ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2017

Σχετικά έγγραφα
ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018

Μικροηλεκτρονική - VLSI

Μικροηλεκτρονική - VLSI

Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων

ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ CMOS. Εαρινό Εξάμηνο ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ

ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2017

Μικροηλεκτρονική - VLSI

Μικροηλεκτρονική - VLSI

Μικροηλεκτρονική - VLSI

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Electronic Analysis of CMOS Logic Gates

HY330 Ψηφιακά Κυκλώματα - Εισαγωγή στα Συστήματα VLSI.

Τρανζίστορ Επίδρασης Πεδίου Field-effect transistors (FET)

Θεωρία Τρανζίστορ MOS

MAX4147ESD PART 14 SO TOP VIEW. Maxim Integrated Products 1 MAX4147 EVALUATION KIT AVAILABLE ; Rev 1; 11/96 V CC V EE OUT+ IN+ R t SENSE IN-

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Οικογένειες Ολοκληρωμένων Κυκλωμάτων Ψηφιακής Λογικής

Κεφάλαιο 2 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab

Capacitors - Capacitance, Charge and Potential Difference

Monolithic Crystal Filters (M.C.F.)

«Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο

Ηλεκτρονική ΙΙΙ Παύλος - Πέτρος Σωτηριάδης. Επανάληψη μέρος 2 ο. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών

Aspects of High-Frequency Modelling with EKV3

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Microelectronic Circuit Design Fourth Edition - Part II Solutions to Exercises

IXBH42N170 IXBT42N170

CMOS Technology for Computer Architects

Microelectronic Circuit Design Third Edition - Part I Solutions to Exercises

RSDW08 & RDDW08 series

NPN Silicon RF Transistor BFQ 74

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Συνδιαστικά Λογικά Κυκλώματα / Ολοκληρωμένα Κυκλώματα 1

ΔΗΜΗΤΡΗΣ ΓΡΕΑΣΙΔΗΣ ΑΕΜ: 1624

ΑΣΚΗΣΗ 3 η Ο ΑΝΤΙΣΤΡΟΦΕΑΣ CMOS

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Second Order RLC Filters

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

NPN SILICON OSCILLATOR AND MIXER TRANSISTOR

Φυσική σχεδίαση ολοκληρωμένων κυκλωμάτων

IXBK64N250 IXBX64N250

Areas and Lengths in Polar Coordinates

Thin Film Chip Resistors

(Ο Ηλεκτρονικός Διακόπτης)

HY330 Ψηφιακά Κυκλώματα - Εισαγωγή στα Συστήματα VLSI. 1 ΗΥ330 - Διάλεξη 7η - Ακολουθιακά Κυκλώματα

ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2017


Digital motor protection relays

2 Composition. Invertible Mappings

2. Laser Specifications 2 1 Specifications IK4301R D IK4401R D IK4601R E IK4101R F. Linear Linear Linear Linear

Thermistor (NTC /PTC)

High Performance Voltage Controlled Amplifiers Typical and Guaranteed Specifications 50 Ω System

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Areas and Lengths in Polar Coordinates

Homework 3 Solutions

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

LTC RO R 2 RE 3 DE 1 RO 2 3 DE 4 DI 2000 FEET OF TWISTED-PAIR WIRE 7 RECEIVER INPUT DI. 4.7nF RO

Section 8.3 Trigonometric Equations

PI5A121C SPST Wide Bandwidth Analog Switch

4.6 Autoregressive Moving Average Model ARMA(1,1)

Ενότητα 3 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.

Ηλεκτρονική ΙΙΙ Παύλος - Πέτρος Σωτηριάδης. Επανάληψη μέρος 1 ο. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών

Ψηφιακά Ηλεκτρονικά. Μάθηµα 5ο.. Λιούπης

Series AM2DZ 2 Watt DC-DC Converter

Μικροηλεκτρονική - VLSI

HY330 Ψηφιακά Κυκλώματα - Εισαγωγή στα Συστήματα VLSI.

Λογικά Κυκλώματα CMOS. Διάλεξη 5

CONTENTS. vlsi technology and design (ECE, VLSI, VLSI SYSTEM DESIGN AND VLSI & EMBEDDED SYSTEMS) THE FUTURE OF MICROELECTRONICS... 1.

Summary of Specifications

Υλοποίηση λογικών πυλών µε τρανζίστορ MOS. Εισαγωγή στην Ηλεκτρονική

TMA4115 Matematikk 3

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Applications. 100GΩ or 1000MΩ μf whichever is less. Rated Voltage Rated Voltage Rated Voltage

Lecture Stage Frequency Response (1/10/02) Page 210-1

Suitable for DC-DC Converters, Voltage Regulators, Decoupling Applications for Computer Motherboards, etc. Performance Characteristics

Chapter 5. Exercise Solutions. Microelectronics: Circuit Analysis and Design, 4 th edition Chapter 5 EX5.1 = 1 I. = βi EX EX5.3 = = I V EX5.

Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων

Other Test Constructions: Likelihood Ratio & Bayes Tests

Probability and Random Processes (Part II)

Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων

HY330 Ψηφιακά Κυκλώματα - Εισαγωγή στα Συστήματα VLSI. Σταθερές Μνήμες Αρχιτεκτονικές Μνήμης RAM

SPBW06 & DPBW06 series

4.2 Αναπαράσταση δυαδικών τιμών στα ψηφιακά κυκλώματα

Instruction Execution Times

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

65W PWM Output LED Driver. IDLV-65 series. File Name:IDLV-65-SPEC

Electrical Specifications at T AMB =25 C DC VOLTS (V) MAXIMUM POWER (dbm) DYNAMIC RANGE IP3 (dbm) (db) Output (1 db Comp.) at 2 f U. Typ.

Statistical Inference I Locally most powerful tests

Current Sensing Chip Resistor SMDL Series Size: 0201/0402/0603/0805/1206/1010/2010/2512/1225/3720/7520. official distributor of

Multilayer Ceramic Chip Capacitors

Aluminum Electrolytic Capacitors (Large Can Type)

Ψηφιακή Σχεδίαση με CAD II

5V/9V/12V Output QC2.0+USB Auto Detect+USB-PD Type-C Application Report ACT4529

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

MAX823/MAX824/MAX825 V CC PART TEMP. RANGE PIN-PACKAGE MAX824_EUK. -40 C to +85 C

HY121 Ηλεκτρικϊ Κυκλώματα

MULTILAYER CHIP VARISTOR JMV S & E Series: (SMD Surge Protection)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ. ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Περίοδος Σεπτεμβρίου 2011

D Alembert s Solution to the Wave Equation

3 V, 1500 MHz Si MMIC WIDEBAND AMPLIFIER

Transcript:

ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2017 ΔΙΑΛΕΞΗ 4: CMOS Αντιστροφέας (Inverter) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ (ttheocharides@ucy.ac.cy) [Προσαρμογή από Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al. ]

CMOS Inverter: A First Look V DD V in V out C L ΗΜΥ307 Δ4 CMOS Inverter.2 Θεοχαρίδης, ΗΜΥ, 2017

CMOS Inverter: Steady State Response V DD V DD V OL = 0 V OH = V DD V M = f(r n, R p ) R p V out = 1 V out = 0 R n V in = 0 V in = V DD ΗΜΥ307 Δ4 CMOS Inverter.3 Θεοχαρίδης, ΗΜΥ, 2017

CMOS Properties l Full rail-to-rail swing Þ high noise margins Logic levels not dependent upon the relative device sizes Þ transistors can be minimum size Þ ratioless l Always a path to V dd or GND in steady state Þ low output impedance (output resistance in kw range) Þ large fan-out (albeit with degraded performance) l Extremely high input resistance (gate of MOS transistor is near perfect insulator) Þ nearly zero steady-state input current l No direct path steady-state between power and ground Þ no static power dissipation l Propagation delay function of load capacitance and resistance of transistors ΗΜΥ307 Δ4 CMOS Inverter.4 Θεοχαρίδης, ΗΜΥ, 2017

Review: Short Channel I-V Plot (NMOS) 2.5 2 1.5 1 X 10-4 V GS = 2.5V V GS = 2.0V V GS = 1.5V 0.5 V GS = 1.0V 0 0 0.5 1 1.5 2 2.5 V DS (V) NMOS transistor, 0.25um, L d = 0.25um, W/L = 1.5, V DD = 2.5V, V T = 0.4V ΗΜΥ307 Δ4 CMOS Inverter.5 Θεοχαρίδης, ΗΜΥ, 2017

Review: Short Channel I-V Plot (PMOS) All polarities of all voltages and currents are reversed -2 V DS (V) -1 0 0 V GS = -1.0V -0.2 V GS = -1.5V -0.4 V GS = -2.0V -0.6-0.8 V GS = -2.5V -1 X 10-4 PMOS transistor, 0.25um, L d = 0.25um, W/L = 1.5, V DD = 2.5V, V T = -0.4V ΗΜΥ307 Δ4 CMOS Inverter.6 Θεοχαρίδης, ΗΜΥ, 2017

Transforming PMOS I-V Lines Want common coordinate set V in, V out, and I Dn I DSp = -I DSn V GSn = V in ; V GSp = V in - V DD V DSn = V out ; V DSp = V out - V DD I Dn Vout V in = 0 V in = 1.5 V in = 0 V in = 1.5 V GSp = -1 V GSp = -2.5 Mirror around x-axis V in = V DD + V GSp I Dn = -I Dp Horiz. shift over V DD V out = V DD + V DSp ΗΜΥ307 Δ4 CMOS Inverter.7 Θεοχαρίδης, ΗΜΥ, 2017

CMOS Inverter Load Lines PMOS V in = 0V 2.5 2 X 10-4 NMOS V in = 2.5V V in = 0.5V 1.5 V in = 2.0V V in = 1.0V 1 V in = 2V 0.5 V in = 1.5V V in = 2.0V V in = 2.5V 0 V in = 1.5V V in = 1V 0 0.5 1 1.5 2 2.5 V out (V) V in = 1.5V V in = 0.5V V in = 1.0V V in = 0.5V V in = 0V 0.25um, W/L n = 1.5, W/L p = 4.5, V DD = 2.5V, V Tn = 0.4V, V Tp = -0.4V ΗΜΥ307 Δ4 CMOS Inverter.8 Θεοχαρίδης, ΗΜΥ, 2017

CMOS Inverter VTC 2.5 2 V out (V) 1.5 1 0.5 0 0 0.5 1 1.5 2 2.5 V in (V) ΗΜΥ307 Δ4 CMOS Inverter.9 Θεοχαρίδης, ΗΜΥ, 2017

CMOS Inverter VTC 2.5 2 NMOS off PMOS res NMOS sat PMOS res V out (V) 1.5 1 0.5 0 0 0.5 1 1.5 2 2.5 V in (V) NMOS sat PMOS sat NMOS res PMOS sat NMOS res PMOS off ΗΜΥ307 Δ4 CMOS Inverter.10 Θεοχαρίδης, ΗΜΥ, 2017

CMOS Inverter: Switch Model of Dynamic Behavior V DD V DD R p V out V out C L R n C L V in = 0 V in = V DD ΗΜΥ307 Δ4 CMOS Inverter.11 Θεοχαρίδης, ΗΜΥ, 2017

CMOS Inverter: Switch Model of Dynamic Behavior V DD V DD R p V out V out C L R n C L V in = 0 V in = V DD Gate response time is determined by the time to charge C L through R p (discharge C L through R n ) ΗΜΥ307 Δ4 CMOS Inverter.12 Θεοχαρίδης, ΗΜΥ, 2017

Relative Transistor Sizing l When designing static CMOS circuits, balance the driving strengths of the transistors by making the PMOS section wider than the NMOS section to maximize the noise margins and obtain symmetrical characteristics ΗΜΥ307 Δ4 CMOS Inverter.13 Θεοχαρίδης, ΗΜΥ, 2017

Switching Threshold l V M where V in = V out (both PMOS and NMOS in saturation since V DS = V GS ) V M» rv DD /(1 + r) where r = k p V DSATp /k n V DSATn l Switching threshold set by the ratio r, which compares the relative driving strengths of the PMOS and NMOS transistors l Want V M = V DD /2 (to have comparable high and low noise margins), so want r» 1 (W/L) p k n V DSATn (V M -V Tn -V DSATn /2) (W/L) n k p V DSATp (V DD -V M +V Tp +V DSATp /2) = ΗΜΥ307 Δ4 CMOS Inverter.14 Θεοχαρίδης, ΗΜΥ, 2017

Switch Threshold Example l In our generic 0.25 micron CMOS process, using the process parameters from slide L03.25, a V DD = 2.5V, and a minimum size NMOS device ((W/L) n of 1.5) V T0 (V) g(v 0.5 ) V DSAT (V) k (A/V 2 ) l(v -1 ) NMOS 0.43 0.4 0.63 115 x 10-6 0.06 PMOS -0.4-0.4-1 -30 x 10-6 -0.1 (W/L) p (W/L) n = ΗΜΥ307 Δ4 CMOS Inverter.15 Θεοχαρίδης, ΗΜΥ, 2017

Switch Threshold Example l In our generic 0.25 micron CMOS process, using the process parameters from Lecture 3, a V DD = 2.5V, and a minimum size NMOS device ((W/L) n of 1.5) V T0 (V) g(v 0.5 ) V DSAT (V) k (A/V 2 ) l(v -1 ) NMOS 0.43 0.4 0.63 115 x 10-6 0.06 PMOS -0.4-0.4-1 -30 x 10-6 -0.1 (W/L) p 115 x 10-6 0.63 (1.25 0.43 0.63/2) = x x = 3.5 (W/L) n -30 x 10-6 -1.0 (1.25 0.4 1.0/2) (W/L) p = 3.5 x 1.5 = 5.25 for a V M of 1.25V ΗΜΥ307 Δ4 CMOS Inverter.16 Θεοχαρίδης, ΗΜΥ, 2017

Simulated Inverter V M 1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.1 ~3.4 1 10 (W/L) p /(W/L) n Note: x-axis is semilog q V M is relatively insensitive to variations in device ratio l setting the ratio to 3, 2.5 and 2 gives V M s of 1.22V, 1.18V, and 1.13V q Increasing the width of the PMOS moves V M towards V DD q Increasing the width of the NMOS moves V M toward GND ΗΜΥ307 Δ4 CMOS Inverter.17 Θεοχαρίδης, ΗΜΥ, 2017

Noise Margins Determining V IH and V IL 3 By definition, V IH and V IL are where dv out /dv in = -1 (= gain) V OH = V DD 2 1 V M NM H = V DD - V IH NM L = V IL - GND Approximating: V IH = V M - V M /g V IL = V M + (V DD - V M )/g V OL = GND0 VIL V in A piece-wise linear approximation of VTC VIH So high gain in the transition region is very desirable ΗΜΥ307 Δ4 CMOS Inverter.18 Θεοχαρίδης, ΗΜΥ, 2017

CMOS Inverter VTC from Simulation V out (V) 2.5 2 1.5 1 0.5 0 0 0.5 1 1.5 2 2.5 V in (V) 0.25um, (W/L) p /(W/L) n = 3.4 (W/L) n = 1.5 (min size) V DD = 2.5V V M» 1.25V, g = -27.5 V IL = 1.2V, V IH = 1.3V NM L = NM H = 1.2 (actual values are V IL = 1.03V, V IH = 1.45V NM L = 1.03V & NM H = 1.05V) Output resistance low-output = 2.4kW high-output = 3.3kW ΗΜΥ307 Δ4 CMOS Inverter.19 Θεοχαρίδης, ΗΜΥ, 2017

Gain Determinates 0-2 -4-6 -8-10 -12-14 -16-18 V in 0 0.5 1 1.5 2 Gain is a strong function of the slopes of the currents in the saturation region, for V in = V M (1+r) g» ---------------------------------- (V M -V Tn -V DSATn /2)(l n - l p ) Determined by technology parameters, especially channel length modulation (l). Only designer influence through supply voltage and V M (transistor sizing). ΗΜΥ307 Δ4 CMOS Inverter.20 Θεοχαρίδης, ΗΜΥ, 2017

Impact of Process Variation on VTC Curve 2.5 2 Good PMOS Bad NMOS V out (V) 1.5 1 0.5 Bad PMOS Good NMOS Nominal 0 0 0.5 1 1.5 2 2.5 V in (V) Process variations (mostly) cause a shift in the switching threshold ΗΜΥ307 Δ4 CMOS Inverter.21 Θεοχαρίδης, ΗΜΥ, 2017

Scaling the Supply Voltage V out (V) 2.5 2 1.5 1 V out (V) 0.2 0.15 0.1 0.5 0 0.05 0 0.5 1 1.5 2 2.5 V in (V) Gain=-1 0 0 0.05 0.1 0.15 0.2 V in (V) Device threshold voltages are kept (virtually) constant Device threshold voltages are kept (virtually) constant ΗΜΥ307 Δ4 CMOS Inverter.22 Θεοχαρίδης, ΗΜΥ, 2017

Next Time: CMOS Inverter Layout Out In metal1-poly via metal1 polysilicon metal2 V DD pdiff metal1-diff via GND PMOS (4/.24 = 16/1) NMOS (2/.24 = 8/1) ndiff metal2-metal1 via ΗΜΥ307 Δ4 CMOS Inverter.23 Θεοχαρίδης, ΗΜΥ, 2017

3D View ΗΜΥ307 Δ4 CMOS Inverter.24 Θεοχαρίδης, ΗΜΥ, 2017