Θέµατα Άλγεβρας Γενικής Παιδείας Β Λυκείου 2000

Σχετικά έγγραφα
Θέµατα Άλγεβρας Γενικής Παιδείας Β Λυκείου 2000

ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β ΤΑΞΗΣ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2003 ΕΚΦΩΝΗΣΕΙΣ

Θέµατα Μαθηµατικών Θετικής & Τεχν.Κατ/νσης Γ Λυκείου 2000

1 η δεκάδα θεµάτων επανάληψης

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΑΠΑΝΤΗΣΕΙΣ

Άλγεβρα Γενικής Παιδείας Β Λυκείου 2001

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΑΠΑΝΤΗΣΕΙΣ

ΕΥΤΕΡΑ, 12 ΙΟΥΝΙΟΥ 2000 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

Για να λύσουμε μια τριγωνομετρική εξίσωση θα πρέπει να την φέρουμε σε μια από τις παρακάτω μορφές: Μορφή Εξίσωσης Τύποι Λύσεων ημx = ημα

ΤΡΙΤΗ, 30 ΜΑΪΟΥ 2000 ΜΑΘΗΜΑΤΙΚΑ

ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β ΛΥΚΕΙΟΥ 2004 ΕΚΦΩΝΗΣΕΙΣ. log x2

ΕΥΤΕΡΑ 27 ΜΑΪΟΥ 2013 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ. Ηµεροµηνία: Κυριακή 10 Μαΐου 2015 ιάρκεια Εξέτασης: 2 ώρες ΑΠΑΝΤΗΣΕΙΣ

Θέµατα Άλγεβρας Γενικής Παιδείας Β Λυκείου 1999 ΕΚΦΩΝΗΣΕΙΣ

Επαναληπτικό Διαγώνισμα στα Μαθηματικά Προσανατολισμών Γ

Θέµατα Εξετάσεων Άλγεβρας Β Λυκείου

Ελευθέριος Πρωτοπαπάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου

Ημερομηνία: Πέμπτη 29 Δεκεμβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÊÏÑÕÖÁÉÏ

1 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 2008

Θέµατα Ηλεκτρολογίας Τεχνολογικής Κατεύθυνσης Γ Λυκείου 2000

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 A ΦΑΣΗ

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΤΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ

ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ. A1. Έστω f μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α, β), με εξαίρεση ίσως ένα σημείο

3.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

5.4 ΤΡΙΓΩΝΟΜΕΤΡΙΚΗ ΜΟΡΦΗ ΜΙΓΑΔΙΚΟΥ

ΜΑΘΗΜΑ ΤΟ ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ

ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5)

ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΚΑΤΟΙΚΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ

Ακολουθίες Αριθµητική Γεωµετρική Πρόοδος

Πανελλαδικες Εξετασεις Γ Λυκειου Μαθηµατικα Γενικης Παιδειας

Θέµατα Ηλεκτρολογίας Τεχνολογικής Κατεύθυνσης Γ Λυκείου 2000

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

1. * Η ακολουθία είναι µια συνάρτηση µε πεδίο ορισµού το σύνολο Α. Q Β. Ζ* Γ. Ν. Ν* Ε. R

(πολλδ β) = πολλδ + ( 1) ν β ΕΥΣΤΡΑΤΙΟΣ ΚΩΣΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΘΟ ΙΚΟ ΙΑΙΡΕΤΟΤΗΤΑ

Γ ΩΝΙΕΣ Π ΟΥ Σ ΥΝΔΕΟΝΤΑΙ Μ ΕΤΑΞΥ Τ ΟΥΣ

v Α. Τι ονοµάζουµε εσωτερικό γινόµενο δύο διανυσµάτων, β

3.9 Η ΣΥΝΑΡΤΗΣΗ f(x) = αηµx + βσυνx

Γ 2 κριτ.οµοιοτ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΙΑΒΑΘΜΙΣΜΕΝΗΣ ΥΣΚΟΛΙΑΣ ΓΕΝΙΚΟ ΛΥΚΕΙΟ / ΤΑΞΗ : Β ΛΥΚΕΙΟΥ. ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ «Θέµατα Β»

Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. (Πρόοδοι) ΠΡΟΟΔΟΙ

lim f x lim g x. ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2016 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α

, x > 0. Β) να µελετηθεί η µονοτονία και τα ακρότατα της f. Γ) να δείξετε ότι η C f είναι κυρτή και ότι δεν υπάρχουν τρία συνευθειακά σηµεία

Σχέδιο βαθμολόγησης-προσομοίωση Προσανατολισμού Γ Λυκείου - 1/2017 ΣΧΕΔΙΟ ΒΑΘΜΟΛΟΓΗΣΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΕΚΦΩΝΗΣΕΙΣ

Λύσεις θεμάτων προσομοίωσης-1 ο /2017 ΛΥΣΕΙΣ

Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Κολλινιάτη Γιωργία. Μάκος Σπύρος. Πανούσης Γιώργος. Παπαθανάση Κέλλυ. Ραμαντάνης Βαγγέλης.

Ελευθέριος Πρωτοπαπάς. Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Β Γενικού Λυκείου

( ) Λ αφού αν διαιρέσουμε με το 2 τους όρους του 2 ης εξίσωσης το σύστημα γίνεται Ρ =

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου

ÈÅÌÁÔÁ 2008 ÏÅÖÅ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ

ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ -ΑΡΜΟΝΙΚΟ ΚΥΜΑ-ΣΤΑΣΙΜΟ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1

Τριγωνομετρικές συναρτήσεις Τριγωνομετρικές εξισώσεις

ΒΑΣΙΚΑ ΟΡΙΑ. ,δηλαδή ορίζεται τουλάχιστον σ ένα από τα σύνολα (α, x. lim. lim g(x) , λ σταθερά lim g(x) (ισχύει και για περισσότερες από 2

ΕΑΠ ΣΠΟΥ ΕΣ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Θ.Ε. ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΠΛΗ-12)

ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ( ) Να αποδείξετε ότι για κάθε θετικό ακέραιο ν ισχύει : ! + 2 2! + 3 3! + +ν ν! = (ν + 1)!

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Άλγεβρας Β τάξης Γενικού Λυκείου 2o Θέμα. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 2 η (2/12/2014)

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις)

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Άλγεβρας Β τάξης Γενικού Λυκείου 2o Θέμα. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (26/11/2014)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ταυτότητες διάταξη α 2 +β 2 = (α+β) 2-2αβ (α+β) 2 = α 2 +β 2 +2αβ (α+β) 3 = α 3 +β 3 +3α 2 β+3αβ 2 =α 3 +β 3 +3αβ(α+β) α 3 +β 3 = (α+β) 3-3αβ(α+β)

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΣΗΣ

Εκφωνήσεις των θεμάτων των εξετάσεων Επεξεργασμένες ενδεικτικές απαντήσεις Ενδεικτική κατανομή μονάδων ανά ερώτημα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

β και για τις οποίες το σύστημα (Σ) έχει λύση.

ΚΕΦΑΛΑΙΟ 3 Ο ΑΡΙΘΜΗΤΙΚΗ ΚΑΙ ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ ΑΣΚΗΣΕΙΣ

(Ενδεικτικές Απαντήσεις) ΘΕΜΑ Α. Α1. Βλέπε απόδειξη Σελ. 262, σχολικού βιβλίου. Α2. Βλέπε ορισμό Σελ. 141, σχολικού βιβλίου

( ) x 3 + ( λ 3 1) x 2 + λ 1

1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η απόσταση του σώµατος

γραφική παράσταση της συνάρτησης f, τον άξονα x x και τις ευθείες x = 1 και x = 2. lim lim (x 3) ) = 9α οπότε: (1 e ) (x 3) (1 e )(x 3) (x 3)

ΑΛΓΕΒΡΑ ΤΗΣ Β ΤΑΞΗΣ. ορισµοί. Ι ΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ (κεφ. 2 )

1 ο Κριτήριο αξιολόγησης (Τριγωνοµετρία)

Κεφάλαιο 2ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

1 η δεκάδα θεµάτων επανάληψης

3 ΠΡΟΟΔΟΙ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

ΑΣΚΗΣΕΙΣ ΣΤΟ ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ. όπου ν θετικός ακέραιος κ) z = 2 ( 3i 2. > να δείξετε ότι Re( )

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ

Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 5 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός

Μαθηµατικά Θετικής & Τεχνολογικής Κατεύθυνσης Γ' Λυκείου 2001

ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ. εφχ = εφθ χ = κ + θ χ = κ π + θ ( τύποι λύσεων σε ακτίνια )

1 και Ρ(Β) = τότε η Ρ (Α Β) είναι ίση µε: 2 δ και Ρ(Α Β) = 4

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ - ΠΑΡΑΤΗΡΗΣΕΙΣ ΚΑΙ ΜΕΘΟΔΕΥΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ

ΒΑΣΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017

Copyright: Ξένος Θ., Eκδόσεις Zήτη, Μάρτιος 2008, Θεσσαλονίκη

3.1 Τριγωνομετρικοί αριθμοί γωνίας

β) Αν επιπλέον το υπόλοιπο της διαίρεσης είναι υ(x) = - 3x + 5, τότε να βρείτε το Δ(x). (Απ. α) 5 ος β) Δ(x) = x 5 5x 4 + 6x 3 + 4x 2 11x + 5)

ΟΙ ΠΕΡΙΟΡΙΣΜΟΙ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝ Γ ΛΥΚΕΙΟΥ

ΟΝΟΜ/ΜΟ :... ΟΜΑ Α Α. 1. Χαρακτηρίστε µε ΣΩΣΤΟ (Σ) ή ΛΑΘΟΣ (Λ) τις παρακάτω προτάσεις : Σχῆµα 1: Ασκηση 1δ.

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΘΕΜΑ Β. Β1.. Η f παραγωγίσιμη στο πεδίο ορισμού της R (διότι. x άρα. x 1 0 για κάθε x R)

Transcript:

Θέµατα Άλγεβρας Γεικής Παιδείας Β Λυκείου 000 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα ο Α.. Α.. Α.. Να γράψετε το τύο ου δίει το ιοστό όρο α µιας αριθµητικής ροόδου (α ) ου έχει ρώτο όρο α και διαφορά ω. (Μοάδες ) Να γράψετε τη σχέση µεταξύ τω ραγµατικώ αριθµώ α, β, γ, έτσι ώστε οι αριθµοί αυτοί, µε τη σειρά ου σας δίοται, α είαι διαδοχικοί όροι αριθµητικής ροόδου. (Μοάδες ) Να αοδείξετε ότι το άθροισµα S τω ρώτω όρω µιας γεωµετρικής ροόδου (α ), ου έχει ρώτο όρο α και λόγο λ, είαι: S α λ - λ - (Μοάδες 6,5) Β.. Στη στήλη Α δίεται ο ρώτος όρος α και η διαφορά ω τριώ αριθµητικώ ροόδω και στη στήλη Β ο ιοστός όρος α τεσσάρω αριθµητικώ ροόδω. Να γράψετε στο τετράδιό σας το γράµµα της στήλης Α και δίλα σε κάθε γράµµα το αριθµό της στήλης Β ου ατιστοιχεί στο σωστό ιοστό όρο. Στήλη Α Στήλη Β α. α, ω -. α - β. α 0, ω. α - γ. α -, ω -. α -. α - (Μοάδες 6) Β.. Να χαρακτηρίσετε τις ροτάσεις ου ακολουθού γράφοτας στο τετράδιό σας τη έδειξη Σωστό ή Λάθος δίλα στο γράµµα ου ατιστοιχεί σε κάθε ρόταση. α. Οι αριθµοί 5, 5, 5, µε τη σειρά ου σας δίοται, είαι διαδοχικοί όροι αριθµητικής ροόδου. β. Ο εικοστός όρος της αριθµητικής ροόδου 0, 7, είαι ίσος µε 0. γ. Σε κάθε αριθµητική ρόοδο (α ) για τους όρους της α, α, α 6 ισχύει η σχέση α, α α 6.

(Μοάδες,5) Β.. Να γράψετε στο τετράδιό σας το γράµµα ου ατιστοιχεί στη σωστή αάτηση. Α σε µια γεωµετρική ρόοδο ο ρώτος όρος είαι ίσος µε και ο λόγος ίσος µε, τότε το άθροισµα τω ρώτω όρω της είαι ίσο µε: - A.. Β.. Γ. -... Ε. καέα αό τα ροηγούµεα. (Μοάδες ) Ζήτηµα ο ίεται το ολυώυµο: P(x) αx (β )x x β 6 Όου α, β ραγµατικοί αριθµοί. α) Α ο αριθµός είαι ρίζα του ολυωύµου P(x) και το υόλοιο της διαίρεσης του P(x) µε το x είαι ίσο µε, τότε α δείξετε ότι α και β. (Μοάδες 5) β) Για τις τιµές τω α και β του ερωτήµατος (α), α λύσετε τη εξίσωση P(x) 0 (Μοάδες 0) Ζήτηµα ο ίεται η συάρτηση: όου x ραγµατικός αριθµός. f(x) ηµxσυx ηµ x συ x α) Να µετατρέψετε τη συάρτηση f στη µορφή f(x) ρηµ(x φ) κ, όου ρ, φ, κ ραγµατικοί αριθµοί και ρ > 0. (Μοάδες 9) β) Να βρείτε για οιες τιµές του x η συάρτηση f αίρει τη µέγιστη τιµή και οια είαι αυτή. (Μοάδες 6) γ) Να λύσετε τη εξίσωση f(x) f x στο διάστηµα [0, ]. (Μοάδες 0)

Ζήτηµα ο Έας αριθµός βακτηριδίω τριλασιάζεται σε αριθµό κάθε µία ώρα. Α. Α αρχικά υάρχου 0 βακτηρίδια, α βρείτε το λήθος τω βακτηριδίω ύστερα αό 6 ώρες. (Μοάδες 9) Β. Στο τέλος της έκτης ώρας ο ληθυσµός τω βακτηριδίω ψεκάζεται µε µια ουσία η οοία σταµατά το ολλαλασιασµό τους και συγχρόως ροκαλεί τη καταστροφή 0 βακτηριδίω αά ώρα.. Να βρείτε το λήθος τω βακτηριδίω ου αοµέου 0 ώρες µετά το ψεκασµό. (Μοάδες ). Μετά αό όσες ώρες αό τη στιγµή του ψεκασµού θα καταστραφού όλα τα βακτηρίδια; (Μοάδες )

ΑΠΑΝΤΗΣΕΙΣ Ζήτηµα ο Α.. Ο τύος ου δίει το ιοστό όρο µιας αριθµητικής ροόδου µε ρώτο όρο α και διαφορά ω είαι: α α ( )ω. Α.. Η σχέση ου συδέει τρεις διαδοχικούς όρους µιας αριθµητικής ροόδου είαι: β α γ β (αγ)/ Α.. Έστω α, α, α,, α οι ρώτοι διαδοχικοί όροι µιας γεωµετρικής ροόδου. Τότε το άθροισµα τους S θα είαι: S α α α α S α α λ α λ α λ - () Πολλαλασιάζουµε τα µέλη της () εί λ και έχουµε: λ S α λ α λ α λ () Αφαιρούµε αό τη σχέση () τη σχέση () και έχουµε: λs S α λ α (λ )S α (λ ) S α (λ )/(λ ), αφού λ. Β.. Ο ιοστός όρος µιας αριθµητικής ροόδου δίεται αό το τύο: α α ( )ω. Ατικαθιστούµε σ αυτό τις τιµές τω α και ω της στήλης Α και βρίσκουµε: α. Α α και ω - τότε: α ( ) (-) α -. β. Α α 0 και ω τότε: α 0 ( ) α -. γ. Α α - και ω - τότε: α - ( ) (-) α -.

Εοµέως: α, β, γ Β.. α. Έχουµε α -5, β 5, γ 5. Για α είαι οι αριθµοί α, β και γ διαδοχικοί όροι αριθµητικής ροόδου, ρέει: β γ α 5 5 (-5), ου ισχύει. Άρα η ρόταση είαι σωστή. β. Η αριθµητική ρόοδος έχει α 0, ω -, οότε: α 0 α (0 )ω 0 9 (-) α 0-7, άρα η ρόταση είαι λάθος. γ. Αφού έχουµε αριθµητική ρόοδο, θα ισχύει: α α ω, α α ω, α 6 α 5ω. Τότε: α α α 6 (α ω) α ω α 5ω, ου ισχύει, άρα η ρόταση είαι σωστή. Εοµέως: α Σ, β Λ, γ Σ Β.. Έχουµε γεωµετρική ρόοδο µε α και λ, οότε: S λ - α λ - - Άρα η σωστή αάτηση είαι η Β. Ζήτηµα ο α) Εειδή ο αριθµός x είαι ρίζα του ολυωύµου P(x) θα έχουµε Ρ() 0, κι αφού η διαίρεση του P(x) µε το x αφήει υόλοιο, έχουµε: Ρ(-). Οότε: P() 0 P(-) α (β -) - - β 6 0 - α (β -) - β 6 α - β - - α -β -6 α β

Για τις τιµές α και β το ολυώυµο P(x) γράφεται: P(x) x x x. β) P(x) 0 x x x 0 (x ) x(x ) 0 (x )(x x ) x(x ) 0 (x )(x x x) 0 (x )(x 5x ) 0 x - 0 ή x 5x 0 x x - ή ή x - Άρα: x ή x - ή x -(/). Ζήτηµα ο α) Γωρίζουµε ότι: ηµx ηµxσυx, - συx ηµ x,συ x συx οότε: f(x) ηµxσυx ηµ x συ x - συx f(x) ηµx συx f(x) ηµx συx - συx f(x) ηµx συx. Έστω g(x) ηµx συx, x R. Τότε: ρ α β ( ) () ηµφ β ρ - () α συφ ρ () Αό τις () και () ροκύτει ότι:

φ Εοµέως: x - ηµ g(x) και x - ηµ f(x) β) Η f αίρει τη µέγιστη τιµή ότα το x - ηµ γίεται µέγιστο, δηλαδή ότα το ηµίτοο είαι ίσο µε. Εοµέως ρέει: ηµ x - ηµ x - ηµ Ζ κ,µε - κ - x κ - x Ζ κ,µε κκ x Ζ κ,µε κ x Τότε η µέγιστη τιµή είαι: Ζ κ,µε κ f κ f γ) x - f f(x) x ηµ x - ηµ x ηµ x - ηµ

ηµ x - ηµ x ηµx συ ηµ συx - ηµx συ ηµ συx - ηµ συx - ηµ συx - συx συx συx συ x κ ±, όου κ Ζ x κ ±, όου κ Ζ Όµως, x [0, ] δηλαδή 0 x. Εοµέως: A x κ : 0 κ,µ ε κ Ζ - κ 5, µε κ Ζ 5 - κ,µε κ Ζ άρα κ 0 και x Α x κ : 0 κ,µε κ Ζ κ,µ ε κ Ζ κ, µε κ Ζ άρα κ και

5 x Ζήτηµα ο Α. Εειδή ο ληθυσµός τω βακτηριδίω τριλασιάζεται κάθε ώρα, σηµείει ότι αοτελεί γεωµετρική ρόοδο µε λόγο λ. Εειδή αρχικά έχουµε 0 βακτηρίδια, στο τέλος της ρώτης ώρας θα υάρχου 0 βακτηρίδια, άρα α 0. Εοµέως: α α λ - α 0 - και: α 6 0 6-0 5 0 α 6 7.90 βακτηρίδια. Β.. Εειδή µε το ψεκασµό καταστρέφοται 0 βακτηρίδια, σε 0 ώρες θα έχου καταστραφεί: 0 0 7 00 5.00 βακτηρίδια. Άρα αοµέου: 7.90 5.00.90 βακτηρίδια. Β.. Έστω ότι τα βακτηρίδια καταστρέφοται µετά αό t ώρες. Τότε θα ρέει: t 0 7.90 70t 7.90 t 7.90/70 t 7 ώρες Εοµέως όλα τα βακτηρίδια θα έχου καταστραφεί µετά αό 7 ώρες.