2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

Σχετικά έγγραφα
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (


Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #


UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

2 SFI

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

Prey-Taxis Holling-Tanner

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

v w = v = pr w v = v cos(v,w) = v w

A summation formula ramified with hypergeometric function and involving recurrence relation

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

Single-value extension property for anti-diagonal operator matrices and their square

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

H Witten- ¾. 1956, Payne-póyla Weinberger [15] Ó ĐË È : (1) λ k+1 λ r 4. λ r. (2) n k. λ k , Yang [19] ÅĐ «Yang ¾. (λ k+1 λ r )λ r 1+ 4 ) 1

High order interpolation function for surface contact problem

Ανώτερα Μαθηματικά ΙI

Blowup of regular solutions for radial relativistic Euler equations with damping

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής

ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ

ACTA MATHEMATICAE APPLICATAE SINICA Sep., ( MR (2000) Õ È 32C17; 32F07; 35G30; 53C55

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

John Nash. Παύλος Στ. Εφραιµίδης. Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Homomorphism in Intuitionistic Fuzzy Automata

P ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,.. ± ˆ ŒˆŠˆ Š ˆŠ

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

Chitaridou, Kyriaki. Neapolis University. þÿ À¹ÃÄ ¼Î½, ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

A General Note on δ-quasi Monotone and Increasing Sequence

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

p din,j = p tot,j p stat = ρ 2 v2 j,

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

Déformation et quantification par groupoïde des variétés toriques

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 7: Προσεγγιστική Λύση Εξισώσεων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION

STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM

Congruence Classes of Invertible Matrices of Order 3 over F 2

MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb TiAl ALLOY AFTER LONG TERM THERMAL CYCLING

Quick algorithm f or computing core attribute

ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ

{:=, :, goto, if, else} ß ß LB {beg, end, l 1, l 2,..., }.

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr W ALLOYING LAYER OF γ TiAl ALLOY

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 7(163).. 855Ä862 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ƒ. ² ͱ 1,.. μ μ Íμ,.. μ²ö,.. ƒ² μ,.. ² É,.. ³ μ μ, ƒ.. Š ³ÒÏ,.. Œμ μ μ,. Œ.

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 10: Μέθοδος Ελάχιστων Τετραγώνων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

Ó³ Ÿ , º 3(180).. 313Ä320

Morganναδώσειμίαεναλλακτικήμέθοδο,αποδεικνύονταςπρώταότιηευθείαπουδιχοτομεί κάθεταμίαχορδήπεριέχειτοκέντροτουκύκλου. Παρ όλααυτά,καιαυτήημέθοδοςέχει

Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

Ó³ Ÿ , º 4Ä5(174Ä175).. 682Ä688 ˆ ˆŠ ˆ ˆŠ Š ˆ

Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº

ƒˆˆ-ˆœ œ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

div( u p 2 u) = λa(x)u q 2 u+ 1 F(u,v) u

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

Ó³ Ÿ , º 7(163).. 793Ä797 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

EFFECTS OF Al Al 4 C 3 REFINER AND ULTRASONIC FIELD ON MICROSTRUCTURES OF PURE Mg

ƒê,.. ± É,.. Ëμ μ. ˆŸ Œ ƒ ˆ ƒ Ÿ ˆ ˆˆ ˆ ˆ ˆ Šˆ- ˆŒŒ ˆ ƒ Œ ƒ ˆ. ² μ Ê ² ² ±É Î É μ

Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

BEHAVIOR OF MARTENSITE REVERSE TRANSFORMA- TION IN 18Mn TRIP STEEL DURING WARM DEFORMATION

Ó³ Ÿ , º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. Ÿ. ʲ ±μ ±

ˆ Œ ˆ Ÿ ˆ ˆŸ Ÿ - ˆ ˆ Šˆ Š ˆŸˆ

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

Ανώτερα Μαθηματικά ΙI

2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < <

½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾

Ó³ Ÿ , º 7(156).. 62Ä69. Š Œ œ ƒˆˆ ˆ ˆŠ. .. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ 2. μ ± Ê É É Ê Ò μ μ, Œμ ±

v[m/s] U[mV] 2,2 3,8 6,2 8,1 9,7 12,0 13,8 14,2 14,6 14,9

ΑΠΑΝΤΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

P ² Ì μ Š ˆ Œˆ Š Œ Œˆ. ² μ Ê ² Nuclear Instruments and Methods in Physics Research.

MICROSEGREGATION OF SOLUTE ELEMENTS IN SOLIDIFYING MUSHY ZONE OF STEEL AND ITS EFFECT ON LONGITUDINAL SURFACE CRACKS OF CONTINUOUS CASTING STRAND

Editorís Talk. Advisor. Editorial team. Thank

Εξίσωση Τηλεπικοινωνιακών Διαύλων

ÅÊ NEAR (Near-Earth Asteroid Rendezvous) Hayabusa

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

ƒ Š ˆ Šˆ Š Œˆ Šˆ Š ˆŒ PAMELA ˆ AMS-02

ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

Approximation Expressions for the Temperature Integral

Pilloras, Panagiotis. Neapolis University. þÿ À¹ÃÄ ¼Î½, ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

S i L L I OUT. i IN =i S. i C. i D + V V OUT

þÿ ÀÌ Ä º± µä À ¹ ¼ ½

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ

Œˆ ˆ ƒ ˆŸ Ÿ ˆ ˆ Ÿ Œˆ ˆ

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result

Κληρονομικότητα. ΙωάννηςΓºΤσ ούλος

Transcript:

À 34 À 3 Ù Ú ß Vol. 34 No. 3 2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, 2011 Á É ÔÅ Ky Fan Ë ÍÒ ÇÙÚ ( ¾±» À ¾ 100044) (Ø À Ø 550025) (Email: dingtaopeng@126.com) Ü Ö Ë»«Æ Đ ĐÄ Ï Þ Å Ky Fan Â Ï Ò¹Ë Þ Å Ä Ï ¾Ïº»«Æ Ky Fan Ï Ò¹ Ç Ì ÙÞ (1) Ky Fan Ç Fan-Browder ÊÂÇ Ö (2) ÙÞ ÐÇ Nash Ö ÏÇ ÃÎ Ky Fan Ï Ç ÊÂÇ Nash Ö MR(2000) ß Â 49J20; 47H10; 91A10 Þ Â O177.9; O178; O225 1 ØÕ 1995 [1] ÆÕÊ Ky Fan Á Ò X Å φ : X X R y X, φ(y, y) 0, ß x X, y X, φ(x, y) 0. x µ Ý φ Ky Fan Á ²Òµ Ky Fan Á Ö Ky Fan ƹ Ñ Ê x Î Æ [2], Ú Ñµ Ky Fan ½ Ky Fan Ê Ì ß ÀÎ ½ Ò Ê µ ØÝ [3,4]. Ò Ky Fan [1 4] : 1.1 X Hausdorff ÀÎ Ø E ½ºÅ φ : X X R (1) Í y X, x φ(x, y) à «2010 Ñ 8 18 2011 Ñ 4 12 Ù 973 (2010CB732501) ÐØ ¹ (20102133) ¼¹Ã

3 Ù Óǵ»«Æ Ä Þ Ky Fan ÆÛ Ì ÙÞ 527 (2) Í x X, y φ(x, y) Æ«(3) Í y X, φ(y, y) 0, x X, y X, φ(x, y) 0. ¼ ÕßØÝ µ Ú Ê ± Ú Á [5] ¼ÊÝ ½Î [6] Ý ÆÝ ι ÐÄ ºÎ [5,7] Ý ÅÎ Ã Î [8] Ê ÄÈÊ Ky Fan [4,9] Í Ky Fan ÚØÝÅ ÐÄ ºÎ¼ Ý Ã ÎÒ ½Î ß Ý Ky Fan [10]. 1.2 (Ky Fan ) X Hausdorff ÀÎ Ø E ½Å Å Ü F : X 2 X x X, F(x) E Å Þ x 0 F(x 0 ) ºÅ ÚÍ X ½Å {x 1, x 2,, x n }, CO{x 1, x 2,, x n } n F(x i ), F(x) Ø. 2 Ky Fan ÛÓ x X Ý Ã Îß ºÎ¹ Ky Fan Á Î 2.1 X Hausdorff ÀÎ Ø E ½½Å Ý φ : X X R (1) Í y X, φ(y, y) 0; (2) Í x X, {y X : φ(x, y) > 0} ½Å«(3) y 0 X, cl X {x X : φ(x, y 0 ) 0} ºÅ Ú cl X B Å B X x X Î Í Ô y X, Ž {x α } α I X, x α x, φ(x α, y) 0 Ͳ α I  ( Í Ô y X, Ò x ÔÍ N(x ), x α N(x ), φ(x α, y) 0). ÆÕÅ Ü F : X 2 X F(y) = {x X : φ(x, y) 0}, y X. й (1) Í y X, F(y) F KKM Ü Í ½Å {y 1, y 2,, y n } X, CO {y 1, y 2,, y n } Đ ½Å {y 1, y 2,,y n } X, α i 0, n F(y i ). (2.1) n α i = 1, x 0 = n α i y i n F(y i ). ÐÜ F ÆÕ φ(x 0, y i ) > 0 Í i = 1, 2,,n  y i {y X : φ(x 0, y) > 0}. й (2), Í x 0 X, Å {y X : φ(x 0, y) > 0} ½ ²Ò

528 Ù Þ 34 x 0 = n α i y i {y X : φ(x 0, y) > 0}, φ(x 0, x 0 ) > 0, ¹ (1) Î Ö¼ F KKM Ü «Å Ü F : X 2 X F(y) = cl X (F(y)), y X. Đ Í y X, F(y) Å ¹ (3) F(y0 ) º Ð F(y) F(y) Ò (2.1) Í ½Å {y 1, y 2,, y n } X, CO {y 1, y 2,,y n } n F(y i ). ½ F : X 2 X Ky Fan ( 1.2) ±¹ Ö¼ F(y) Ø. y X x F(y), x F(y) = cl X (F(y)) Í y X Â Í y X, y X Ž {x α } α I F(y), x α x. Ð x α F(y),  φ(x α, y) 0 Ͳ α I  Ky Fan ÁÂ Æ 2.1 Á x µ Ky Fan Á ØÝÆ 2.1, Ky Fan Á Î 2.2 X Hausdorff ÀÎ Ø E ½½Å Æ Ý φ, ψ : X X R (1) Í y X, ψ(y, y) 0; (2) Í x X, {y X : ψ(x, y) > 0} ½Å«(3) y 0 X, cl X {x X : ψ(x, y 0 ) 0} º«(4) Í {y X : φ(x, y) > 0} Ø x X, y X, x int X {x X : ψ(x, y ) > 0}, Ú int X B Å B X ÁÅ x X, y X, φ(x, y) 0. й (1) (3) Ý ψ : X X R Æ 2.1 ±¹ Ö¼Ý ψ Ky Fan Á x X. ¼ x Ý φ Ky Fan Á Đ y 0 X, φ(x, y 0 ) > 0, {y X : φ(x, y) > 0} Ø. й (4), Í x X, y 0 X x int X {x X : ψ(x, y 0 ) > 0}, x Í N(x ), ψ(x, y 0 ) > 0 Í x N(x )  Πx Ý ψ Ky Fan Á ½ Í y 0 ß x Í N(x ), x α N(x ), ψ(x α, y 0 ) 0. ψ(x, y 0 ) > 0 Í x N(x )  Π2.1 Æ 2.2 Ý φ ² ¹»Ð Ý ψ ½ ÊÍÝ φ ¾ ß 2.2 Ó Æ 2.2 Ò [4] Æ 3.3.2, Æ 3.3.6, Æ 3.3.7, [5] Æ 2, [6] Æ 3.2, [7] Æ 2.1 Ú Á 2.3 X Hausdorff ÀÎ Ø E ½½Å Ý φ : X X R (1) Í y X, φ(y, y) 0; (2) Í x X, {y X : φ(x, y) > 0} ½Å«

3 Ù Óǵ»«Æ Ä Þ Ky Fan ÆÛ Ì ÙÞ 529 (3) y 0 X cl X {x X : φ(x, y 0 ) 0} º«(4) Í {y X : φ(x, y) > 0} Ø x X, y X, x int X {x X : φ(x, y ) > 0}, x X, y X, φ(x, y) 0. Æ 2.2 ψ = φ 2.3 y φ(x, y) ½ Æ 2.3 ¹ (2) x φ(x, y) X Ã Æ 2.3 ¹ (4) ²ÒÆ 2.1, Æ 2.2, Æ 2.3 ½Ò Õ Ê Ky Fan ( 1.1): (1) ºÎ«(2) ÊÝ ½Î¹ «(3) ÊÝ Ã Î ß 2.4 X Hausdorff ÀÎ Ø E ½º½Å Ý φ : X X R (1) Í y X, φ(y, y) 0; (2) Í x X, {y X : φ(x, y) > 0} ½Å«(3) Í {y X : φ(x, y) > 0} Ø x X, y X, x int X {x X : φ(x, y ) > 0}, x X, y X, φ(x, y) 0. Ö X E º½Å Æ 2.3 ¹ (3) ¾Đ ²Ò Æ Â ÐÆ 2.2 [9] Æ 9.5.1. 2.1 [9] X Hausdorff ÀÎ Ø E ½½Å Æ Ý φ, ψ : X X R (1) φ(x, y) ψ(x, y), x, y X, Þ ψ(y, y) 0, y X; (2) Í y X, x φ(x, y) à «(3) Í x X, {y X : ψ(x, y) > 0} ½«(4) ºÅ K X ß y 0 K, x X\K, φ(x, y 0 ) > 0, x K, y X, φ(x, y) 0. Æ 2.2 ¹ (1), (2), (4) Đ ³¹ (3) Ð ¹ (1) ß (4), Å {x X : ψ(x, y 0 ) 0} {x X : φ(x, y 0 ) 0} K. K X ºÅ Ô cl X {x X : ψ(x, y 0 ) 0} K ºÅ ½ X ºÅ Ó Æ 2.2, x X, y X, φ(x, y) 0. x X\K φ(x, y 0 ) > 0, ²Ò x K. 2.5 X Hausdorff ÀÎ Ø E ½Å Ý φ : X X R (1) Í y X, φ(y, y) 0; (2) Í x X, {y X : φ(x, y) > 0} ½Å«(3) X Ì ½ºÅ {X n } n=1, X 1 X 2 X 3, X = n=1 X n, ÞÍ X {x n } n=1, x n X n, Þ n, x m X n, n 0 y n0 X n0, φ(x n0, y n0 ) > 0; (4) n = 1, 2,, Í {y X n : φ(x, y) > 0} Ø x X n, y n X n, x int Xn {x X n : φ(x, y ) > 0}.

530 Ù Þ 34 x X, y X, φ(x, y) 0. n = 1, 2,,X n ½ºÅ x X n, {y X n : φ(x, y) > 0} = X n {y X : φ(x, y) > 0} ½Å «Ð (1), (4), φ X n X n Æ 2.4 ±¹ Ö ¼ x n X n, y X n, φ(x n, y) 0. Ì N, {x n } n=1 X N, n, x m X n. Ó (3), n 0 y n0 X n0, φ(x n0, y n0 ) > 0, y X n, φ(x n, y) 0 Î Ö¼ N, {x n } n=1 X N. Ö X N ºÅ x n x X N X(n ). Ò x φ Ky Fan Á y 0 X, φ(x, y 0 ) > 0. Ö X 1 X 2 X 3, X = n=1 X n, Ô M N, y 0 X M, Þ n M, y 0 X n. Ö φ(x, y 0 ) > 0, Ô n M, {y X n : φ(x, y) > 0} Ø, Ð (4), y n X n x X n Í U(x ), x U(x ), φ(x, y n) > 0. Ö x n x (n ), Ô n ( n M) x n U(x ), ½ φ(x n, y n ) > 0, y X n, φ(x n, y) 0 Î Ô x φ Ky Fan Á 2.4 Æ 2.5 [11] Æ 2.1 Õ 3 Ì Ê Ky Fan Ï Æ Fan-Browder À Ä µ Ñ Æ 2.2 Ƴ Ë ØÝ Ñ Ky Fan ³ Æ ß Fan- Browder ÉÁÆ Õ 3.1 X Hausdorff ÀÎ Ø E ½½Å A, B X X (1) Í y X, (y, y) B; (2) Í x X, Å {y X : (x, y) B} ½«(3) y 0 X, cl X {x X : (x, y 0 ) B} º«(4) Í {y X : (x, y) A} Ø x X, y X x int X {x X : (x, y ) B}, x X, {x } X A. 3.1 Æ 2.2 Æ 3.1. ÆÕÆ Ý φ, ψ : X X R φ(x, y) = { 0, (x, y) A, 1, (x, y) A, ψ(x, y) = { 0, (x, y) B, 1, (x, y) B, x, y X. (a) Í y X, й (1), ψ(y, y) = 0; (b) Í x X, й (2), Å {y X : ψ(x, y) > 0} = {y X : ψ(x, y) = 1} = {y X : (x, y) B} ½«

3 Ù Óǵ»«Æ Ä Þ Ky Fan ÆÛ Ì ÙÞ 531 (c) Ó ¹ (3), Á y 0, Å cl X {x X : ψ(x, y 0 ) 0} = cl X {x X : ψ(x, y 0 ) = 0} = cl X {x X : (x, y 0 ) B} ºÅ«(d) x X {y X : φ(x, y) > 0} Ø, {y X : (x, y) A} Ø. й (4), y X, x int X {x X : (x, y ) B}. {x X : (x, y ) B} = {x X : ψ(x, y ) = 1} = {x X : ψ(x, y ) > 0}, ²Ò x int X {x X : ψ(x, y ) > 0}. ¼Ý φ, ψ Æ 2.2 ±¹ ½ x X, y X, φ(x, y) 0, φ(x, y) = 0 Ͳ y X  {x } X A. 3.2 X Hausdorff ÀÎ Ø E ½½Å Æ Å Ü M, N : X 2 X (1) Í y X, y N(y); (2) Í x X, N(x) ½«(3) y 0 X, cl X (X\N 1 (y 0 )) º«(4) Í M(x) Ø x X, y X x int X N 1 (y ), x X, M(x ) = Ø. 3.2 Æ 3.1 Æ 3.2. Å A = {(x, y) X X : y M(x)}, B = {(x, y) X X : y N(x)}. (a) ¹ (1) Í y X, (y, y) B; (b) й (2), Í x X, Å {y X : (x, y) B} = {y X : y N(x)} = N(x) ½«(c) Ó ¹ (3), y 0» Å cl X {x X : (x, y 0 ) B} = cl X {x X : y 0 N(x)} = cl X (X\N 1 (y 0 )) º«(d) x X {y X : (x, y) A} Ø, A ÆÕ ¼ M(x) Ø. Ó ¹ (4), y X, x int X N 1 (y ). «B ÆÕ x int X {x X : (x, y ) B}. Ó Æ 3.1, x X, {x } X A. A ÆÕ ¼ y M(x ) Ͳ y X  ²Ò M(x ) = Ø. 3.3 Æ 3.2 Æ 2.2. ÆÕÆ Å Ü M, N : X 2 X M(x) = {y X : φ(x, y) > 0}, N(x) = {y X : ψ(x, y) > 0}, x X, (a) Í y X, й (1), ψ(y, y) 0, ÆÕ y N(y);

532 Ù Þ 34 º«(b) Í x X, й (2), N(x) = {y X : ψ(x, y) > 0} ½«(c) Ó ¹ (3), y 0» Å cl X (X\N 1 (y 0 )) = cl X {x X : y 0 N(x)} = cl X {x X : ψ(x, y 0 ) 0} (d) x X M(x) Ø, {y X : φ(x, y) > 0} = M(x) Ø. Ó ¹ (4), y X, x int X {x X : ψ(x, y ) > 0}. ºÔ {x X : ψ(x, y ) > 0} = {x X : y N(x )} = N 1 (y ), ²Ò x int X N 1 (y ). ¼Æ 3.2 ¹ ± ²Ò x X, M(x ) = Ø, y M(x ) Ͳ y X  ½ φ(x, y) 0 Ͳ y X  ² Æ 2.2 Æ 3.1 Æ 3.2 Æ 2.2, ²ÒÆ 2.2, Æ 3.1, Æ 3.2 «3.3 X Hausdorff ÀÎ Ø E ½½Å A X X (1) Í y X, (y, y) A; (2) Í x X, Å {y X : (x, y) A} ½«(3) y 0 X, cl X {x X : (x, y 0 ) A} º«(4) Í {y X : (x, y) A} Ø x X, y X x int X {x X : (x, y ) A}, x X, {x } X A. Æ 3.1 A = B 3.4 X Hausdorff ÀÎ Ø E ½½Å A X X (1) Í y X, (y, y) A; (2) Í x X, Å {y X : (x, y) A} ½«(3) y 0 X, {x X : (x, y 0 ) A} º«(4) Í y X, Å {x X : (x, y) A} Å Å x X, {x } X A. Æ ¹ ÅÜÊÆ 3.3 ¹ ²Ò  3.1 Ky Fan ³ Æ [10] Â Æ 3.1, Æ 3.3 ߯ 3.4 Ë ºÎ 3.5 X Hausdorff ÀÎ Ø E ½½Å Å Ü N : X 2 X (1) Í x X, N(x) ½«(2) y 0 X, cl X (X\N 1 (y 0 )) º«(3) Í x X, y X x int X N 1 (y ), x X, x N(x ). Æ Â Í y Y, y N(y). Å Ü M : X 2 X, Í x X, M(x) Ø (Á M(x) X, x X), й (3), y X x int X N 1 (y ). «Ð¹ (1)(2) Æ 3.2 ¹ ± x X,

3 Ù Óǵ»«Æ Ä Þ Ky Fan ÆÛ Ì ÙÞ 533 M(x ) = Ø, M : X 2 X Å Ü Î ²Ò  x X, x N(x ). 3.6 X Hausdorff ÀÎ Ø E ½½Å Å Ü N : X 2 X (1) Í x X, N(x) ½«(2) y 0 X, X\N 1 (y 0 ) º«(3) Í y X, N 1 (y) Å Å x X, x N(x ). Æ ¹ ÅÜÊÆ 3.5 ¹ ²Ò  3.7 X Hausdorff ÀÎ Ø E ½ºÅ Å Ü N : X 2 X (1) Í x X, N(x) ½Å«(2) Í x X, y X, x int X N 1 (y ), x X, x N(x ). Ö X º½Å Æ 3.5 ¹ (2) Đ «Ð¹ (1)(2) Æ 3.5 ¹ ± 3.2 Æ 3.5, Æ 3.6, Æ 3.7 Ò Á (1) ºÎ«(2) ßÅ Ü ( Ü ) ÁÁ ( ) «(3) ßÅ Ü ÁÁ «(4) Å Ü ( ) à Π½ ÕÊ Fan-Browder ÉÁÆ [12]. 3.3 [8] ÛÆ 3.7, ØÝ³ Ñ Ê Tarafdar É ÁÆ [13] ß [9] Æ 7.4.2 4 Nash È ÛÓ I = {1, 2,, n} Å i I, X i i ³ Å X = n X i. Í i I, Xî = X j, f i : X R i Ý Ú³ j I\i x = (x 1, x 2,,x n ) X i I, f(x i, x î ) = max u i X i f(u i, x î ), x µ ¼ n Nash Õ Á Ú x î = (x 1,, x i 1, x i+1,,x n ) X î, x = (x i, x î ). 4.1 i I, X i Hausdorff ÀÎ Ø E i ½½Å f i : X R (1) x X, { n y X : f i (y i, xî) > r(x) } ½Å Ú r(x) = n f i (x); { n (2) y 0 X, cl X x X : f i (yi 0, x ) n f î i (x i, xî) } º«(3) Í { y X : x int X { x X : n f i (y i, xî) > n n f i (y i, x ) > n f i (x î i, x )}. î ¼ Nash Õ Á f i (x i, xî) } Ø x X, y X

534 Ù Þ 34 ÆÕÝ φ : X X R φ(x, y) = n [f i (y i, xî) f i (x i, xî)], x = (x 1, x 2, x n ), y = (y 1, y 2,, y n ) X. Ó y X, φ(y, y) = 0; x X, {y X : φ(x, y) > 0} ½Å«y 0» Å cl X {x X : φ(x, y 0 ) 0} º«Í {y Y : φ(x, y) > 0} Ø x X, y Y, x int X {x X : φ(x, y ) > 0}. Ó Æ 2.3, x X, y X, φ(x, y) 0, n [f i (y i, x ) n f i (x î i, x )] 0 Í y = (y 1, y 2,, y n ) î  i I, u i X i, Ï y = (u i, x ), î φ(x, y) = f i (u i, x ) f i(x î i, x ) 0, î f(x i, x ) = max f(u i, x ), i I. ²Ò î u i X i î x ¼ Nash Õ Á 4.2 i I, X i Hausdorff ÀÎ Ø E i ½½Å f i : X R (1) x X, y n f i (y i, xî) X Æ«{ n (2) y 0 X, cl X x X : f i (yi 0, x ) n f î i (x i, xî) } º«(3) n f i X à «(4) y X, x n f i (y i, xî) X à ¼ Nash Õ Á Ó Æ ¹ (1) ÅÜÆ 4.1 ¹ (1); Æ ¹ (3), (4) ÅÜÆ 4.1 ¹ (3), Ö¼ Æ Â ÐÆ 4.2 ² [4] Æ 4.2.4, ³ [14] Æ 14 ¼ ¼ 4.1 i I, X i Hausdorff ÀÎ Ø E i ½º½Å, f i : X R x X, y n f i (y i, xî) X Æ«n f i X à «y X, x n f i (y i, xî) X à ¼ Nash Õ Á 4.1 (² [4, 14]) X ß Y Hausdorff ÀÎ Ø Ý f : X Y R Ã Å Ü G : Y 2 X Ã Þ º Ý g(y) = max f(x, y) Y x G(y) à 4.3 i I, X i Hausdorff ÀÎ Ø E i ½ºÅ f i : X R (1) f i X à «(2) xî Xî, k = 1, 2,, {y i X i : f i (y i, xî) > M k (xî)} ½Å Ú M k (xî) = max u i X i f i (u i, xî) 1/k; (3) x X, y X, x int X {x X : f i (y i, x î ) > M k(x î )}. ¼ Nash Õ Á k = 1, 2,, ÆÕÅ Ü Ì N k : X 2 X

3 Ù Óǵ»«Æ Ä Þ Ky Fan ÆÛ Ì ÙÞ 535 N k (x) = n { } y i X i : f i (y i, xî) > max f i (u i, xî) 1/k, u i X i Ð (1), x X, M k (xî) ÔÕ«Ð (2), x X, N k (x) ½Å«ºÔ y X, Ð (3), x X, y x k N k (x k ), Ö X = n n N 1 k (y) = { } x X : f i (y i, xî) > max f i (u i, xî) 1/k, u i X i i I, X, x int X N 1 k (y ). Ó Æ 3.7, x k X, X i ºÅ x k x. f i (x k i, x k î ) > max u i X i f i (u i, x k î ) 1/k. Ö f i à Р4.1, xî max f i (u i, xî) à ²Ò f i (x i, u x ) max f i (u i, x ). i X i î u i X i î x i X i, ²Ò f i (x i, x ) = î max f i (x i, x ), x i X i î x ¼ Nash Õ Á ÐÆ 4.3 ² [4] Æ 4.2.6 [14] Æ 16, ³ [15] Æ 2.1 ¼ 4.2 i I, Xi Hausdorff ÀÎ Ø E i ½ºÅ f i : X R f i X à «xî Xî, y i f i (y i, xî) X i Æ«x i X i, xî f i (y i, xî) Xî à ¼ Nash Õ Á ÝÑ ²É Æ É Ê Ñ Ê Ï Ô Ð [1] Tan K K, Yu J, Yuan X Z. The Stability of Ky Fan s Points. Proc. Amer. Math. Soc., 1995, 123: 1511 1519 [2] Fan Ky. A Minmax Inequality and Its Applications. In: Inequalities III, edited by O. Shisha. New York: Academic Press, 1972 [3] Yuan X Z. Knaster-Kuratowski-Mazurkiewicz Theorem. Ky Fan Minimax Inequalities and Fixed Point Theorems. Nonlin. World, 1995, 2: 130 169 [4] Á ¾Å º 2008 (Yu J. Game Theory and Nonlinear Analysis. Beijing: Science Press, 2008) [5] Bianchi M, Schaible S. Equilibrium Problems under Generalized Convexity and Generalized Monotoncity. J. Global Optim., 2004, 30: 121 134 [6] Bianchi M, Pini R. Coercivity for Equilibrium Problems. J. Optim. Theory Appl., 2005, 124(1): 79 92 [7] Fakhar M, Zafarani J. Equilibrium Problems in The Quasimonotone Case. J. Optim. Theory App1., 2005, 126(1): 125 136

536 Ù Þ 34 [8] ÔÈ ÅÉ È Æ ÈÀ Ü Í ÐÛ Đ Ð, 2009, 52(3): 441 450 (Peng D T. New Existence Theorem for Vector Equilibrium Problem and Its Equivalent Version with Applications. Acta Math. Sinica, 2009, 52(3): 441 450 [9] ¾ Û ¾Å º 2004 (Zhang C J. Set-valued Analysis and It s Applications in Economics. Beijing: Science Press, 2004) [10] Fan Ky. A Generalization of Tychonoff s Fixed-point Theorem. Math. Ann., 1961, 142: 305 310 [11] Banach ± Ky Fan Ã Æ Đ Ð, 2008, 31(1): 126 131 (Yu J. The Existence of Ky Fan s Points over Reflexive Banach Spaces. Acta Math. Appl. Sinica, 2008, 31(1): 126 131) [12] Browder F E. The Fixed Point Theory of Multi-valued Mappings in Topological Vectoe Spaces. Math. Ann., 1968, 177: 283 301 [13] Tarafdar E. Five Equivalent Theorems on a Convex Subset of a Topological Vector Space. Comment. Math. Univ. Carolinae, 1989, 30(2): 323 326 [14] Nash Æ Ð È Đ, 2002, 22(3): 296 311 (Yu J. The Existence and Stability of Nash Equilibrium. J. Sys. Sci. & Math. Scis., 2002, 22(3): 296-311) [15] Tan K K, Yu J. Existence Theorem of Nash Equilibria for Non-cooperative N-person Games, Int. J. Game Theory, 1995, 24: 217 222 Ky Fan s Inequalities for Discontinuous Functions on Non-compact Set and Its Equivalent Version with Their Applications PENG Dingtao (School of Science, Beijing Jiaotong University, Beijing 100044) (School of Science, Guizhou University, Guizhou, Guiyang 550025) (E-mail: dingtaopeng@126.com) Abstract The existence of weakly Ky Fan s point for the functions with no continuity on the non-compact set is proved. Based on this result, the Ky Fan s inequality is generalized to the functions with weak continuity, weak convexity and without compactness of the set. Author also give two equivalent versions for the result. As applications, (1) Ky Fan s section theorem and Fan-Browders s fixed point theorem are generalized; (2) some new existence theorems of Nash equilibria for n-person non-cooperative games are proved. Key words Ky Fan s inequality; existence; section theorem; fixed point theorem; Nash equilibrium MR(2000) Subject Classification 49J20; 47H10; 91A10 Chinese Library Classification O177.9; O178; O225