AMPLIFICATOR CU TRANZISTOR BIPOLAR ÎN CONEXIUNE CU EMITORUL COMUN Montajul Experimental În laborator este realizat un amplificator cu tranzistor bipolar în conexiune cu emitorul comun (E.C.) cu o singură sursă de alimentare, a cărui schemă electrică este prezentată în figură: În emitorul tranzistorului, rezistenţa R E este formată dintr-o rezistenţă fixa şi una variabilă, permiţând variaţia curentului de emitor I E în anumite limite, în vederea stabilirii punctului static de funcţionare optim. La ieşirea etajului putem conecta trei rezistenţe de sarcină R S1, R S2, R S3. Modificând rezistenta de sarcină, parametrii de funcţionare în curent alternativ ai etajului se vor modifica, de exemplu amplificarea, însă punctul static de functionare nu se va modifica (circuitul echivalent de polarizare nu se modifică). MOD DE LUCRU
a. Stabilirea punctului static de functionare. 1. Se alimentează montajul cu tensiunea de +24V la bornele indicate pe montaj(v CC =+24V şi GND=0V). Se verifică această valoare cu ajutorul unui voltmetru de curent continuu conectat între bornele V CC =+24V şi GND ('masa','pamint', engl.). 2. Se măsoară cu ajutorul unui voltmetru de curent continuu potenţialele V E, V B şi V C ale bornelor E, B şi C faţă de masă. Se urmăreşte variaţia potenţialelor indicate cu variaţia pozitiei cursorului potentiometrului din emitorul tranzistorului. 3. Se calculează tensiunea între baza tranzistorului şi borna de alimentare cu V CC =+24V, U 1 =V CC -V B. Se calculează care este jumătatea acestei valori, U 2 =U 1 /2. 4. Aşa cum se vede şi din figură, pentru a putea avea o excursie maximă a semnalului la ieşire fără distorsiuni, punctul static de funcţionare trebuie astfel ales încît tensiunea colecor-bază, U CB, să fie egală cu jumătate din tensiunea U 1, adica U CB =U 2. Se conectează un voltmetru intre punctele C şi B şi se reglează potentiometrul din emitor pina când U CB ia valoarea calculată.
b. Caracteristica dinamică v o =f(v i ). 5. Se cuplează la intrarea amplificatorului (bornele IN şi GND) un generator de joasă frecventă şi se reglează pentru a obtine o frecvenţa de lucru de circa 1000 Hz. La ieşirea montajului nu se conectează nici una din rezistenţele R s1,r s2 şi R s3. În acest fel, singura sarcină din colectorul tranzistorului va fi R c. 6. Se modifică nivelul de iesire al generatorului (tensiunea de intrare în montaj v i ), măsurând pentru diferite valori tensiunea de intrare şi tensiunea de ieşire v o cu ajutorul unui milivoltmetru electronic. Se găseşte care este domeniul de liniaritate al amplificatorului (domeniul pe care tensiunea de iesire urmăreste proporţional tensiunea de intrare). Se aleg valorile de tensiune la intrare astfel încît sa avem pe domeniul de liniaritate circa 4 puncte experimentale (v i,v o ). Se mai iau încă 4 puncte experimentale în afara domeniului de liniaritate. 7. Se conecteaza un osciloscop la iesirea montajului şi se vizualizează formele de undă la intrare şi iesire pentru cele două regimuri de functionare. 8. Cu perechile de valori (v i,v o ) obtinute se traseaza caracteristica v o =f(v i ). 9. Pe graficul obţinut, care trebuie să aibă o formă tipică dată mai jos, se marchează domeniul de liniaritate şi tensiunile de intrare şi iesire la care amplificatorul intră în saturaţie (trece în domeniul neliniar). 10. Se conectează la ieşire rezistenţa de sarcină R s1. În acest fel, sarcina din colectorul tranzistorului va fi formată din R s1 în paralel cu R c. Se repetă operaţiile de la punctele 6-9 şi se trasează curbele obtinute pe acelaşi grafic. Se obţin în mod asemănător şi curbele v o =f(v i ) obtinute pentru celelalte rezistenţe de sarcină conectate la ieşire.
11. Se calculează în fiecare caz rezistenţa de sarcină echivalentă, R c R s, şi alegând perechi de puncte în domeniul de liniaritate se calculează amplificarea A=v o /v i. Se verifică proporţionalitatea amplificării în curent alternativ de rezistenţa echivalentă din colectorul tranzistorului. Explicaţi cauzele eventualelor abateri de la o dependenţă liniară. c. Caracteristica de frecvenţă A=f(ν). 12. Generatorul de semnal rămâne conectat la borenele de intrare, reglându-se nivelul său de iesire (tensiunea de intrare în montaj v i ) astfel încât amplificatorul să lucreze în domeniul de liniaritate determinat la pct. a, pentru fiecare rezistenţă de sarcină în parte. 13. Valoarea tensiunii de intrare se menţine riguros constantă şi se modifică frecventa de lucru în gama 20 Hz - 2 MHz în scara logaritmică. 14. Pentru diferite frecvenţe se măsoară tensiunea de iesire v o şi se calculeaza amplificarea în tensiune a montajului A o = v v i 15. Cu perechile (ν,a) obtinute experimental, se trasează caracteristica A=f(ν) în scară dublu logaritmică (vezi figura), adică se reprezintă log(a)=f(log(ν)), însă pe abscisă se notează ν, nu log(ν). Logaritmul zecimal al amplificării înmulţit cu 20 se numeşte câştig, notat cu G, şi se măsoara în decibeli. Deşi incorect, în terminologia uzuala, se asimileaza cistigul cu amplificarea în tensiune, A, numai unitatea de masura folosita (db) indicând faptul ca este vorba de câstig şi nu de amplificare. Pe acelasi
grafic se trasează cele 4 caracteristici obţinute pentru ieşirea în gol şi pentru cele trei rezistenţe de sarcină conectate la iesire. 16. Din grafic se determină frecventa limită inferioară ν i şi cea superioară ν s la care la care amplificarea scade cu 3 db faţă de valoarea maximă. 17. Se calculează pentru fiecare rezistenţa conectată la ieşire banda de trecere a amplificatorului cu formula: B= ν s - ν i 18. Se calculează şi produsul amplificare-bandă, A B, pentru fiecare rezistenţă conectată la ieşire. 19. Rezultatele de la punctele 14-18 se trec într-un tabel ca cel de mai jos: R s - R s1 R s2 R s3 A=v o /v i ν i ν s B=ν s -ν i A B