l 0 l 2 l 1 l 1 l 1
l 2 l 2 l 1 l p λ λ µ
R N l 2 R N l 2 2 = N x i l p p R N l p N p = ( x i p ) 1 p i=1 l 2 l p p = 2 l p l 1 R N l 1 i=1 x 2 i 1 = N x i i=1 l p p p R N l 0 0 = {i x i 0} R N s s 0 s
R N Φ N N R N R N s Φ = Φ s Φ Ψ M R N Ψ M N M < N = Ψ = Ψ = (ΨΦ) = A A Ψ ΨΦ R M = A +
A A δ s s δ s s (1 δ s ) 2 2 A 2 2 (1 + δ s) 2 2 δ s s l 0 l 0 l 0 ˆ = 0 : = A R N l 0 1 2 A( 1 2 ) = A 1 A 2 = = 0
l 0 s l 0 l 0 1 2 0 1 0 + 2 0 = 2s = 0 l 0 2s 0 : A = 0 0 > 2s 2s A A (A) = 0 : A = 0 A 1 0 0 1 A ex = 0 1 0 0 0 0 1 0 (A ex ) = 3 (A ex ) = 2 (A ex ) R N s A (A) > 2s = A 0 : = A x
N, M A R M M M + 1 (A) M + 1
A f E ( ) = 1 ( 2πσe) 2 M ( 2 2 ) 2σ 2 e A
A f Y ( ) = 1 ( 2πσe) ( A 2 2 ) 2 M 2σ 2 e f Y ( ) ˆ = A 2 2 R N l 2 A T Aˆ = A T A T A ˆ = (A T A) 1 A T M < N = A
700 600 500 400 Fitting a quadratic model a =2,b = 3,c =0 Measuruments Real underlying model Fitted 1 st order model Fitted 2 nd order model Fitted 15 th order model 300 y 200 100 0 100 200 0 5 10 15 20 x y = ax 2 + bx + c
P ( ) = P (, ) P ( ) = P ( )P ( ) P ( ) P ( ) ˆ = P ( )P ( ) R N P ( ) P ( ) P ( ) l 2 l 2 P ( ) = δ( A )
ˆ = R N 1 δ( A ) ( 2πσ x ) M ( 2σx 2 ) = A l 2 ˆ = R N 2 : = A = A M < N 2 2 ˆ = A T (AA T ) 1 ˆ = R N 2 A 2 2σe 2 + 2 2 2σx 2 ˆ = A 2 2 + λ 2 2 R N λ = σ2 e σ 2 x
Impulse Response Estimation 1.2 1.0 0.8 0.6 0.4 0.2 0.0 Least square norm fitting of sparse system 20 Meas. 40 Meas. 60 Meas. 0.2 0 10 20 30 40 50 60 70 n(time)
λ λ λ λ λ ˆ = (A T A + λi N ) 1 A T I n N N l 2
l 2 l 2 l 2 a, b 1 = [a + b, 0] T 2 = [a, b] T 1 2 2 2 2 2 = 2ab l 2 l 2 2 1 l 2 X x λx P (X > x) = λ X 1,... X n N P ( X i > x) P ( X i > x) x i=1...n i=1
x X Y = (X) f(x) = 1 xσ 2π (( x µ)2 2σ 2 ) ν 1 t2 ν+1 f T (t) = νb( 1 2, ν + ) 2 2 )(1 ν B(x, y) l 1 l 2 l 1 x R f(x; µ, b) = 1 µ ( x ) 2b b l 1 R N b µ f( ; µ, b) = ( 1 2b )N ( µ 1 ) b
Probability density 0.40 0.35 0.30 0.25 0.20 0.15 Comparisson Student with Normal Student n =2 Studnet n =5 Student n =10 Normal 0.10 0.05 0.00 10 5 0 5 10 x n ˆ = 1 : = A R N ˆ = A 2 2 + λ 1 R N λ = 2σ2 e b
0.7 0.6 Comparisson Laplace with Normal Laplace b = Normal 2 2 0.5 Probability density 0.4 0.3 0.2 0.1 0.0 10 5 0 5 10 x b = 2 2 b
l 1 l 2 l 1 R 2 = A A y = A 11 x 1 + A 12 x 2 y x 1 x 2 2 = c 1 = c c c 2c c c l 2 c l 1 A A l p p 1 p p
2.0 l 2 norm minimization 2.0 l 1 norm minimization 1.5 1.5 1.0 1.0 0.5 0.5 x 2 x 2 0.0 0.0 0.5 0.5 1.0 1.0 1.0 0.5 0.0 0.5 1.0 x 1 1.0 0.5 0.0 0.5 1.0 x 1 x 2 = 5 5 x 2 = 1 x 1 2 x 1, x 2 y = x 1 + 2x 2 = 1 1 = 1 2
l 2 l p p > 1 p p p = 0 1.0 l p norm comparison 0.5 x 2 0.0 p =0.5 p =1 p =2 0.5 1.0 1.0 0.5 0.0 0.5 1.0 x 1 0.5 = 1 1 = 1 2 = 1 p = 0.5 l 0.5
l 1 l 2 l 0 l 1 l 0 l 2 l 0 A M N i i µ(a) A µ(a) = 1 i<j N T i j i 2 j 2 A (A) (A) 1 + 1 µ(a) l 0
R N 0 < 1 2 (1 + 1 µ(a) ) = A = A 0 < 1 2 (1 + 1 µ(a) ) 1 2 A l 0 l 0 l 1 1 2 A 1 A 2 1 2 s 2s (1 δ 2s ) 1 2 2 2 A( 1 2 ) 2 2 (1 + δ 2s) 1 2 2 2 δ 2s s A
l 1 δ 2s < 2 1 s l 0 l 0 δ 2s < 1 A N (0, 1 M ) R M s δ s M Cs (N/s) C δ s A
l 2 u i N u i : i=1 = A N (0, 1) N (0, 1 M ) = A ( ) ( ) = N 0 N
x 1.0 Perfect reconstruction with basis pursuit 0.8 0.6 0.4 0.2 0.0 0.2 0 20 40 60 80 100 n y 3 Samples generated by random gaussian matrix 2 1 0 1 2 3 0 2 4 6 8 10 12 14 n
SNR vs sparsity with varying number of measurements SNR 700 600 500 400 300 Noiseless SNR 50 40 30 20 SNR 20db 20 40 60 70 80 90 100 200 10 100 0 0 100 0.0 0.2 0.4 0.6 0.8 1.0 sparsity 10 0.0 0.2 0.4 0.6 0.8 1.0 sparsity A M
A l 2 ˆ = 1 : A 2 2 e2 R N
λ e λ e Aˆ e l 1 ˆ = A 2 2 : 1 l R N l l 1 e l 2 λ s s δ 2s < 2 1 2 C 0 s 1 2 s 1 + C 1 e s
SNR vs sparsity with varying number of measurements SNR 50 40 30 20 SNR 20db SNR 30 25 20 15 10 SNR 10db 20 40 60 70 80 90 100 10 5 0 0 10 0.0 0.2 0.4 0.6 0.8 1.0 sparsity 5 0.0 0.2 0.4 0.6 0.8 1.0 sparsity A M
l 1 l 0 l 1 l 2 l 0 A
= A A T = A T A A T 0 = 0 = i i k k i j i = T k i 1 1 k N i = i 1 ( T j i i 1 ) ji j i i = i 1 + T j i i 1 δ N (j i ) δ N (j i ) R N j i A i 1 = ( T ) +
T = 0 A S 0 = i S i = S i {j i } A Si A S i ˆ i = A Si 2 R i i i = A i
l 1 = A 0 < 1 2 (1 + 1 µ(a) )
SNR vs sparsity with varying number of measurements SNR 800 700 600 500 400 300 Noiseless SNR 50 40 30 20 10 SNR 20db 20 40 60 70 80 90 100 200 0 100 0 10 100 0.0 0.2 0.4 0.6 0.8 1.0 sparsity 20 0.0 0.2 0.4 0.6 0.8 1.0 sparsity A M
t t A T i 1 s s i S i i 1 t A T i 1 A Si ˆ i i = H s (ˆ i ) H s s i = A i
H s = [1, 8, 9, 0] T H 2 ( ) = [0, 8, 9, 0] T t t = s t = 2s s t = s s t = s
SNR vs sparsity with varying number of measurements SNR 800 700 600 500 400 300 Noiseless SNR 120 100 80 60 40 SNR 20db 20 40 60 70 80 90 100 200 20 100 0 0 20 100 0.0 0.2 0.4 0.6 0.8 1.0 sparsity 40 0.0 0.2 0.4 0.6 0.8 1.0 sparsity A M
g(x) = 0 f(x) = x f x i+1 = f(x i ) f = A i i i i = i + µa T i µ i = A i = A 1 = µa T = µa T (A )
1 µ µ T i+1 = T ( i + µa T i ) i+1 = T i ( i + µa T i ) µ i+1 = T i ( i + µ i A T i ) l 0 H s µ A 2 < 1 A T A µ
SNR vs sparsity with varying number of measurements SNR 400 350 300 250 200 150 Noiseless SNR 160 140 120 100 80 60 SNR 20db 20 40 60 70 80 90 100 100 40 50 20 0 0 50 0.0 0.2 0.4 0.6 0.8 1.0 sparsity 20 0.0 0.2 0.4 0.6 0.8 1.0 sparsity M
α α α α S α α Soft vs Hard Thresholding 0.6 Soft Thresholding 1.0 Hard Thresholding 0.4 0.5 0.2 S 0.5 0.0 H 0.5 0.0 0.2 0.5 0.4 0.6 1.0 0.5 0.0 0.5 1.0 input 1.0 1.0 0.5 0.0 0.5 1.0 input i+1 = S λµ ( i + µa T i )
µ A T A i = S λµ ( i + µa T ( A i )) 0 = 0 i+1 = i + t i 1 t i+1 ( i i 1 ) t i t i+1 = 1 + 1 + 4t 2 i 2 t 1 = 1
(n) = [h 0 (n),..., h p 1 (n)] p x(n) y(n) d(n) = y(n) + v(n) v(n) (n) ˆ x(n) d(n) = p (n) = [x(n),..., x(n p + 1)] T y(n) = T (n) (n) (n) ˆ (n) ˆ (n)
ˆ (n 1) ŷ(n) ŷ(n) = ˆ T (n 1) (n) e(n) = d(n) ŷ(n) = d(n) ˆ T (n 1) (n) J(n) = n λ n i e 2 (i) i=0 λ (0, 1] λ λ λ = 1 R xx (n)ˆ (n) = dx (n) R xx (n) λ R xx (n) = n λ n i (i) T (i) i=0
(n) x(n) d(n) dx (n) = n λ n i (i)d(i) i=0 R xx (n) dx R xx (n) = λr xx (n 1) + (n) T (n) dx (n) = λ dx (n 1) + (n)d(n) O(p 3 ) p P (n) = R xx (n) 1 e(n) = d(n) T (n 1) (n) (n) = P (n 1) (n) λ + T (n)p (n 1) (n) P (n) = λ 1 (P (n 1) (n) T (n)p (n 1)) ˆ (n) = ˆ (n 1) + e(n) (n) O(p 2 ) ˆ = P (0) = δ 1 I p δ I p p p
λ λ v(n) λ λ λ λ λ J(n) = E{e 2 (n)} J(n) µ ˆ (n) = ˆ (n 1) µ 2 ˆ J(n)
Error to Signal Ratio 7 6 5 4 3 2 Impulse Response estimation under noise λ =0.10 λ =0.50 λ =1.00 1 0 0 50 100 150 200 250 n(iterations) λ [1, 2, 3, 4] λ λ λ
1.2 1.0 Impulse Response estimation of changing system λ =0.10 λ =0.50 λ =1.00 Error to Signal Ratio 0.8 0.6 0.4 0.2 0.0 0 50 100 150 200 250 n(iterations) λ [1, 2, 3, 4] T [ 3, 4, 7, 8] T λ = 1
ˆ (n) = ˆ (n 1) + µe{ (n)e(n)} E{ (n)e(n)} ν Ê{ (n)e(n)} = 1 ν 1 (n i)e(n i) ν i=0 ν ν ν = 1 ˆ (n) = ˆ (n 1) + µ (n)e(n) O(p) µ λ i R xx 2 0 < µ < i λ i ˆ (n) = ˆ (n 1) + µ (n)e(n) (n) T (n)
Error to Signal Ratio 1.2 1.0 0.8 0.6 0.4 Impulse Response estimation µ =0.10 µ =1.00 µ =1.50 µ =1.99 µ =2.00 0.2 0.0 0 50 100 150 200 250 n(iterations) [1, 2, 3, 4] T µ = 1 µ = 2 µ = 1 µ
ν i Ji n(ˆ ) ˆ i N i ψ i (n) = ˆ i (n 1) µ i c l,i ˆ J l n (ˆ l (n 1)) l N i µ i c l,i l i l i N i c l,i = 1 l N i µ i i ˆ i (n) = l Ni a l,i ψ i (n) a l,i l i c l,i
a l,i = 1 l N i c i,i = 1 a i,i = 1
y(n) θ p( ) = p( θ)p(θ )dθ p(θ )
α α α A s (n) R s (n) R(n) A s (n 1) R s (n) = R(n) + A s (n 1) A s α λ
b (n) s s H s (n) = ˆ (n) + e(n) (n) T (n) (n) H s (n) ˆ (n + 1) = H s ( (n))
5 0-5 RLS GARLS ASVB-S ASVB-L ASVB-mpL NMSE(dB) -10-15 -20-25 -30 0 200 400 600 800 1000 Iterations (n) λ
35 30 25 20 SNR(db) 15 10 5 0 Sparsity aware NLMS NLMS -5 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Iterations
ˆ (n) n s q = { h i h i 0} ĥ(n) h 2 2 q2 2 n 0 N (H s (ˆ (n))) = ( ) n n 0 n 0 N (H s (ˆ (n)) = ( ) n n 0 ( ) (H s (ˆ (n)) z ( ) h z q q (H s (ˆ (n)) ϕ(n) > ĥz(n) ϕ(n) s ˆ (n) (H s (ˆ (n)) ( ) r ( ) h r = 0 (H s (ˆ (n)) ĥr(n) ϕ(n) ĥr(n) > ĥz(n) ϵ ĥ r (n) 2 = ĥz(n) 2 + ϵ 2 g(n) = ˆ (n) 2 2 g(n) ĥr(n) h r 2 + ĥz(n) h z 2 h r = 0 ĥ r (n) 2 = ĥz(n) 2 + ϵ 2 g(n) 2ĥz(n) 2 2ĥz(n)h z + h 2 z + ϵ 2 f(x) = 2x 2 2h z x+(h 2 z+ϵ 2 ) f = 0 x = h z/2 x 2 h z 2 h z 2 + h 2 z + ϵ 2 = ϵ 2 + hz2 2 n g(n) ϵ 2 + h z 2 2 > h 2 z 2 q2 2
g(n) = ĥ(n) h 2 2 q2 2 ˆ (n) ϕ(n) (H s (ˆ (n)) s (H s (ˆ (n))) ( ) r, z r z (H s (ˆ (n))) ( ) ( ) (H s (ˆ (n))) ξ(n) ϕ(n) s k (n) k > s ˆ (n) n s q = { h i h i 0} ĥ(n) h 2 2 q 2 (1 1 τ+2 ) τ = k s n 0 N (H k (ˆ (n))) ( ) n n 0
35 30 25 SNR(db) 20 15 10 5 Sparsity aware NLMS NLMS 0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Iterations
n 0 N (H k (ˆ (n)) ( ) n n 0 ( ) (H k (ˆ (n)) z ( ) h z q q (H k (ˆ (n)) ξ(n) > ĥz(n) τ + 1 (H k (ˆ (n)) ( ) r i ( ) h ri = 0 (H k (ˆ (n)) ĥr i (n) ξ(n) ĥr i (n) ĥz(n) ϵ i ĥ ri (n) 2 = ĥz(n) 2 + ϵ 2 i g(n) = ˆ (n) 2 2 τ + 2 τ+1 g(n) ĥr i (n) h ri 2 + ĥz(n) h z 2 i=1 h ri = 0 ĥ ri (n) 2 = ĥz(n) 2 + ϵ 2 i ϵ2 t = τ+1 i=1 ϵ2 i g(n) (τ + 2)ĥz(n) 2 2ĥz(n)h z + h z 2 + ϵ 2 t f(x) = (τ +2)x 2 2h z x+(h 2 z +ϵ 2 t ) f x = 0 x = h z/(τ + 2) h z 2 τ+2 2 h z 2 τ+2 + h z 2 + ϵ 2 t = ϵ 2 t + h 2 z (1 1 τ+2 ) n g(n) ϵ 2 t + h z 2 (1 1 τ + 2 ) > h z 2 (1 1 τ + 2 ) q2 (1 1 τ + 2 ) g(n) = ĥ(n) h 2 2 q 2 (1 1 τ+2 )
25 20 SNR(db) 15 10 5 Sparsity aware NLMS NLMS 0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Iterations
ν a i,j i j a i,i a i,j = a ν 1 a i,i = 1 a i j a x j (n) j n j (n) = [x j (n),..., x j (n p+1)] T j d j (n) e j (n) j (n) = ˆ j (n) + e j(n) j (n) T j (n) j(n) q j j (n) = (1 a) j (n) + a q(n) ν 1 ˆ j (n + 1) = H s ( j (n)) a
α = 0.4 α = 0.4
40 35 30 25 SNR(db) 20 15 10 5 Sparsity aware NLMS NLMS 0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Iterations α
x(t) t x j (t) j t x j (t) = x(t t dj ) t > t dj t dj j x j (t) = x(t t dj ) + w j (t) t > t dj i j x i (t) = x j (t t di,j ) + w i,j (t) t di,j w i,j t di,j = t di t dj
d i i d i d j = t di,j c c cos(θ i,j ) θ i,j cos(θ i,j ) = t d i,j c d i,j di, j t = t di,j i j
i j i,j N h j = X i i,j j h j X i i Q Q j = QX i i,j Q QX i X i ˆ i,j = Q j QX i 2 2 + λ 1 R N h ˆ i,j
Delay estimation via sparsity 0.5 Whole estimation 0.5 Zoomed in 0.4 0.4 0.3 0.3 0.2 ĥ ĥ 0.2 0.1 0.0 0.1 0.1 0.0 0.2 2000 1000 0 1000 2000 Time delay(samples) 0.1 60 40 20 0 20 40 60 Time delay(samples) N h = 4097
1.6 Zoomed in 1.4 1.2 1.0 0.8 ĥ 0.6 0.4 0.2 0.0 0.2 60 40 20 0 20 40 60 Time delay(samples) ω 0 F ω ( i )(ω 0 ) = e jω 0t di F ω ( )(ω 0 ) F ω θ
ˆ t di = t d0 + t di,0 = t d0 + d i,0cos(θ) c F ω ( i )(ω 0 ) = α i (θ)f ω ( )(ω 0 ) α i (θ) θ N s sk θ k N s F ω ( i )(ω 0 ) = α i (θ k )F ω ( sk )(ω 0 ) k=1 F ω ( sk )(ω 0 ) (ω0 ) α i (θ k ) α i F ω ( i )(ω 0 ) = α T i (ω0 ) F ω ( i )(ω 0 ) (ω0 ) α i A (ω0 ) (ω0 ) = A (ω0 ) (ω0 )
N ω (ωl ) (ωl ) A (ωl ) A A = A (ω0 ) A (ω1 ) = A... A (ωnω ) N θ θ k N ω ω l N θ N ω N ω θ k (k) (k) (k) 2 l 1 ˆ = C NωN θ N θ A 2 2 + λ (k) 2 2 k=1
0 Angle of arrival detection via sparsity 50 100 Normalized Power(db) 150 200 250 300 350 400 450 0 20 40 60 80 100 120 140 160 180 θ(angle)
= Φ Φ
U y = U = (UΦ) σ σ = 1
500 Original Spectrum 500 Estimated Spectrum 450 450 400 400 350 350 Amplitude 300 250 200 Amplitude 300 250 200 150 100 50 0 0 2 4 6 8 Frequency in Hz 10 6 150 100 50 0 0 2 4 6 8 Frequency in Hz 10 6
200 Original Spectrum 200 Estimated Spectrum 180 180 160 160 140 140 Amplitude 120 100 80 Amplitude 120 100 80 60 40 20 0 0 2 4 6 8 Frequency in Hz 10 6 60 40 20 0 0 2 4 6 8 Frequency in Hz 10 6
200 Original Spectrum 140 Estimated Spectrum 180 160 120 140 100 Amplitude 120 100 80 Amplitude 80 60 60 40 40 20 20 0 0 2 4 6 8 Frequency in Hz 10 6 0 0 2 4 6 8 Frequency in Hz 10 6
l 0 l 2 l 1 l 1 l 0 l 1