Διάλεξη 2: Κεντρικά Δυναμικά. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για κεντρικά δυναμικά

Σχετικά έγγραφα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κεντρικά Δυναμικά Διδάσκων : Επίκ. Καθ. Μ. Μπενής

Διάλεξη 1: Κβαντομηχανική σε τρεις διαστάσεις

Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 )

Διάλεξη 3: Το άτομο του Υδρογόνου. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για το κεντρικό δυναμικό

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κβαντομηχανική σε τρεις διαστάσεις Διδάσκων : Επίκ. Καθ. Μ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Το άτομο του Υδρογόνου Διδάσκων : Επίκ. Καθ. Μ. Μπενής

Δομή Διάλεξης. Εύρεση ακτινικού μέρους εξίσωσης Schrödinger. Εφαρμογή σε σφαιρικό πηγάδι δυναμικού απείρου βάθους. Εφαρμογή σε άτομο υδρογόνου

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

1. Μετάπτωση Larmor (γενικά)

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.

Δομή Διάλεξης. Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης. Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για

ETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

Κβαντικό Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο

Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

Διάλεξη 5: Ατομική Δομή. Σύζευξη Σπιν-Τροχιάς

Μάθημα 7 & 8 Κβαντικοί αριθμοί και ομοτιμία (parity) ουσιαστικά σημεία με βάση το άτομο του υδρογόνου ΔΕΝ είναι προς εξέταση

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Μετασχηματισμοί Καταστάσεων και Τελεστών

Ατομική και Μοριακή Φυσική

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι

Λυμένες ασκήσεις στροφορμής

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1

Από τι αποτελείται το Φως (1873)

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Κεφάλαιο 4

Κβαντική Φυσική Ι. Ενότητα 29: Το άτομο του υδρογόνου. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1

Χρησιμοποιείστε την πληροφορία αυτή για να δείξετε ότι ο τελεστής που θα μεταφέρει το άνυσμα

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 6 Περιστροφική Κίνηση Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

fysikoblog.blogspot.com

Διάλεξη 6: Ατομική Δομή Συμμετρία Εναλλαγής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Ατομική Δομή ΙΙΙ Διδάσκων : Επίκ. Καθ. Μ. Μπενής

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις

Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών

Κύριος κβαντικός αριθμός (n)

Κβαντική Φυσική Ι. Ενότητα 27: Γενική μελέτη κβαντικών συστημάτων δύο και τριών διαστάσεων. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Â. Θέλουμε να βρούμε τη μέση τιμή

Κβαντομηχανική σε μία διάσταση

Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Ατομική Δομή ΙΙ Διδάσκων : Επίκ. Καθ. Μ. Μπενής

μαγνητικό πεδίο τυχαίας κατεύθυνσης

( ) ) V(x, y, z) Παραδείγματα. dt + "z ˆk + z d ˆk. v 2 =!x 2 +!y 2 +!z 2. F =! "p. T = 1 2 m (!x2 +!y 2 +!z 2

. Να βρεθεί η Ψ(x,t).

Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας

3/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 08. ΤΟ ΣΠΙΝ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΟ ΣΠΙΝ

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής. Σημειώσεις I: Κίνηση σε τρεις διαστάσεις, στροφορμή

Αρμονικός Ταλαντωτής

Η Ψ = Ε Ψ. Ψ = f(x, y, z, t, λ)

( x) Half Oscillator. Σωμάτιο βρίσκεται υπό την επίδραση του δυναμικού

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις

το ένα με ηλεκτρικό φορτίο Ζe και το άλλο με e. Η χαμιλτονιανή του συστήματος (στο πλαίσιο της προσέγγισης Coulomb) μπορεί να έλθει στη μορφή

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Συστήματα Πολλών Σωματίων Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης

ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ. Θέμα 2. α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει

Σπιν 1 2. Γενικά. Ŝ και S ˆz γράφονται. ιδιοκαταστάσεις αποτελούν ορθοκανονική βάση στον χώρο των καταστάσεων του σπιν 1 2.

ΜΙΓΑΔΙΚΟ ΔΥΝΑΜΙΚΟ ΓΕΝΙΚΑ. Έστω σωμάτιο, στις τρεις διαστάσεις, που βρίσκεται υπό την επίδραση μιγαδικού δυναμικού της μορφής

Κβαντική Φυσική Ι. Ενότητα 31: Εφαρμογές και η ακτινική εξίσωση του ατόμου του υδρογόνου. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Μοριακή Δομή ΙΙ Διδάσκων : Επίκ. Καθ. Μ. Μπενής

Αρμονικός ταλαντωτής Ασκήσεις

Ατομική δομή. Το άτομο του υδρογόνου Σφαιρικά συμμετρικές λύσεις ψ = ψ(r) Εξίσωση Schrodinger (σφαιρικές συντεταγμένες) ħ2. Εξίσωση Schrodinger (1D)

Η κυματοσυνάρτηση στην αναπαράσταση ορμής Ασκήσεις. Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. 8 Δεκεμβρίου 2017

() 1 = 17 ΣΥΝΑΡΤΗΣΕΙΣ LEGENDRE Ορισµοί

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Κβαντική Φυσική Ι. Ενότητα 26: Ολοκλήρωση της αλγεβρικής μεθόδου για την μελέτη του αρμονικού ταλαντωτή

Συστήματα Πολλών Σωματίων

Άσκηση 1. Δείξτε τις σχέσεις μετάθεσης των πινάκων Pauli

Μάθημα 7ο. Υλοκύματα Και Η Σύγχρονη Ατομική Θεωρία

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

Απαντησεις στις ερωτησεις της εξετασης της 24 ης Ιουνιου 2005

Κβαντική Φυσική Ι. Ενότητα 7: Διερεύνηση εξίσωσης Schro dinger και απειρόβαθο πηγάδι δυναμικού. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΠΑΝΕΠΙΣΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΣΜΗΜΑ ΥΤΙΚΗ ΣΟΜΕΑ ΘΕΩΡΗΣΙΚΗ ΥΤΙΚΗ ΚΒΑΝΣΙΚΗ ΘΕΩΡΙΑ. Ασκήσεις και Προβλήματα. Α. Π. Λύκκας

Η Αναπαράσταση της Θέσης (Position Representation)

ETY-202 ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΤΩΝ ΘΕΜΕΛΙΩΔΩΝ ΑΡΧΩΝ ETY-202 ΎΛΗ & ΦΩΣ 03. ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ. Στέλιος Τζωρτζάκης 1/11/2013

Κβαντική Φυσική Ι. Ενότητα 17: Εφαρμογή στην αναπαράσταση τελεστών με μήτρα και εισαγωγή στον συμβολισμό Dirac

Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 27 Δεκεμβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Δύο διακρίσιμα σωμάτια με σπιν s 1

ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ ΣΕ ΜΙΑ ΤΥΧΑΙΑ ΑΝΑΠΑΡΑΣΤΑΣΗ

Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό γ) Πυρηνικό μοντέλο των φλοιών

Σπιν 1/2. Γενικά. 2 Υπενθυμίζουμε ότι τα έξι κουάρκ και τα έξι λεπτόνια του Καθιερωμένου Προτύπου,

Διάνυσμα: έχει μέτρο, διεύθυνση και φορά

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

Μοναδιαίοι Τελεστές Μοναδιαίοι Μετασχηματισμοί Εικόνες Χρονικής Εξέλιξης

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση

Λύση Εξίσωσης Laplace: Χωρισμός Μεταβλητών

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής

Κίνηση σε Μονοδιάστατα Τετραγωνικά Δυναμικά

ETY-202. Ο γενικός φορμαλισμός Dirac ETY-202 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC. Στέλιος Τζωρτζάκης 21/11/2013

k ) 2 P = a2 x 2 P = 2a 2 x y 2 Q = b2 y 2 Q = 2b 2 y z 2 R = c2 z 2 R = 2c 2 z P x = 2a 2 Q y = 2b 2 R z = 2c 2 3 (a2 +b 2 +c 2 ) I = 64π

Η άλγεβρα της στροφορμής

Το άτομο του Υδρογόνου- Υδρογονοειδή άτομα

Transcript:

Διάλεξη : Κεντρικά Δυναμικά Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schöing για κεντρικά δυναμικά Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 03 Κεντρικά δυναμικά Εξάρτηση δυναμικού από την απόσταση μεταξύ ελκτικού κέντρου και σωματίου: Σφαιρική συμμετρία Χρήση σφαιρικών συντεταγμένων x = θ cosφ y = θ φ z = cosθ X Z = P θ φ U U Λαπλασιανή σε σφαιρικές συντεταγμένες Εξίσωση Schöing σε σφαιρικές συντεταγμένες 0 V E Χωρισμός μεταβλητών σε σφαιρικές συντεταγμένες 0 V E Διαιρούμε με όπως και στο ελεύθερο σωμάτιο σε τρισδιάστατο κύβο

Διάλεξη : Κεντρικά Δυναμικά Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 03 0 V E V E ή Η διαφορική εξίσωση επαληθεύεται μόνον όταν και τα δύο μέλη της είναι ίσα με την ίδια σταθερά εφόσον πρόκειται για συναρτήσεις διαφορετικών μεταβλητών Λύση της Φφ 0 Δοκιμαστική λύση: a i a 0 Μοναδικότητα λύσης: i i Θέτουμε οπότε i A Κανονικοποιώντας: 0 A A i,..., 0,, i

Διάλεξη : Κεντρικά Δυναμικά Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 03 V E Η διαφορική εξίσωση επαληθεύεται μόνον όταν και τα δύο μέλη της είναι ίσα με την ίδια σταθερά, δηλ. Λύση της Θθ. Αντικαθιστούμε το στην αρχική εξίσωση και διαιρούμε με το Η λύση της παραπάνω διαφορικής εξίσωσης ιδιοτιμών απαιτεί ειδικές τεχνικές. Ωστόσο θα δείξουμε ότι μπορούμε να τη συνδέσουμε με την στροφορμή του συστήματος. Σε σφαιρικές συντεταγμένες οι συνιστώσες της στροφορμής γράφονται i i i z y x tan cos tan cos και

Διάλεξη : Κεντρικά Δυναμικά Παρατηρήσεις i i z i Η κυματοσυνάρτηση είναι ιδιοσυνάρτηση του τελεστή με ιδιοτιμή Άρα η z-συνιστώσα της στροφορμής είναι σαφώς ορισμένη ποσότητα στα κεντρικά δυναμικά! z. Η κυματοσυνάρτηση είναι ιδιοσυνάρτηση του τελεστή Άρα το τετράγωνο της στροφορμής είναι σαφώς ορισμένη ποσότητα στα κεντρικά δυναμικά! Αποδεικνύεται ότι:,, Το γινόμενο των συναρτήσεων είναι οι σφαιρικές αρμονικές και συμβολίζεται ως ή z,,,, 0,,,3,... 0,,,..., : : Τροχιακός κβαντικός αριθμός Μαγνητικός κβαντικός αριθμός Δείξτε ότι αντίστοιχες σχέσεις δεν μπορεί να ισχύουν για τις συνιστώσες της στροφορμής x και y Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 03

Διάλεξη : Κεντρικά Δυναμικά Σφαιρικές Αρμονικές Πολικά γραφήματα της κατανομής πιθανότητας, Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 03

Διάλεξη : Κεντρικά Δυναμικά Λύση της Λαμβάνοντας υπόψη τα παραπάνω για την στροφορμή μπορούμε να γράψουμε E V Η οποία καταλήγει στην ακτινική διαφορική εξίσωση E V 0 Ακτινική κινητική ενέργεια Περιστροφική κινητική ενέργεια Ολική Ενέργεια Δυναμική ενέργεια Η ακτινική διαφορική εξίσωση καθορίζει πέραν του ακτινικού μέρους της κυματοσυνάρτησης και τις επιτρεπόμενες ενέργειες του συστήματος. Για να λυθεί η παραπάνω ακτινική διαφορική εξίσωση πρέπει να γνωρίζουμε την συνάρτηση του δυναμικού. Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 03

Διάλεξη : Κεντρικά Δυναμικά Κβάντωση κατεύθυνσης, z Απροσδιοριστία, x y δεν είναι καλά καθορισμένες ποσότητες. Στροφορμής! Στα κεντρικά δυναμικά καλά καθορισμένες ποσότητες είναι οι Αντίθετα οι Κλασικό μοντέλο z Κβαντικό ανάλογο Σαφώς καθορισμένο διάνυσμα στροφορμής, π.χ. κατά μήκος του άξονα z y Σαφώς καθορισμένο διάνυσμα θέσης στο επίπεδο xy x p Z-συνιστώσα του διανύσματος θέσης γνωστή με απόλυτη ακρίβεια Παραβίαση αρχής απροσδιοριστίας του Hisnbg!!! Σε κβαντικά συστήματα σφαιρικής συμμετρίας ο προσανατολισμός του διανύσματος της στροφορμής καθορίζεται από τους κβαντικούς αριθμούς κι οι οποίοι καθορίζουν το μέτρο του διανύσματος της στροφορμής καθώς και το μέτρο της προβολής του διανύσματος της στροφορμής σε προτιμητέο άξονα z,. Το φαινόμενο αναφέρεται ως κβάντωση κατεύθυνσης ή κβάντωση χώρου spac quantization z Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 03

Διάλεξη : Κεντρικά Δυναμικά Κβάντωση κατεύθυνσης Διανυσματικό μοντέλο Δυνατοί προσανατολισμοί του διανύσματος για δεδομένα z 0 0 0 0 -,0, -,-,0,,,0,,,0,, 6 Το διάνυσμα της στροφορμής δεν μπορεί να ευθυγραμμιστεί με επιλεγμένο άξονα συντεταγμένων! cos z 3D μοντέλο: Εισαγωγή ασάφειας για τις, x y Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 03

Διάλεξη : Κεντρικά Δυναμικά Extas! Τρισδιάστατη απεικόνιση σφαιρικών αρμονικών με τη χρήση Mathatica 3 0, cos 3,, i Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 03

Διάλεξη : Κεντρικά Δυναμικά Extas! Τρισδιάστατη απεικόνιση σφαιρικών αρμονικών με τη χρήση Mathatica 4 5 3cos 0, 4 5,, i Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 03

Διάλεξη : Κεντρικά Δυναμικά Extas! Τρισδιάστατη απεικόνιση σφαιρικών αρμονικών με τη χρήση Mathatica 5,, cos i τομή τομή Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 03