Καθαρή Θέση 200 A: Σύνολο Ενεργητικού 1200 L+E: Παθητικό +Καθαρή Θέση 1200

ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΞΑΜΗΝΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΑΤΕΙ ΠΑΤΡΩΝ

ΜΕΡΟΣ Α: ΑΠΟΤΙΜΗΣΗ ΚΙΝ ΥΝΟΥ ΚΑΙ ΕΠΕΝ ΥΣΕΩΝ

Ανατοκισμός. -Χρόνος (συμβολισμός n Ακέραιες περιόδους, μ/ρ κλάσμα χρονικών περιόδων)

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΠΕΝ ΥΣΕΩΝ. Περιεχόµενα

ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ Α Ξ Ι Ο Λ Ο Γ Η Σ Η Ε Ρ Γ Ω Ν. ΡΟΜΠΟΓΙΑΝΝΑΚΗΣ ΙΩΑΝΝΗΣ, PhD.

3. ΔΑΝΕΙΑ. Αποσβέσεις Leasing Αγορά Ομολογιακά Δάνεια

Εσωτερικός βαθμός απόδοσης

ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ ΚΑΙ ΚΑΙΝΟΤΟΜΙΑ. ΚΥΡΙΑΚΗ ΚΟΣΜΙΔΟΥ ΑΝΑΠΛΗΡΩΤΡΙΑ ΚΑΘΗΓΗΤΡΙΑ

Ράντες. Χρήση ραντών. Ορισμοί ράντας Κατάταξη ραντών Εύρεση αρχικής αξίας ράντας

Ράντες. - Κατανόηση και χρησιμοποίηση μιας σειράς πληρωμών που ονομάζεται ράντα.

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 14 ΦΕΒΡΟΥΑΡΙΟΥ 2011

1 η Γ Ρ Α Π Τ Η Ε Ρ Γ Α Σ Ι Α Δ Ι Α Χ Ε Ι Ρ Ι Σ Η Τ Ε Χ Ν Ι Κ Ω Ν Ε Ρ Γ Ω Ν Δ Χ Τ 6 1 Ο Ι Κ Ο Ν Ο Μ Ι Κ Α Τ Ε Χ Ν Ι Κ Ω Ν Ε Ρ Γ Ω Ν

Κεφάλαιο 4. μιας και αντιστοιχεί στην περίοδο μηδέν, είναι δηλαδή το αρχικό κεφάλαιο. Όμοια έχουμε τα κεφάλαια K1, K2, K

Εφαρμογές Ανατοκισμού

Χρηματοοικονομική Ι. Ενότητα 4: Η Χρονική Αξία του Χρήματος (1/2) Ιωάννης Ταμπακούδης. Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ Ι

Κεφάλαιο , 05. Τέλος το ποσό της τελευταίας κατάθεσης (συμπλήρωση του 17 ου έτους) θα τοκισθεί μόνο για 1 έτος

Asset & Liability Management Διάλεξη 1

I = Kni. (1) (accumulated amount). I = Kni = 1 1 i.

Αξιολόγηση Επενδύσεων. Διάλεξη 1 Η Χρονική Αξία του Χρήματος I (Εξισώσεις Αξίας) Δράκος και Καραθανάσης, Κεφ2

ΜΈΤΡΗΣΗ ΠΟΣΟΣΤΟΎ ΑΠΌΔΟΣΗΣ ΕΠΈΝΔΥΣΗΣ

ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ - ΤΟΜΕΑΣ ΙΙ ΜΑΘΗΜΑ: Οικονομική Ανάλυση Βιομηχανικών Αποφάσεων

ΑΣΚΗΣΗ 1

Άσκηση 2 Να βρεθεί η πραγματοποιηθείσα απόδοση της προηγούμενης άσκησης, υποθέτοντας ότι τα τοκομερίδια πληρώνονται δύο φορές το έτος.

Αποτίμηση Επιχειρήσεων

Αριθμητικά Μοντέλα Επιλογής Έργων

Δάνεια. - Εύρεση δόσης για δάνεια εξοφλητέα εφάπαξ με δημιουργία εξοφλητικού αποθέματος.

ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΔΙΑΚΡΙΣΗ ΟΜΟΛΟΓΙΩΝ ΑΝΑΛΟΓΑ ΜΕ ΤΗ ΣΤΑΘΕΡΟΤΗΤΑ ΤΩΝ ΕΣΟΔΩΝ

Αξιολόγηση Επενδύσεων. Διάλεξη 3 Μέθοδοι Αξιολόγησης Επενδύσεων Δράκος και Καραθανάσης, Κεφ 3 και Κεφ 4

Slide 8.1. ΤΕΙ Πειραιά Μεταπτυχιακό Πρόγραμμα Λογιστική και Χρηματοοικονομική. Δευτέρα 27 Ιανουαρίου & Τετάρτη 29 Ιανουαρίου

Ε Π Ι Τ Υ Χ Ι Α!!!!!!!

β) Αν στο παραπάνω ερώτημα, ο λογαριασμός ήταν σύνθετου τόκου με j(12)=3%, ποιό είναι το ποσό που θα έπρεπε να καταθέσει ;

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΚΑΙ ΠΟΛΙΤΙΚΗ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ

ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ. ΑΣΚΗΣΕΙΣ-ΠΡΑΞΕΙΣ Εισαγωγική εισήγηση Νο1

ΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ

Βασικές έννοιες για αξία χρήματος και επενδύσεις. Δρ. Αθανάσιος Δαγούμας, Λέκτορας Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Παν.

ΔΙΑΛΕΞΗ 7 η H ΔΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ (ΜΕΛΛΟΝΤΙΚΗ ΑΞΙΑ)

Αξιολόγηση Επενδύσεων Σύνολο- Περιεχόμενο Μαθήματος

Οικονομικά Μαθηματικά

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

Παραδείγματα (Ι) 2. Κάποιος καταθέτει σήμερα ένα ποσό με ετήσιο επιτόκιο 5% με σκοπό να έχει μετά από 10 χρόνια Ποιο ποσό κατέθεσε σήμερα;

Μεταπτυχιακό Πρόγραμμα Σπουδών του Παν. Πειραιώς ΕΝΕΡΓΕΙΑ: Στρατηγική, Δίκαιο & Οικονομία


ΛΟΓΙΣΤΙΚΗ Ι. Γενική Εισαγωγή ΠΡΟΒΛΕΨΕΙΣ. 1. Γενική Εισαγωγή. 2. Λογιστική Απεικόνιση o Τοκοφόρες και μη Υποχρεώσεις ΛΟΓΙΣΤΙΚΗ ΥΠΟΧΡΕΩΣΕΩΝ

1 2, ,19 0,870 2,78 2 2, ,98 0,756 3,01 3 2, ,98 0,658 3,28

Η μελλοντική των 20 ευρώ σε 3 χρόνια με μηνιαίο ανατοκισμό θα βρεθεί από 12 )3 12

Βασικές Οικονομικές Έννοιες Μέθοδοι Οικονομικής Αξιολόγησης Επενδύσεων. Σύνταξη-επιμέλεια παρουσίασης: Αθανάσιος Χασιακός, Στέφανος Τσινόπουλος

Έτος 1 Έτος 2 Έτος 3 Έτος 4 Έτος 5 Εισπράξεις

Εισαγωγή στα Οικονομικά Μαθηματικά

Η τεχνική της Καθαρής Παρούσας Αξίας ( Net Present Value)

Κάνοντας click στους αριθμούς μέσα σε κόκκινα ορθογώνια, μεταϕέρεστε απευθείας στη λύση ή την εκϕώνηση αντίστοιχα. Άσκηση 1

Εφαρμογές με Ράντες. 1 Εισαγωγή. 2 Απόσβεση στοιχείων. Σύνοψη Οι βασικές έννοιες αυτού του κεφαλαίου είναι. - Απόσβεση

Εισαγωγή στη Χρηματοοικονομική Διοίκηση Ι Σημειώσεις Διδασκαλίας

ΤΣΙΜΕΝΤΟΠΟΙΙΑ ΒΑΣΙΛΙΚΟΥ ΔΗΜΟΣΙΑ ΕΤΑΙΡΕΙΑ ΛΤΔ. Έκθεση και Ενοποιημένες Ενδιάμεσες Οικονομικές Καταστάσεις Έξι μήνες μέχρι 30 Ιουνίου 2017

Οικονομικά Μαθηματικά

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ

ΘΕΜΑ 2

Μακροοικονομική. Η ζήτηση χρήματος

ΜAΚΡΟΟΙΚΟΝΟΜΙΑ Α ΜΕΡΟΣ ΤΥΠΟΛΟΓΙΟ και ΑΣΚΗΣΕΙΣ


Εισαγωγή στα Οικονομικά Μαθηματικά

Α. Συντελεστής Ανάκτησης Κεφαλαίου ΣΑΚ = Β. Συντελεστής Συσσώρευσης Κεφαλαίου ΣΣΚ =

ΚΤΡ Π.ΚΤΡ Κ.Π.Α

(Πολιτική. Οικονομία ΙΙ) Τμήμα ΜΙΘΕ. Καθηγητής Σπύρος Βλιάμος. Αρχές Οικονομικής ΙΙ. 14/6/2011Εαρινό Εξάμηνο (Πολιτική Οικονομία ΙΙ) 1

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ & : ΔΕΟ

Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών ιαχείριση Ενέργειας και Περιβαλλοντική Πολιτική

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ

Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α!!!!!!

Πίνακας περιεχομένων. Κεφάλαιο 1 Λειτουργίες βάσης δεδομένων Κεφάλαιο 2 Συγκεντρωτικοί πίνακες Πρόλογος... 11

Transcript:

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Βιομηχανικής και Ενεργειακής Οικονομίας ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ - ΤΟΜΕΑΣ ΙΙ ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΑΠΟΦΑΣΕΩΝ 8 ο Εξάμηνο Βασικές έννοιες οικονομικής αξιολόγησης

Περιεχόμενα 1. Χρηματοροές 2. Επιτόκιο 3. Ανατοκισμός και προεξόφληση 4. Ράντες 5. Πληθωρισμός 6. Κόστος χρηματοδότησης

Χρηματοροή Χρηματοροή ή ταμειακή ροή(cash flow): το χρηματικό ποσό που εισέρχεται ή εξέρχεται από μία επιχείρηση σε ένα χρονικό διάστημα (συνήθως έτος). Θετικές χρηματοροέςή ταμειακές εισροές είναι τα έσοδα από τις πωλήσεις των προϊόντων της μονάδας και κάθε άλλη εισροή χρήματος στην επιχείρηση. Αρνητικές χρηματοροέςή ταμειακές εκροές είναι οι πάσης φύσεως δαπάνες, όπως το κεφάλαιο επένδυσης, το λειτουργικό κόστος, οι φόροι κλπ. Η καθαρή χρηματοροήπροκύπτει ως το αλγεβρικό άθροισμα των θετικών και αρνητικών χρηματοροών.

Οι συνήθεις μορφές χρηματοροών Διακριτή χρηματοροή Συνεχής χρηματοροή χρόνος Καταγράφονται στην αρχή ή το τέλος μίας χρονικής περιόδου (π.χ. έτος) Καταγράφονται κάθε στιγμή στη διάρκεια μίας χρονικής περιόδου Υπάρχουν και οισύνθετες χρηματοροές πoυ ένα τμήμα τους είναι διακριτές και ένα άλλο σύνθετες

Περιοδικές χρηματοροές Η χρηματοροή επαναλαμβάνεται μετά από καθορισμένο χρονικό διάστημα χρόνος χρόνος 1Ρ 2Ρ 3Ρ ΝΡ 1Ρ 2Ρ 3Ρ ΝΡ Περιοδική διακριτή Περιοδική συνεχής

Η χρονική αξία του χρήματος 1 πληρωτέο σε έναν χρόνο «αξίζει» λιγότερο από 1 σήμερα ή αντίστροφα 1 στην αρχή του χρόνου ισοδυναμεί με περισσότερο από 1 στο τέλος του χρόνου. Δηλαδή: Ένα χρηματικό ποσό που είναι διαθέσιμο σήμερα είναι περισσότερο χρήσιμο από ένα ίσο ποσό που διατίθεται κάποια χρονική στιγμή στο μέλλον Λόγω της δυνατότητας να αυξηθεί μέσω τραπεζικής ή άλλης επένδυσης (επενδυτικό κίνητρο) Λόγω ανθρώπινης προτίμησης για άμεση κατανάλωση Κίνητρο πρόνοιας

Η χρονική αξία του χρήματος Διαχρονική προτίμηση χρήματος: Η στέρηση τρέχουσας κατανάλωσης µε ελπίδα µεγαλύτερης µελλοντικήςκατανάλωσης, είναι εφικτή µόνο εάν το ποσό που ΘΑ εισπραχθεί είναι µεγαλύτεροαπό αυτό που στερείται. Εποµένως, ο δανειστής απαιτεί µια αποζηµίωσηγια αυτήν την αποστέρηση, ακόμα και αν είναι βέβαιος για εµπρόθεσµηαποπληρωµή. Προτίµησηρευστότητας: Ο επενδυτής προτιµάτα πιο ρευστά περιουσιακά στοιχεία από τα λιγότερα ρευστά. Για να πεισθεί να στερηθεί το επιθυµητό επίπεδο ρευστότητας, πρέπει να εισπράξει κάποια αποζηµίωση, ακόμα και αν είναι βέβαιος για εµπρόθεσµη αποπληρωµή

Η χρονική αξία του χρήματος Η διαχρονική αξία / προτίμηση του χρήματος ποσοτικοποιείται με τη μορφή ενός επιτοκίου (ετήσιος ρυθμός αύξησης του αρχικού ποσού) Μεγαλύτερη προτίμηση στο παρόν Μεγαλύτερο επιτόκιο Ο τόκοςεκφράζει την αύξηση του αρχικού ποσού λόγω του επιτοκίου (αμοιβή του κεφαλαίου) Για τους παραπάνω λόγους: επιτόκια πάντα θέτικα (πάντα;)

Δύο βασικές αρχές επενδυτικών αποφάσεων Μεγαλύτερες αποδόσεις προτιµότερεςαπό τις µικρές Συντοµότερεςαποδόσεις προτιµότερεςαπό τις πιο μακροπρόθεσμες. Διάθεση μετρητών (τώρα) Σχηματισμός παγίου κεφαλαίου (παραγωγική μονάδα) Απόκτηση μετρητών αργότερα (πωλήσεις) 9

Απλό επιτόκιο Το επιτόκιο iεφαρμόζεται κάθε χρόνο στο αρχικό κεφάλαιο C: ο τόκος Tείναι ίδιος κάθε χρόνο (οι τόκοι που προκύπτουν ενδιάμεσα δεν κεφαλαιοποιούνται) T = C i Tο συνολικό χρηματικό ποσό Fπου θα είναι διαθέσιμομετά από nχρόνια F ( n i) = C 1+

Σύνθετο επιτόκιο Το επιτόκιο iεφαρμόζεται πάνω στο συνολικό κεφάλαιο που προκύπτει μετά την προσθήκη σε τακτά χρονικά διαστήματα του τόκου Τ Το αρχικό κεφάλαιο Cσυνεχώς αυξάνεται Αντίστοιχα αυξάνεται και ο τόκος: Μετά 1 χρόνο: Μετά 2 χρόνια: Μετά n χρόνια: ( i) 2 ( 1+ i) = C(1 i F = C 1+ και T = F C = C i 1 1 1 F = F + T = F F = C i(1+ ) 2 1 ) F ) n 2 2 1 i n = C( 1+ i n 1 Tn = C i(1+ i) Οι συνήθεις οικονομικές συναλλαγές στηρίζονται κατά κανόνα στη χρήση σύνθετου επιτοκίου

Σύνθετο επιτόκιο m φορές το χρόνο Μετά jφορές: i F j ) m i Μετά n χρόνια: F n = C( 1+ ) m j = C( 1+ j 1 και T j = C (1+ ) mn T n = i m i C και (1+ m Το πραγματικό ετήσιο επιτόκιο i r προκύπτει από το ονομαστικό i: i m ir = ( 1+ ) 1 m Αν ο τόκος προστίθεται άπειρες φορές το χρόνο έχουμε συνεχές επιτόκιο i m i m ) mn 1

Παράδειγμα Κεφάλαιο 50 χιλ. με ονομαστικό επιτόκιο 10%. Πόσο θα γίνει το κεφάλαιό μου μετά από 5 χρόνια (σύνθετο επιτόκιο: κεφαλαιοποίηση), σε ετήσιο, εξαμηνιαία, τριμηνιαίο ανατοκισμό;) F n = C( 1+ i) Μετά από 5 χρόνια: m=1 i r =10% 80.526 m=2 i r =10.25% m=4 i r =10.38% 81.445 81.931 n

Σύγκριση επιτοκίων κεφάλαιο Συνεχές Σύνθετο Απλό χρόνια 1 2 n Όσο μεγαλύτερη είναι η συχνότητα κατά την οποία προστίθεται ο τόκος, τόσο μεγαλύτερο είναι το ποσό που προκύπτει στο τέλος της περιόδου

Ανατοκισμός Ανατοκισμός(compounding): μία σημερινή αξία C, μετατρέπεται σε μία ισοδύναμη μελλοντική αξία MA C, με βάση ένα επιτόκιο i που εκφράζει τη χρονική αξία του χρήματος. t MA C = C ( 1 + i ) Μέλλουσα αξία το χρόνο t μίας σειράς διακριτών χρηματοροώνc 1,C 2...,C t : t 1 t 2 ΜΑ = C1(1+ i) + C2(1+ i)... + Oόρος(1+i) t :συντελεστήςανατοκισμού πολλαπλασιάζεις μια σημερινή αξία με έναν συντελεστή ανατοκισμού για να βρεις μελλοντική αξία C t t j Πίνακας 2 στο Παράρτημα t ΜΑ= C j (1+ i) j= 0

Συντ.ανατοκισμού χρηματοροής Επιτόκιο ανατοκισμού, i C (1+i) t Έτος 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15% 16% 17% 18% 19% 20% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1,0100 1,0200 1,0300 1,0400 1,0500 1,0600 1,0700 1,0800 1,0900 1,1000 1,1100 1,1200 1,1300 1,1400 1,1500 1,1600 1,1700 1,1800 1,1900 1,2000 1,0201 1,0404 1,0609 1,0816 1,1025 1,1236 1,1449 1,1664 1,1881 1,2100 1,2321 1,2544 1,2769 1,2996 1,3225 1,3456 1,3689 1,3924 1,4161 1,4400 1,0303 1,0612 1,0927 1,1249 1,1576 1,1910 1,2250 1,2597 1,2950 1,3310 1,3676 1,4049 1,4429 1,4815 1,5209 1,5609 1,6016 1,6430 1,6852 1,7280 1,0406 1,0824 1,1255 1,1699 1,2155 1,2625 1,3108 1,3605 1,4116 1,4641 1,5181 1,5735 1,6305 1,6890 1,7490 1,8106 1,8739 1,9388 2,0053 2,0736 1,0510 1,1041 1,1593 1,2167 1,2763 1,3382 1,4026 1,4693 1,5386 1,6105 1,6851 1,7623 1,8424 1,9254 2,0114 2,1003 2,1924 2,2878 2,3864 2,4883 1,0615 1,1262 1,1941 1,2653 1,3401 1,4185 1,5007 1,5869 1,6771 1,7716 1,8704 1,9738 2,0820 2,1950 2,3131 2,4364 2,5652 2,6996 2,8398 2,9860 1,0721 1,1487 1,2299 1,3159 1,4071 1,5036 1,6058 1,7138 1,8280 1,9487 2,0762 2,2107 2,3526 2,5023 2,6600 2,8262 3,0012 3,1855 3,3793 3,5832 1,0829 1,1717 1,2668 1,3686 1,4775 1,5938 1,7182 1,8509 1,9926 2,1436 2,3045 2,4760 2,6584 2,8526 3,0590 3,2784 3,5115 3,7589 4,0214 4,2998 1,0937 1,1951 1,3048 1,4233 1,5513 1,6895 1,8385 1,9990 2,1719 2,3579 2,5580 2,7731 3,0040 3,2519 3,5179 3,8030 4,1084 4,4355 4,7854 5,1598 1,1046 1,2190 1,3439 1,4802 1,6289 1,7908 1,9672 2,1589 2,3674 2,5937 2,8394 3,1058 3,3946 3,7072 4,0456 4,4114 4,8068 5,2338 5,6947 6,1917 1,1157 1,2434 1,3842 1,5395 1,7103 1,8983 2,1049 2,3316 2,5804 2,8531 3,1518 3,4785 3,8359 4,2262 4,6524 5,1173 5,6240 6,1759 6,7767 7,4301 1,1268 1,2682 1,4258 1,6010 1,7959 2,0122 2,2522 2,5182 2,8127 3,1384 3,4985 3,8960 4,3345 4,8179 5,3503 5,9360 6,5801 7,2876 8,0642 8,9161 1,1381 1,2936 1,4685 1,6651 1,8856 2,1329 2,4098 2,7196 3,0658 3,4523 3,8833 4,3635 4,8980 5,4924 6,1528 6,8858 7,6987 8,5994 9,5964 10,6993 1,1495 1,3195 1,5126 1,7317 1,9799 2,2609 2,5785 2,9372 3,3417 3,7975 4,3104 4,8871 5,5348 6,2613 7,0757 7,9875 9,0075 10,1472 11,4198 12,8392 1,1610 1,3459 1,5580 1,8009 2,0789 2,3966 2,7590 3,1722 3,6425 4,1772 4,7846 5,4736 6,2543 7,1379 8,1371 9,2655 10,5387 11,9737 13,5895 15,4070 1,1726 1,3728 1,6047 1,8730 2,1829 2,5404 2,9522 3,4259 3,9703 4,5950 5,3109 6,1304 7,0673 8,1372 9,3576 10,7480 12,3303 14,1290 16,1715 18,4884 1,1843 1,4002 1,6528 1,9479 2,2920 2,6928 3,1588 3,7000 4,3276 5,0545 5,8951 6,8660 7,9861 9,2765 10,7613 12,4677 14,4265 16,6722 19,2441 22,1861 1,1961 1,4282 1,7024 2,0258 2,4066 2,8543 3,3799 3,9960 4,7171 5,5599 6,5436 7,6900 9,0243 10,5752 12,3755 14,4625 16,8790 19,6733 22,9005 26,6233 1,2081 1,4568 1,7535 2,1068 2,5270 3,0256 3,6165 4,3157 5,1417 6,1159 7,2633 8,6128 10,1974 12,0557 14,2318 16,7765 19,7484 23,2144 27,2516 31,9480 1,2202 1,4859 1,8061 2,1911 2,6533 3,2071 3,8697 4,6610 5,6044 6,7275 8,0623 9,6463 11,5231 13,7435 16,3665 19,4608 23,1056 27,3930 32,4294 38,3376

Ασκήσεις ανατοκισμού 1.Σε πόσα χρόνια διπλασιάζεται ένα κεφάλαιο; Ανi= α) 5% β) 10% 2.Ποιά σειρά χρηματοροών θα έχει μεγαλύτερη ΜΑ σε 3 χρόνια; Α: C1=500, C2=1000, C3=1500 Β: C1=1500, C2=1000, C3=500 Με οποιοδήποτε επιτόκιο;

1) Χρόνος διπλασιασμού του κεφαλαίου

Προεξόφληση Προεξόφληση (discounting): μία μελλοντική αξία C, μετατρέπεται σε μία ισοδύναμη παρούσα αξίαπa C,μεβάσηέναεπιτόκιοiπουεκφράζειτη χρονική αξία του χρήματος. ΠΑ C = C (1+ i ) Παρούσα αξία μίας σειράς διακριτών χρηματοροώνc 1,C 2...,C t : 1 2 ΠΑ= C (1+ i) + C (1+ i)... + C t (1+ i) 1 2 Oόρος(1+i) -t :συντελεστήςπροεξόφλησης Πολλαπλασιάζεις με έναν συντελεστή προεξόφλησης για να βρεις παρούσα αξία(ουσιαστικά διαιρείς όμως) t t t ΠΑ= C j (1+ i) j= 0 Πίνακας 1 στο Παράρτημα j

Συντ.προεξόφλησης χρηματοροής C (1+i) -t Επιτόκιο προεξόφλησης, i Έτος 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15% 16% 17% 18% 19% 20% 1 0,9901 0,9804 0,9709 0,9615 0,9524 0,9434 0,9346 0,9259 0,9174 0,9091 0,9009 0,8929 0,8850 0,8772 0,8696 0,8621 0,8547 0,8475 0,8403 0,8333 2 0,9803 0,9612 0,9426 0,9246 0,9070 0,8900 0,8734 0,8573 0,8417 0,8264 0,8116 0,7972 0,7831 0,7695 0,7561 0,7432 0,7305 0,7182 0,7062 0,6944 3 0,9706 0,9423 0,9151 0,8890 0,8638 0,8396 0,8163 0,7938 0,7722 0,7513 0,7312 0,7118 0,6931 0,6750 0,6575 0,6407 0,6244 0,6086 0,5934 0,5787 4 0,9610 0,9238 0,8885 0,8548 0,8227 0,7921 0,7629 0,7350 0,7084 0,6830 0,6587 0,6355 0,6133 0,5921 0,5718 0,5523 0,5337 0,5158 0,4987 0,4823 5 0,9515 0,9057 0,8626 0,8219 0,7835 0,7473 0,7130 0,6806 0,6499 0,6209 0,5935 0,5674 0,5428 0,5194 0,4972 0,4761 0,4561 0,4371 0,4190 0,4019 6 0,9420 0,8880 0,8375 0,7903 0,7462 0,7050 0,6663 0,6302 0,5963 0,5645 0,5346 0,5066 0,4803 0,4556 0,4323 0,4104 0,3898 0,3704 0,3521 0,3349 7 0,9327 0,8706 0,8131 0,7599 0,7107 0,6651 0,6227 0,5835 0,5470 0,5132 0,4817 0,4523 0,4251 0,3996 0,3759 0,3538 0,3332 0,3139 0,2959 0,2791 8 0,9235 0,8535 0,7894 0,7307 0,6768 0,6274 0,5820 0,5403 0,5019 0,4665 0,4339 0,4039 0,3762 0,3506 0,3269 0,3050 0,2848 0,2660 0,2487 0,2326 9 0,9143 0,8368 0,7664 0,7026 0,6446 0,5919 0,5439 0,5002 0,4604 0,4241 0,3909 0,3606 0,3329 0,3075 0,2843 0,2630 0,2434 0,2255 0,2090 0,1938 10 0,9053 0,8203 0,7441 0,6756 0,6139 0,5584 0,5083 0,4632 0,4224 0,3855 0,3522 0,3220 0,2946 0,2697 0,2472 0,2267 0,2080 0,1911 0,1756 0,1615 11 0,8963 0,8043 0,7224 0,6496 0,5847 0,5268 0,4751 0,4289 0,3875 0,3505 0,3173 0,2875 0,2607 0,2366 0,2149 0,1954 0,1778 0,1619 0,1476 0,1346 12 0,8874 0,7885 0,7014 0,6246 0,5568 0,4970 0,4440 0,3971 0,3555 0,3186 0,2858 0,2567 0,2307 0,2076 0,1869 0,1685 0,1520 0,1372 0,1240 0,1122 13 0,8787 0,7730 0,6810 0,6006 0,5303 0,4688 0,4150 0,3677 0,3262 0,2897 0,2575 0,2292 0,2042 0,1821 0,1625 0,1452 0,1299 0,1163 0,1042 0,0935 14 0,8700 0,7579 0,6611 0,5775 0,5051 0,4423 0,3878 0,3405 0,2992 0,2633 0,2320 0,2046 0,1807 0,1597 0,1413 0,1252 0,1110 0,0985 0,0876 0,0779 15 0,8613 0,7430 0,6419 0,5553 0,4810 0,4173 0,3624 0,3152 0,2745 0,2394 0,2090 0,1827 0,1599 0,1401 0,1229 0,1079 0,0949 0,0835 0,0736 0,0649 16 0,8528 0,7284 0,6232 0,5339 0,4581 0,3936 0,3387 0,2919 0,2519 0,2176 0,1883 0,1631 0,1415 0,1229 0,1069 0,0930 0,0811 0,0708 0,0618 0,0541 17 0,8444 0,7142 0,6050 0,5134 0,4363 0,3714 0,3166 0,2703 0,2311 0,1978 0,1696 0,1456 0,1252 0,1078 0,0929 0,0802 0,0693 0,0600 0,0520 0,0451 18 0,8360 0,7002 0,5874 0,4936 0,4155 0,3503 0,2959 0,2502 0,2120 0,1799 0,1528 0,1300 0,1108 0,0946 0,0808 0,0691 0,0592 0,0508 0,0437 0,0376 19 0,8277 0,6864 0,5703 0,4746 0,3957 0,3305 0,2765 0,2317 0,1945 0,1635 0,1377 0,1161 0,0981 0,0829 0,0703 0,0596 0,0506 0,0431 0,0367 0,0313 20 0,8195 0,6730 0,5537 0,4564 0,3769 0,3118 0,2584 0,2145 0,1784 0,1486 0,1240 0,1037 0,0868 0,0728 0,0611 0,0514 0,0433 0,0365 0,0308 0,0261

Ασκήσεις -Προεξόφληση 1. Ποια είναι μεγαλύτερη: Η ΠΑ ενός ποσού 5000 που προκύπτει μετά από 3 ή 5 χρόνια; (i= 6%) 2. Ποια είναι μεγαλύτερη: : Η ΠΑ ενός ποσού 5000 που προκύπτει μετά από 3 χρόνια με i= 3% ή 6%; 3. Ποιά σειρά χρηματοροών για τα επόμενα 3 χρόνια έχει μεγαλύτερη ΠΑ; Με οποιοδήποτε επιτόκιο; Α: C1=500, C2=1000, C3=1500 Β: C1=1500, C2=1000, C3=500

Απαντήσεις 1) και 2) 1. Μετά από 3 χρόνια: 5*0.8396=4.2. Μετά από 5 χρόνια: 5*0.7473=3.7 2. Με i=3%: 5*0.9151=4.6. Με i=6%: 5*0.8396=4.2. Άρα γενικά: η παρούσα αξία ενός ποσού που θα εισπραχθεί στο μέλλον μειώνεται όσο: Η ημερομηνία αποπληρωμής απομακρύνεται στο μέλλον Τα προεξοφλητικά επιτόκια αυξάνονται

Ανατοκισμός -Προεξόφληση Ανατοκισμός: Μέλλουσα αξία Προεξόφληση: Παρούσα αξία χρόνος χρόνος 1 2 3 t 1 2 3 όσο υψηλότερο το επιτόκιο ανατοκισμού, τόσο μεγαλύτερη η Μέλλουσα Αξία των χρηματοροών t όσο υψηλότερο το επιτόκιο προεξόφλησης, τόσο μικρότερη η Παρούσα Αξία των χρηματοροών

Υπολογισμός ΠΑ σειράς εισροών στο τέλος χρόνου με i=14% περίοδος Εισροές ΣΠΧ ΠΑ 1 10000 0,8772 8772 2 14000 0,7695 10773 3 15000 0,675 10125 4 20000 0,5921 11842 5 30000 0,5194 15582 89000 57094

Ράντες Οι ράντες είναι ίσες χρηματοροέςc 1 = C 2...= C t που πληρώνονται ή εισπράττονται ανά τακτά και ίσα χρονικά διαστήματα Οι εξισώσεις ΜΑ και ΠΑ έχουν χαρακτηριστικά γεωμετρικής προόδου Αποδεικνύεται: MA C = (1+ i) C i t 1 Πίνακας 4στο Παράρτημα (συντελεστές ανατοκισμού) ΠΑ C t (1+ i) 1 C i(1+ i) = t Πίνακας 3στο Παράρτημα (συντελεστές προεξόφλησης) Αντίστοιχοι δηλαδή συντελεστές

Συντελεστής ανατοκισμού ράντας C i

Συντελεστής προεξόφλησης ράντας C i

Ασκήσεις -Ράντες 1. Ποια είναι η Μέλλουσα Αξία μίας ράντας C i =500 που προκύπτει επί 3 χρόνια; Πως μεταβάλλεται με το επιτόκιο i; 2. Ποια είναι η Παρούσα Αξία μίας ράντας C i =500 που προκύπτει επί 3 χρόνια; Πως μεταβάλλεται με το επιτόκιο i;

Απαντήσεις Μέλλουσα Αξία ράντας Με επιτόκιο i=0 η συνολική μέλλουσα αξία είναι το άθροισμα των 3 χρηματοροών C 1 + C 2 + C 3 = 1500 Όσο μεγαλύτερο είναι το επιτόκιο τόσο μεγαλύτερη η μέλλουσα αξία της ράντας π.χ. για i=3% 500*3.0909=1545 Παρούσα Αξία ράντας Με επιτόκιο i=0 η συνολική παρούσα αξία είναι το άθροισμα των 3 χρηματοροών C 1 + C 2 + C 3 = 1500 Όσο μεγαλύτερο είναι το επιτόκιο τόσο μικρότερη η παρούσα αξία της ράντας π.χ. για i=3% 500*2.826=1413

Άσκηση: Ο πατέρας σας θέλει να έχετε σε 20 χρόνια 100,000. Με i=10% τι ποσό πρέπει να βάζει στην Τράπεζα στο τέλος κάθε χρόνου; ΜΑρ= ΠΠ * ΣΜΧρκαι λύνω ως προς ΠΠ ΠΠ = 100000 / 57,2750 = 1746

Πληθωρισμός Πληθωρισμός: Μείωση της αξίας του χρήματος με το χρόνο: Ίδιο ποσό χρημάτων λιγότερα αγαθά Για ένα πακέτο αγαθών: κόστος πριν 1 χρόνο: 100 σημερινό κόστος: 103 Ο πληθωρισμός είναι 3%, Άρα η μελλοντική αξία ενός ποσού δεν υπολογίζεται μόνο με βάση το επιτόκιο, αλλά πρέπει να αφαιρέσουμε και τον πληθωρισμό, ώστε να έχουμε την πραγματική αξία

Συντελεστής πληθωρισμού Η άνοδος των τιμών προσδιορίζεται με βάση ένα συγκεκριμένο πακέτο αγαθών & υπηρεσιών και το σταθμισμένο άθροισμα των τιμών τους Δείκτης Τιμών Καταναλωτή το χρόνο 0: δ 0 Δείκτης Τιμών Καταναλωτή το χρόνο 1: δ 1 Συντελεστής πληθωρισμού ως προς την προηγούμενη χρονιά: δ1 f = 1 δ 1 0 Συντελεστής πληθωρισμού ως προς n χρόνια πριν: f n δ n = δ 0 1/ n 1

Η αγοραστική αξία ανατοκιζόμενου κεφαλαίου Έστω το κεφάλαιο σήμερα: C Το τραπεζικό επιτόκιο: i Ο πληθωρισμός: f Η αγοραστική αξία σε 1 χρόνο: C(1+ i) F' = 1+ f Η αγοραστική αξία σε n χρόνια: Πρέπει i> f για να μη μειώνεται η αγοραστική αξία του κεφαλαίου F n 1+ ' = C 1+ i f n Στην αξιολόγηση επενδύσεων οι τιμές θεωρούνται κατά κανόνα σταθερές. Δηλαδή, αγνοείται ο πληθωρισμός με την παραδοχή ότι επηρεάζει το ίδιο έσοδα και έξοδα

Άσκηση γιαπληθωρισμό Αν ο ετήσιος πληθωρισμός είναι 3.5% ποια ετήσια αύξηση των αποδοχών σας: α) θα διατηρήσει ίδια την αγοραστική σας δύναμη; β) θα αυξήσει την αγοραστική σας δύναμη κατά 10% σε σχέση με πέρυσι; ΛΥΣΗ α) αύξηση αποδοχών 3.5% ίση με τον πληθωρισμό β) αν οι αποδοχές μας πέρυσι ήταν C φέτος θα πρέπει να είναι 1.1 C 1.1C C(1+ i) = 1+ 0.035 Επιλύοντας ως προς i, προκύπτει ότι με αύξηση των αποδοχών μας κατά 13.85% θα έχουμε αύξηση της αγοραστικής μας δύναμης κατά 10%

Κόστος χρηματοδότησης Ένα μέρος του κόστους μίας επένδυσης μπορεί να καλυφθεί με δάνειο. Το δάνειο επιστρέφεται σταδιακά (χρεολύσιο) Ο δανειστής παίρνει ταυτόχρονα την αμοιβή του (τόκος) Όροι αποπληρωμής δανείου: Το επιτόκιο i με το οποίο υπολογίζονται οι τόκοι του δανείου Η περίοδος χάριτος (αν υπάρχει), που αποτελεί το χρονικό διάστημα μετά το οποίο αρχίζει η αποπληρωμή του δανείου. Η συμφωνία για κεφαλαιοποίηση ή όχι των τόκων κατά την περίοδο χάριτος. Η συχνότητα καταβολής των τόκων και επιστροφής του δανείου Ο τρόπος υπολογισμού τόκου και χρεολυσίου (τοκοχρεολυτική δόση)

Μορφές τοκοχρεολυτικών δόσεων Ίσες δόσεις χρεολυσίου Χρεολύσιο= Δ/n n: συνολικός αριθμός δόσεων Ο τόκος υπολογίζεται πάνω στο υπόλοιπο του δανείου Ίσες δόσεις τοκοχρεολυσίου Υπολογίζεται το τοκοχρεολύσιο με αναγωγή του δανείου σε n ίσες δόσεις, ισοδύναμης ΠΑ n i ( 1+ i) TX = Δ n T = ji ή T = ( i / m) ( 1+ i) 1 j Υ Υj Δ Υj : υπόλοιπο δανείου το χρόνο j m: αριθμός δόσεων το χρόνο Ο τόκος (και η τοκοχρεολυτική δόση) συνεχώς μειώνονται λόγω μείωσης του υπολοίπου δανείου j Ο συν/τής υπολογισμού των ΤΧ δόσεων είναι ο συν/στής ανάκτησης κεφαλαίου Πίνακας 5 στο Παράρτημα n: συνολικός αριθμός δόσεων m: αριθμός δόσεων το χρόνο Η πιο απλά ΤΧ = ποσό / ΣΠρ Ο τόκος υπολογίζεται με τον ίδιο τρόπο για το υπόλοιπο του δανείου και εξ αφαιρέσεως προκύπτει το χρεολύσιο

Ασκήσεις -Τοκοχρεολύσια 1. Δάνειο ύψους 34000 πρέπει να αποπληρωθεί εντός 5 ετών με επιτόκιο 8% και ετήσιες δόσεις, χωρίς περίοδο χάριτος. Τι ύψος έχει ο τόκος και το χρεολύσιο κάθε χρόνο αν η αποπληρωμή γίνει: α) με ίσες δόσεις χρεολυσίου, β) με ίσες τοκοχρεολυτικές δόσεις. Έτος Δάνειο Χρεωλύσιο Τόκος ΤΧ Έτος Δάνειο Χρεωλύσιο Τόκος ΤΧ 1 34000 6800 2720 9520 1 34000 5796 2720 8516 2 27200 6800 2176 8976 2 28204 6259 2256 8516 3 20400 6800 1632 8432 3 21945 6760 1756 8516 4 13600 6800 1088 7888 4 15185 7301 1215 8516 5 6800 6800 544 7344 5 7885 7885 631 8516

Ασκήσεις -Τοκοχρεολύσια 2. Πως διαφοροποιούνται τα αποτελέσματα αν υπάρχει διετής περίοδος χάριτος με κεφαλαιοποίηση των τόκων (σύνολο περιόδου αποπληρωμής 7 χρόνια); Έτος Δάνειο Χρεωλύσιο Τόκος ΤΧ Έτος Δάνειο Χρεωλύσιο Τόκος ΤΧ 1 34000 2720 0 1 34000 2720 0 2 36720 2938 0 2 36720 2938 0 3 39658 7932 3173 11104 3 39658 6760 3173 9933 4 31726 7932 2538 10470 4 32898 7301 2632 9933 5 23795 7932 1904 9835 5 25597 7885 2048 9933 6 15863 7932 1269 9201 6 17712 8516 1417 9933 7 7932 7932 635 8566 7 9197 9197 736 9933