ΜΑΘΗΜΑΤΙΚΑ ΓΕΝ Γ ΛΥΚΕΙΟΥ
|
|
- Ξάνθος Κωνσταντίνου
- 9 χρόνια πριν
- Προβολές:
Transcript
1 ΜΑΘΗΜΑΤΙΚΑ ΓΕΝ Γ ΛΥΚΕΙΟΥ ΟΡΙΑ - ΣΥΝΕΧΕΙΑ 1 Να υολογίσετε τα όρια: 9 i) ii) ( ) 9 iii) iv) t t t 1 v) vi) t (t )(t ) i) (ημ συν) ) 1 7 συν vii) 1 ημ viii) 1 5 i) ii) ημ , άν 0 Δίνεται η συνάρτηση f () α, άν 0 Να βρείτε το εδίο ορισμού της και στη συνέχεια να εξετάσετε για ια τιμή του α είναι συνεχής σε αυτό Δίνεται η συνάρτηση f () 1 i) Να βρείτε το εδίο ορισμού της και ση συνέχεια το f () ii) Είναι συνεχής η f σε κάθε σημείο του εδίου ορισμού της; iii) Να εξετάσετε αν η f είναι συνεχής στο 0= Αν δεν είναι συνεχής στο 0=, ώς ρέει να οριστεί η τιμή της στο σημείο αυτό ώστε αυτή να είναι συνεχής; Να σχεδιάσετε τη γραφική της αράσταση στην ερίτωση αυτή ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1
2 Δίνεται η συνάρτηση f () i) Nα βρείτε το εδίο ορισμού της και στη συνέχεια το f () ii) Να εξετάσετε αν υάρχει το f () και να δικαιολογήσετε την αάντησή σας 5 Δίνεται η συνάρτηση f() 6 i) Να βρείτε τα σημεία της γραφικής αράστασης της f με τους άξονες ii) Nα βρείτε τα διαστήματα στα οοία η γραφική αράσταση της f βρίσκεται κάτω αό τον άξονα iii) Να υολογίστε τα όρια: f () και 1 f () 1 6 Για μια συνάρτηση f ισχύει ότι (f () 8) 10 i) Μορεί να βρεθεί το f () κάνοντας χρήση της ιδιότητας του ορίου του αθροίσματος συναρτήσεων; Να δικαιολογήσετε την αάντησή σας ii) Να βρείτε το f () 7 Δίνονται οι συναρτήσεις f, g με τύους f () 9,, και g() 1 Α) Να βρείτε το εδίο ορισμού τους Β) Να ορίσετε τη συνάρτηση f h g Γ) Αν η γραφ αράσταση της h διέρχεται αό την αρχή των αξόνων και αό το σημείο Κ(9,) να βρείτε τα α, β Δ) Αν α = β = 1 να βρείτε το h() 1 Ε) Για α = β = 1 να εξετάσετε αν η συνάρτηση συνεχής στο 0=1 h(), [0,1) (1, ) p(), 1 είναι ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ
3 ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ 1 Δίνεται η συνάρτηση f () Να βρείτε τις f(1), f (1) και f (0) 1 Δίνεται η συνάρτηση f με α) την f () f () 1 7, Να βρείτε: β) τα σημεία της καμύλης της συνάρτησης f στα οοία η αράγωγος είναι μηδέν 1 Αν f () ( 1) και f (α)=7, όου α ραγματικός αριθμός, να βρείτε την τιμή του α Δίνεται η συνάρτηση f με f () συν ημ α) Να δείξετε ότι f () f () 0 β) Να βρείτε την τιμή του λ για την οοία ισχύει λ f f 5 Αν h() f (g()) και g(), g () 1 και f () 5,να βρείτε τον αριθμό h () 6 Δίνεται η συνάρτηση f()= ημ +009, [0, ] α) Να λύσετε την εξίσωση:f () (f () 009 1) β) Να βρείτε για οιες τιμές του ισχύει ότι: f () όου 7 Δίνεται η συνάρτηση f () e ,,,, α) Να βρείτε τις f () και f () β) Να ροσδιορίσετε τις τιμές των α,β,γ ώστε f () βf () γf () f () ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ
4 8 Δίνεται η συνάρτηση f () 1 Να βρείτε: Α) Τον συντελεστή διεύθυνσης της εφατομένης της γραφ αράστασης της f στο τυχαίο σημείο ( 0, f ( 0 )) Β) Την εξίσωση της εφατομένης της γραφικής αράστασης της f: α) ου σχηματίζει με τον άξονα γωνία φ= β) ου είναι αράλληλη στον άξονα γ) ου είναι αράλληλη στην ευθεία (ε):10 5y 1 0 δ) ου είναι κάθετη στην ευθεία ( ): y 009 ε) ου διέρχεται αό το σημείο (-1,-1) 9 Μια συνάρτηση f : είναι αραγωγίσιμη και έχει την ιδιότητα f ( 1) 7 Να βρείτε i) τις f() και f () ii) την εξίσωση της εφατομένης της C f στο σημείο Α(,f()) 10 Δίνεται η συνάρτηση f()= +α, α Να βρείτε την τιμή του α ώστε στα σημεία της γραφικής αράστασης της f ου έχουν τετμημένες 1 =1 και =- οι εφατόμενες να είναι αράλληλες 11 Να βρείτε τα κοινά σημεία των γραφικών αραστάσεων των συναρτήσεων f()=- και g()= + Να αοδείξετε ότι σε ένα αό αυτά έχουν κοινή εφατομένη 1 Δίνεται η συνάρτηση f : με α β f () με α,β i) Να υολογίσετε την αράγωγο της συνάρτησης f ii) Αν f (1) 5 και f () 6, να βρείτε τις τιμές των α, β 1 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ
5 iii) Για τις τιμές των α, β ου βρήκατε να βρείτε την εξίσωση της εφατομένης της Cf στο σημείο (0,f(0)) 1 Δίνεται η συνάρτηση f : με f () 9 α β με α,β Να υολογίσετε την αράγωγο της συνάρτησης f i) Aν f 6 (1) f () 5 και f 0, να βρείτε τις τιμές των α, β 5 6 ii) Για α=1 και β=1 να βρείτε: α) το ρόσημο της f β) την εξίσωση της εφατομένης της Cf στο σημείο Α(κ,λ) όου κ, λ είναι στοιχεία του συνόλου 1,0,1 1 Να βρείτε τα α, β ώστε η ευθεία y=-1 να εφάτεται στην καμύλη της συνάρτησης f () α β στο σημείο ( 1,f ( 1)) 15 Δίνεται η συνάρτηση f () α Έστω ότι η γραφική αράσταση της f διέρχεται αό το σημείο (, 5) και η εφατομένη της γραφικής της β αράστασης σχηματίζει με τον άξονα γωνία φ i) Να βρείτε τα α, β ii) Για 1 α και β=8 να βρείτε την εφατομένη της γραφικής αράστασης της f στο σημείο ( 1, f ( 1)) 16 Έστω η συνάρτηση f με τύο α β f () e με, i) Να βρεθεί ο τύος της συνάρτησης αν η γραφική αράσταση διέρχεται αό τα \ σημεία A(1,e ) και B( 1, e) ii) Να βρεθεί το σημείο τομής της C f με τον άξονα yy ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 5
6 iii) Να βρεθεί η εξίσωση της εφατόμενης της Cf στο αραάνω σημείο καθώς και το εμβαδόν του τριγώνου ου ορίζει αυτή με τους άξονες iv) Αοδείξτε ότι: f "() f () 1 f () v) Να βρεθεί ο ρυθμός μεταβολής του συντελεστή διεύθυνσης της εφατόμενης για vi) Να υολογίσετε το e h 0 1 h 1 h h e 17 Δίνεται η συνάρτηση f () 10 α) Να βρείτε τα σημεία στα οοία η εφατομένη της γραφικής αράστασης της f, έχει συντελεστή διεύθυνσης ίσο με το ρυθμό μεταβολής της f στα σημεία αυτά β) Στο σημείο με τη μικρότερη τετμημένη να βρεθεί η εξίσωση της εφατομένης 18 Ένα κινητό εκτελεί ευθύγραμμη κίνηση και η θέση του δίνεται αό τη σχέση S(t)=t -0t +88t+1 όου ο χρόνος t είναι σε sec και το S σε m i) Βρείτε την ταχύτητα και την ειτάχυνσή του την χρονική στιγμή t ii) Πότε το κινητό κινείται στην θετική και ότε στην αρνητική κατεύθυνση; Πότε είναι ακίνητο; iii) Να βρείτε την ειτάχυνσή του τη χρονική στιγμή ου έχει ταχύτητα 15 m/sec iv) Να βρείτε το ολικό διάστημα ου έχει διανύσει το κινητό κατά τη διάρκεια των ρώτων 15 sec v) Πόσο μετατοίστηκε τα 15 ρώτα sec ; ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 6
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις)
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 17 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (Ενδεικτικές Ααντήσεις) ΘΕΜΑ Α Α1. Αόδειξη σχολικού βιβλίου σελ 135 Α. α. Ψευδής
Διαβάστε περισσότερα1.3. Ασκήσεις σχ. βιβλίου σελίδας A ΟΜΑ ΑΣ. 1. i) f(x) = 5 ii) f(x) = x 4 iii) f(x) = x 9
. Ασκήσεις σχ. βιβλίου σελίδας 5 8 A ΟΜΑ ΑΣ (Να βρείτε τις αραγώγους των συναρτήσεων στις ασκήσεις 8). f() 5 f() 4 i f() 9 f () ( 5) 0 f () ( 4 ) 4 i f () ( 9 ) 9 8.. f() f() i f() 5 f () f () ( ) 4 i
Διαβάστε περισσότεραΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017
Στασίνου 6, Γραφ., Στρόβολος, Λευκωσία Τηλ. 57-78 Φαξ: 57-79 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 7 Μάθημα: ΜΑΘΗΜΑΤΙΚΑ Παρασκευή, 9/5/7 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΑΠΟ ΤΗΝ ΜΕΡΟΣ Α ln( x). Να υολογίσετε
Διαβάστε περισσότεραΚεφάλαιο 2ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ
Κεφάλαιο ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύου «Σωστό - Λάθος». * Αν = α + βi, α, β R και = 0, τότε α = 0 και β = 0. Σ Λ. * Αν = α + βi και αβ 0, τότε = α β i. Σ Λ. * Αν = κ + λi κ, λ R, τότε Re () =
Διαβάστε περισσότεραΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ. A1. Έστω f μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α, β), με εξαίρεση ίσως ένα σημείο
ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 8 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α A. Έστω f μια
Διαβάστε περισσότεραΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΚΑΤΟΙΚΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ
ΘΕΜΑ Α ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΚΑΤΟΙΚΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ A. Έστω f μια συνάρτηση αραγωγίσιμη σε ένα διάστημα (α, β), με εξαίρεση ίσως ένα σημείο του o, στο οοίο όμως η f είναι συνεχής.
Διαβάστε περισσότεραπαράσταση της f τέμνει τον άξονα ψ ψ στο σημείο με τεταγμένη 3 και διέρχεται από το σημείο
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ ΑΣΚΗΣΗ η (Κατσίποδας Δημήτρης) Δίνονται οι συναρτήσεις f() = με a, β R και g() = 5.Αν η γραφική παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο
Διαβάστε περισσότεραΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 Β ΦΑΣΗ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 8 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ / ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία: Σάββατο Αριλίου 8 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ
Διαβάστε περισσότεραΒΑΣΙΚΑ ΟΡΙΑ. ,δηλαδή ορίζεται τουλάχιστον σ ένα από τα σύνολα (α, x. lim. lim g(x) , λ σταθερά lim g(x) (ισχύει και για περισσότερες από 2
ΒΑΣΙΚΑ ΟΡΙΑ Έστω μια συνάρτηση f η οοία ορίζεται όσο κοντά θέλουμε στο,δηλαδή ορίζεται τουλάχιστον σ ένα αό τα σύνολα (α, ) (,β) ή (α, ) ή (,β). Όταν οι τιμές της f()ροσεγγίζουν όσο θέλουμε τον ραγματικό
Διαβάστε περισσότεραΘέµατα Μαθηµατικών Θετικής & Τεχν.Κατ/νσης Γ Λυκείου 2000
Θέµατα Μαθηµατικών Θετικής & Τεχν.Κατ/νσης Γ Λυκείου Ζήτηµα ο Α. Αν η συνάρτηση f είναι αραγωγίσιµη σ ένα σηµείο x του εδίου ορισµού της να γραφεί η εξίσωση της εφατοµένης της γραφικής αράστασης της f
Διαβάστε περισσότεραΕκφωνήσεις των θεμάτων των εξετάσεων Επεξεργασμένες ενδεικτικές απαντήσεις Ενδεικτική κατανομή μονάδων ανά ερώτημα
. Εκφωνήσεις των θεμάτων των εξετάσεων Εεξεργασμένες ενδεικτικές ααντήσεις Ενδεικτική κατανομή μονάδων ανά ερώτημα Εεξεργασία: Δημήτριος Σαθάρας Σχολικός Σύμβουλος Μαθηματικών Συντονιστής βαθμολογητών
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Μαθηματικά Γενικής Παιδείας Γ.Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΣΚΗΣΕΙΣ ) Να βρείτε το πεδίο ορισμού των συναρτήσεων: ( ) 6+ 9, g ( ), h ( ) 5 +, k
Διαβάστε περισσότεραΦΡΟΝΤΙΣΤΗΡΙΑ «ΠΡΟΟΔΟΣ» ΚΥΡΙΑΚΗ 22 ΝΟΕΜΒΡΙΟΥ 2015 ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» Γ ΛΥΚΕΙΟΥ
ΦΡΟΝΤΙΣΤΗΡΙΑ «ΠΡΟΟΔΟΣ» ΚΥΡΙΑΚΗ ΝΟΕΜΒΡΙΟΥ 5 ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο A. Να δώσετε τον ορισμό της συνέχειας μιας συνάρτησης στο πεδίο ορισμού της. ( Μονάδες)
Διαβάστε περισσότερα1.2 Βασικές Τριγωνομετρικές Εξισώσεις
. Βασικές Τριγωνομετρικές Εξισώσεις. Να λύσετε τις εξισώσεις: i) ημ = ημ = i = iv) =. Να λύσετε τις εξισώσεις: i) εφ = εφ = i σφ = iv) σφ =. Να λυθούν οι εξισώσεις: i) ημ = = i εφ = iv) σφ = 4. Να λυθούν
Διαβάστε περισσότερα(Μονάδες 15) (Μονάδες 12)
ΑΛΓΕΒΡΑ Β Λυκε ί ου τ ράε ζ αθε μάτ ων( 1ηέ κδοση) θέ μαδε ύτ ε ροκαιτ έ τ αρτ ο Κόμβ οςατ σι οούλου01415 δης Ει μέ λε ι α:εμμανουήλκ.σκαλί Αντ ώνηςκ.αοστ όλου Άσκηση 1 α) Να κατασκευάσετε ένα γραμμικό
Διαβάστε περισσότεραΠανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών
Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σουδών Ημερομηνία: 9 Ιουνίου 217 Ααντήσεις Θεμάτων Θέμα Α Α1. Θεωρία, βλ. σχολικό βιβλίο
Διαβάστε περισσότερα3.1 Τριγωνομετρικοί αριθμοί γωνίας
. Τριγωνομετρικοί αριθμοί γωνίας Τριγωνομετρικοί αριθμοί οξείας γωνίας αέναντι κάθετη λευρά ημβ υοτείνουσα ημγ ΑB ροσκε ίμενη κάθετη λευρά συνβ υοτείνουσα συνγ αέναντι κάθετη λευρά εφβ ροσκε ίμενη κάθετη
Διαβάστε περισσότεραΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΣΜΟΙΩΣΗΣ 1, 23/03/2018 ΘΕΜΑ Α
Λύσεις των θεμάτων ροσομοίωσης //8 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΣΜΟΙΩΣΗΣ //8 ΘΕΜΑ Α Α. Μια συνάρτηση f θα λέμε ότι είναι συνεχής σε ένα κλειστο διάστημα a β όταν είναι συνεχής σε κάθε σημείο του a β και ειλέον:
Διαβάστε περισσότεραγραφική παράσταση της συνάρτησης f, τον άξονα x x και τις ευθείες x = 1 και x = 2. lim lim (x 3) ) = 9α οπότε: (1 e ) (x 3) (1 e )(x 3) (x 3)
ΘΕΜΑΤΑ Έστω f µια ραγµατική συνάρτηση µε τύο f() α) Αν η f είναι συνεχής, να αοδείξετε ότι α - 9 α,, > β) Να βρείτε την εξίσωση της εφατοµένης της γραφικής αράστασης C f της συνάρτησης f στο σηµείο Α(4,
Διαβάστε περισσότεραΜία σύντομη εισαγωγή στην Τριγωνομετρία με Ενδεικτικές Ασκήσεις
Μία σύντομη εισαγωγή στην Τριγωνομετρία με Ενδεικτικές Ασκήσεις. Ονομασίες Ορισμοί Ο τριγωνομετρικός κύκλος έχει ακτίνα R. Αρχή μέτρησης των τόξων (γωνιών) είναι το Α, είτε κατά τη θετική φορά (αριστερόστροφα)
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ...7 ΕΝΟΤΗΤΑ 1: ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ... 9 Θεωρία... 9 Ερωτήσεις... 9 Μεθοδολογία Παραδείγματα Ασκήσεις...
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ...7 ΕΝΟΤΗΤΑ 1: ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ... 9 Θεωρία... 9 Ερωτήσεις... 9 Μεθοδολογία... 16 Παραδείγματα... 6 Ασκήσεις... 33 ΕΝΟΤΗΤΑ : ΔΥΝΑΜΙΚΗ ΠΡΟΣΕΓΓΙΣΗ... 39 Θεωρία... 39 Ερωτήσεις...
Διαβάστε περισσότερα, x > 0. Β) να µελετηθεί η µονοτονία και τα ακρότατα της f. Γ) να δείξετε ότι η C f είναι κυρτή και ότι δεν υπάρχουν τρία συνευθειακά σηµεία
f ( t ) ίνεται η συνεχής συνάρτηση f : [, + ) R µε: f ( ) = + ( + ), > t Α ) να δείξετε ότι: α) f ( ) = ln +, > β) f ( ) = Β) να µελετηθεί η µονοτονία και τα ακρότατα της f Γ) να δείξετε ότι η C f είναι
Διαβάστε περισσότεραΕξετάσεις 9 Ιουνίου Μαθηματικά Προσανατολισμού Γ Λυκείου ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ
Εξετάσεις 9 Ιουνίου 7 Μαθηματικά Προσανατολισμού Γ Λυκείου (Θετικών Σουδών και Σουδών Οικονομίας-Πληροφορικής) ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΤΣΙΜΙΣΚΗ & ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 777 59 ΑΡΤΑΚΗΣ - Κ. ΤΟΥΜΠΑ THΛ:
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόπουλου ΠΡΟΒΛΗΜΑΤΑ ΕΥΡΕΣΗΣ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ ΜΙΑΣ ΣΥΝΑΡΤΗΣΗΣ
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόουλου ΠΡΟΒΛΗΜΑΤΑ ΕΥΡΕΣΗΣ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ ΜΙΑΣ ΣΥΝΑΡΤΗΣΗΣ Α. ΕΙΣΑΓΩΓΗ Ολοκληρώνοντας το 1 ο κεφάλαιο στα Μαθηματικά της Γενικής Παιδείας
Διαβάστε περισσότερα1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η απόσταση του σώµατος
1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η αόσταση του σώµατος αό το έδαφος (σε cm), δίνεται αό την συνάρτηση f(t)=1ηµ t +13, όου t ο χρόνος σε ώρες. α) Να βρείτε την ερίοδο της ταλάντωσης.
Διαβάστε περισσότεραΑπόδειξη Αποδεικνύουμε το θεώρημα στην περίπτωση που είναι f (x) 0.
Αόδειξη Αοδεικνύουμε το θεώρημα στην ερίτωση ου είναι f () 0. Έστω, με. Θα δείξουμε ότι f( ) f( ). 1 1 1 Πράγματι, στο διάστημα [, ] η f ικανοοιεί τις ροϋοθέσεις του Θ.Μ.Τ. δηλαδή 1 είναι συνεχής στο 1,.
Διαβάστε περισσότεραΠΑΝΕΛΛΗΝΙΕΣ 2017 ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ TΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 7 ΠΑΝΕΛΛΗΝΙΕΣ 7 ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ TΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 9/6/7 ΕΠΙΜΕΛΕΙΑ: ΤΣΙΤΟΣ ΧΡΗΣΤΟΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 7
Διαβάστε περισσότεραΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1.
Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1.Δίνεται η συνάρτηση f()= 4 1 α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; β) Αν χ=, ποια είναι η τιμή της f; γ) Αν f()=1, ποια είναι
Διαβάστε περισσότεραΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ
ΜΕΡΟΣ A ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 36, Γραφ. 1, Στρόβολος 3, Λευκωσία Τηλ. 357-37811 Φαξ: 357-3791 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 13 ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία: Πέμτη, 3/5/13
Διαβάστε περισσότεραΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5)
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ (1) ΠΑΡΑΣΚΕΥΗ, ΜΑΡΤΙΟΥ 18 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 12. = e dt. Να αποδείξετε ότι: ΛΥΣΗ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΘΕΜΑ Α) Να αοδείξετε ότι: α) Η συνάρτηση f() = ln, [,] αντιστρέφεται και να ορίσετε την f. β) ln d + d =. Β) Δίνεται η συνάρτηση α) h() h(), για κάθε [, + ). = d. Να αοδείξετε
Διαβάστε περισσότερα3.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
1.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΩΡΙΑ 1. Ορισµός Έστω µία συνάρτηση f µε εδίο ορισµού Α και A Θα λέµε ότι η f είναι εριοδική όταν υάρχει ραγµατικός αριθµός Τ > 0 έτσι ώστε για κάθε Α να ισχύει : i)
Διαβάστε περισσότερα1.1 Τριγωνομετρικές Συναρτήσεις
11 Τριγωνομετρικές Συναρτήσεις Ποια συνάρτηση ονομάζουμε εριοδική; ΑΠΑΝΤΗΣΗ Μια συνάρτηση f με εδίο ορισμού το σύνολο Α λέγεται εριοδική, όταν υάρχει ραγματικός αριθμός Τ > 0 τέτοιος, ώστε για κάθε x A
Διαβάστε περισσότεραΛύσεις των θεμάτων. Παρασκευή 9 Ιουνίου 2017 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Παρασκευή 9 Ιουνίου 7 Λύσεις των θεμάτων Έκδοση η (/6/7, 6:3) Οι ααντήσεις και οι λύσεις είναι αοτέλεσμα συλλογικής δουλειάς
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά)
3 1 0 011 ΘΕΡΙΝΑ ΤΜΗΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά) ΘΕΜΑ 1 Α. Έστω η συνάρτηση F()=f()+g(). Aν οι συναρτήσεις f, g είναι παραγωγίσιμες, να αποδείξετε ότι F
Διαβάστε περισσότεραΜαθηματικά Γενικής Παιδείας Κεφάλαιο 1ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ
Μαθηματικά Γενικής Παιδείας Κεφάλαιο ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α
Διαβάστε περισσότεραΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ
ΚΩΛΕΤΤΗ 9- -68 86 8767 www.iraklits.gr ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ε Ν Δ Ε Ι Κ Τ Ι Κ Ε Σ Α Π Α Ν Τ
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ
www.apodeiis.gr ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ 1 1. Να βρείτε το πεδίο ορισμού των συναρτήσεων: 1 i. ii. 1. Να βρείτε τα πεδία ορισμού των συναρτήσεων: i. 1 1 ii. ln. Δίνεται η συνάρτηση g, i. Να αποδείξετε
Διαβάστε περισσότεραΟ μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:
Ο μαθητής ου έχει μελετήσει το κεφάλαιο αυτό θα ρέει: Να γνωρίζει την έννοια της εριοδικής συνάρτησης,και να μορεί να σχεδιάζει τις γραφικές αραστάσεις των συναρτήσεων y= αημ(ωx), y=ασυν(ωx). Να μορεί
Διαβάστε περισσότεραΤΡΙΤΗ, 30 ΜΑΪΟΥ 2000 ΜΑΘΗΜΑΤΙΚΑ
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ ΠΡΩΤΟ ΤΡΙΤΗ, 30 ΜΑΪΟΥ 000 ΜΑΘΗΜΑΤΙΚΑ Α. (α) Πότε ένας γεωµετρικός µετασχηµατισµός ονοµάζεται γραµµικός; (,5 µονάδες) r (β) Αν Μ(x, y) σηµείο
Διαβάστε περισσότεραo Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση
010-011 4 o Γενικό Λύκειο Χανίων Γ τάξη Μαθηματικά Γενικής Παιδείας γ Ασκήσεις για λύση Επιμέλεια: Μ. Ι. Παπαγρηγοράκης http://users.sch.gr/mipapagr Γ Λυκείου Μαθηματικά Γενικής Παιδείας ΚΕΦ1 1 Δίνεται
Διαβάστε περισσότεραΕΥΤΕΡΑ, 12 ΙΟΥΝΙΟΥ 2000 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗ
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ ΕΥΤΕΡΑ, ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ ΠΡΩΤΟ Α. Αν η συνάρτηση f είναι αραγωγίσιµη σ ένα σηµείο x του εδίου ορισµού της να γραφεί η εξίσωση της
Διαβάστε περισσότεραΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑ. 1.Να βρείτε τους αριθμούς: i)ημ ii)συν( ) ΛΥΣΗ i)διαιρώντας το 1125 με το 360 βρίσκω.
ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Να βρείτε τους αριθμούς: i)ημ5 0 ii)συν(-660 0 ) i)διαιρώντας το 5 με το 60 βρίσκω και εομένως 0 0 0 5 60 5 5 60 5 5 0 0 0 0 0 ii) ( 660 ) ( 70 60 ) ( 60 60 ) 0 (60 ) Να
Διαβάστε περισσότερα1 εφ x dx. 1 ν 1. συνx. 2 + ln1 = - ln 2. J 3-2 = 1 2 J 1 = ln 2 2, οπότε. x lnx 2 x, x > 0.
99 ΘΕΜΑΤΑ. Αν J ν ν εφ d, ν *, τότε α να αοδείξετε ότι για κάθε ν >, ισχύει J ν β να υολογίσετε το J 5. α Έχουµε J ν-, ν J ν ν εφ d εφ εφ d εφ ( d συν εφ d συν εφ d εφ (εφ d J ν- β Έχουµε ν εφ ν J ν- ν
Διαβάστε περισσότεραΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 7 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέματα και Ααντήσεις Ειμέλεια: Ομάδα Μαθηματικών http://www.othisi.gr ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 7 Παρασκευή, 9 Ιουνίου 7 Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
Διαβάστε περισσότεραΛύσεις θεμάτων προσομοίωσης-1 ο /2017 ΛΥΣΕΙΣ
Λύσεις θεμάτων ροσομοίωσης- ο /7 ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΣΑΒΒΑΤΟ, ΜΑΡΤΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ
Διαβάστε περισσότεραΑναγωγή στο 1ο τεταρτημόριο
ΑΛΓΕΒΡΑ ΒΛ ΤΡΙΓΩΝΟΜΕΤΡΙΑ - ΑΣΚΗΣΕΙΣ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 1-1. -175663 Βασικές Τριγωνομετρικές ταυτότητες Αν 0
Διαβάστε περισσότεραΠροτεινόμενα θέματα Πανελλαδικών εξετάσεων. Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ
Προτεινόμενα θέματα Πανελλαδικών εξετάσεων Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης o ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Ααντήσεις ΘΕΜΑ ο Α. Σχολικό βιβλίο, σελίδα 6. B. Σχολικό βιβλίο, σελίδες 97 και
Διαβάστε περισσότεραΠανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών
Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σουδών Ημερομηνία: 9 Ιουνίου 217 Ααντήσεις Θεμάτων Θέμα Α Α1. Θεωρία, βλ. σχολικό βιβλίο
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 6 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΠΙΜΕΛΕΙΑ: ΤΣΙΤΟΣ ΧΡΗΣΤΟΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΤΑΡΤΗ 8 ΜΑΪΟΥ 6 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ
Διαβάστε περισσότεραlim είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο x 0. β) Να εξετάσετε τη συνέχεια της συνάρτησης f (x) =
Ερωτήσεις ανάπτυξης. ** α) Να αποδείξετε ότι αν τα όρια lim - f () - f - είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο. ( ) και β) Να εξετάσετε τη συνέχεια της συνάρτησης f () = lim + στο σηµείο
Διαβάστε περισσότεραPhysics by Chris Simopoulos
ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ Χαρακτηριστικά μεγέθη της αλής αρμονικής ταλάντωσης είναι: Α) Αομάκρυνση (x ή y): ονομάζεται η αόσταση του σώματος κάθε χρονική στιγμή αό την θέση ισορροίας (x= ή y=) Β) Το λάτος της
Διαβάστε περισσότεραΠανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών
Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σουδών Ημερομηνία: 9 Ιουνίου 217 Ααντήσεις Θεμάτων Θέμα Α Α1. Θεωρία, βλ. σχολικό βιβλίο
Διαβάστε περισσότεραΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ
ΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ 1. Τι ονομάζουμε εριοδική συνάρτηση Μια συνάρτηση ƒ με εδίο ορισμού το Α λέγεται εριοδική όταν υάρχει ραγματικός αριθμός Τ, Τ > 0 τέτοιος ώστε για κάθε χ Α να ισχύει α) χ+τ Α, χ -
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ
1 Δίνεται το ευθύγραμμο τμήμα ΑΒ Αν ισχύει η ισότητα AB + BK- ΒΛ = AM- AK, να αοδείξετε ότι τα σημεία Κ, Λ και Μ είναι συνευθειακά Δίνεται τρίγωνο ΑΒΓ Αν είναι ΒΔ = κ ΑΒ+ ΑΓ και ΓΕ ( 1+ κ ) = AB+ ΑΓ, να
Διαβάστε περισσότεραΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ. Μαθηματικά. Β μέρος. Λύσεις των ασκήσεων
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ Μαθηματικά Β μέρος Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σουδών και Σουδών Οικονομίας & Πληροφορικής Λύσεις των
Διαβάστε περισσότεραΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Προτεινόμενες Λύσεις
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 13 Μάθημα: ΜΑΘΗΜΑΤΙΚΑ (κωδικός μαθήματος: 37) Ημερομηνία και ώρα εξέτασης: Πέμτη, 3
Διαβάστε περισσότεραΟι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <
Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το ο Γενικό Λύκειο Χανίων [00-0 < Mathematica.gr], τον οποίο κι ευχαριστώ ιδιαίτερα για το ήθος
Διαβάστε περισσότερα= x + στο σηµείο της που
Ασκήσεις στην εφαπτοµένη καµπύλης 1. Να βρείτε την εξίσωση της εφαπτοµένης της γραφικής παράστασης της συνάρτησης f ( ) = + στο σηµείο της που έχει τετµηµένη.. Σε ποια σηµεία της γραφικής παράστασης της
Διαβάστε περισσότεραΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΘΕΜΑ Β. Β1.. Η f παραγωγίσιμη στο πεδίο ορισμού της R (διότι. x άρα. x 1 0 για κάθε x R)
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 6 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. Θεώρημα σελ. σχολ. βιβλ. 6 Α. Θεωρία σελ. σχολ. βιβλ. 4 Α. Θεωρία σελ. σχολ. βιβλ. 46-47 Α4. Λ, Σ, Λ, Σ, Σ ΘΕΜΑ
Διαβάστε περισσότεραΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΚΥΚΛΟΣ
Περιοδικό ΕΥΚΛΕΙΔΗΣ Β E.M.E. (τεύχος 4) ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΚΥΚΛΟΣ Κώστα Βακαλόουλου ΕΙΣΑΓΩΓΗ Αν κάοιος θέλει να άψει να φοβάται το κεφάλαιο της Τριγωνομετρίας, ρέει ν αοφασίσει να διαβάσει ροσεκτικά τους
Διαβάστε περισσότεραΘΕΜΑ Ο Μιγαδικοί 5 Έστω w i w wi, όου w i,, R α. Να ρεθούν τα Rw και Im w. Να ρεθεί ο γεωμετρικός τόος των σημείων Μw στο μιγαδικό είεδο γ. Να ρεθεί τ
ΘΕΜΑ Ο Μιγαδικοί i Δίνεται ο μιγαδικός και έστω w α. Να ρεθεί ο μιγαδικός w όταν w. Να δείετε ότι w i γ. Αν η εικόνα του κινείται στον κύκλο κέντρου, και ακτίνας και Μ είναι η εικόνα του w στο μιγαδικό
Διαβάστε περισσότεραΤριγωνομετρικές συναρτήσεις Τριγωνομετρικές εξισώσεις
6 Τριγωνομετρικές συναρτήσεις Τριγωνομετρικές εξισώσεις 1. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Περιοδική συνάρτηση Μια συνάρτηση f με εδίο ορισμού Α λέγεται εριοδική, όταν υάρχει T τέτοιος ώστε για κάθε x A να
Διαβάστε περισσότεραΘΕΜΑ 1. θ (0, ). 4 α) Να δείξετε ότι οι ρίζες της εξίσωσης αυτής είναι μη πραγματικοί αριθμοί. β) Έστω z,z. Δ = 4εφ θ 4= 4(εφ θ 1) < 0 γιατί π
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΘΕΜΑ Δίνεται η εξίσωση: z (εφθ)z + =, θ (, ). 4 α) Να δείξετε ότι οι ρίζες της εξίσωσης αυτής είναι μη ραγματικοί αριθμοί. β) Έστω z,z οι ρίζες της αραάνω εξίσωσης. Αν ισχύει
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ 000 ΘΕΜΑ ο Α.α) Δίνεται η συνάρτηση F f g αποδείξετε ότι: F f g. cf,. Αν οι συναρτήσεις
Διαβάστε περισσότεραΕπαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου
Θέμα Εαναλητικό Διαγώνισμα Άλγεβρας Β Λυκείου Α. Αν α>0 με α, τότε για οοιουσδήοτε θ, θ,θ>0 και κ ισχύει log ( θ θ ) = log θ + log θ (7 μονάδες) α α α Β. Να χαρακτηρίσετε τις ροτάσεις ου ακολουθούν, γράφοντας
Διαβάστε περισσότερα3.4 Οι τριγωνομετρικές συναρτήσεις
3.4 Οι τριγωνομετρικές συναρτήσεις Περιοδικές συναρτήσεις Ορισμός Μια συνάρτηση f με εδίο ορισμού το Α λέγεται εριοδική, όταν υάρχει ραγματικός αριθμός Τ>0 τέτοιος ώστε για κάθε Α να ισχύει: ( T)A και
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ o Κεφάλαιο ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η διαδικασία, µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο
Διαβάστε περισσότεραΠανελλαδικές Εξετάσεις 2017
Πανελλαδικές Εξετάσεις 7 Μαθηματικά Προσανατολισμού 9/6/7 ΘΕΜΑ Α Προτεινόμενες λύσεις Α. Έστω, Δ, με
Διαβάστε περισσότεραΕρωτήσεις κρίσεως στις µηχανικές ταλαντώσεις
Κεφάλαιο 7 ο Ερωτήεις κρίσεως, για καλύτερη κατανόηση της θεωρίας 1 Ερωτήσεις κρίσεως στις µηχανικές ταλαντώσεις Αό τις ακόλουθες ερωτήσεις να σηµειώσετε το γράµµα ου αντιστοιχεί στη σωστή αάντηση. 1.
Διαβάστε περισσότεραΘΕΜΑΤΑ ΘΕΜΑ 1. α) Να λύσετε την εξίσωση : 2 2 2x. β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : 1 x < α.
ΘΕΜΑΤΑ ΘΕΜΑ 6 3 α) Να λύσετε την εξίσωση : 3 β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : < α. ΘΕΜΑ α) Να λύσετε την ανίσωση : + < 7. β) Αν ο είναι λύση της ανίσωσης του
Διαβάστε περισσότεραAΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ 2018
AΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ 8 ΘΕΜΑ Α: Α. Αόδειξη σελ.44 (σχολικό) Α. Ορισμός σελ. 5 (σχολικό) Α3. Η αράγωγος της f μορεί να είναι η Τ και η αράγωγος της g η H. Α4.
Διαβάστε περισσότεραΕργασία 1 ΑΝ ΙΙΙ 07_08
Εργασία ΑΝ ΙΙΙ 7_8 () t =,sin,cos t t t, t [,9], Για την αραμετρική καμύλη: ( ) Α Να βρεθεί η συνάρτηση μήκους τόξου και μια ισοδύναμη φυσική αραμετρική καμύλη q() s = (()) t s Β Να βρεθεί το σημείο Px
Διαβάστε περισσότερα( y) ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ ΘΕΜΑ Α Α1. Σχολικό βιβλίο, σελίδα 135
ΘΕΜΑ Α Α. Σχολικό βιβλίο, σελίδα 5 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ 07 Α. α. Ψ β. Δίνεται αντιαράδειγμα στο σχολικό βιβλίο σελίδα 99, αράγραφος: «Παράγωγος και συνέχεια». Α.
Διαβάστε περισσότερα4 ΤΥΠΟΣ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΑΡΤΗΣΕΙΣ Στο δι λανό Έστω η συνάρτηση f(x) = l n Αν f( x) = x+ x + 1. Να α οδείξετε ότι
Γ Λυκείου - Θετική Τεχνολογική Κατεύθυνση ΣΥΝΑΡΤΗΣΕΙΣ 4 ΤΥΠΟΣ ΣΥΝΑΡΤΗΣΗΣ 4. Έστω η συνάρτηση () l n A) Βρείτε το εδίο ορισµού της B) Λύστε την εξίσωση + Γ) Λύστε την ανίσωση < ) Να δείξετε ότι + ( ) συν
Διαβάστε περισσότεραΑσκήσεις σε τρέχοντα µηχανικά κύµατα
Ασκήσεις σε τρέχοντα µηχανικά κύµατα 1. Η ηγή διαταραχής Π αρχίζει τη χρονική στιγµή µηδέν να εκτελεί α.α.τ. λάτους Α=1 cm και συχνότητας f=, Hz. Το κύµα ου δηµιουργεί διαδίδεται κατά µήκος γραµµικού οµογενούς
Διαβάστε περισσότερα(Μονάδες 8) β) Αν τα διανύσµατα 2α+β. (Μονάδες 7) ΛΥΣΗ α β = α β συν α ɵ, β, 3 2 2α+β κα+β 2α+β κα+β = 0 2κα + 2α β+ κα β+β = 0
ΚΕΦΑΛΑΙΟ: ο - ΠΑΡΑΓΡΑΦΟΣ:.5 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 04 05 Γιάννης Ζαµέλης Μαθηµατικός 855 B (Αναρτήθηκε 08 4 ) ίνονται τα διανύσµατα ακαι µε ( α, ) = και α =, = α) Να ρείτε το εσωτερικό γινόµενο α (Μονάδες 8)
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 3ο Κεφάλαιο - Τριγωνομετρία - Βασικές τριγωνομετρικές ταυτότητες. , να βρεθούν
ΠΑΝΤΕΛΗΣ ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΑΛΓΕΒΡΑ B Λυκείου Κ Ε Φ Α Λ Α Ι Ο 3ο - Φ Υ Λ Λ Ο Νο ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ ΑΣΚΗΣΕΙΣ. Αν 3 και < x < 3, να βρεθούν οι ΠΡΟΣΟΧΗ : Βασικές Τριγωνομετρικές Ταυτότητες
Διαβάστε περισσότεραΜαθηματικά Γενικής Παιδείας. iv) f(x)= v) f(x)= ln(x 2-4) vi) f(x) =, v) f(x) = 6 x 5. vi) vii) f(x) = ln(x 2-2) viii) f(x) = lnx 2.
Ερωτήσεις ανάπτυξης Β. Να βρεθούν τα πεδία ορισμού των συναρτήσεων: 5 4 i) f() = ii) f()= iii) f()= iv) f()= ln( ) e v) f()= ln( -4) 4 4 vi) f() =, 5. Να βρείτε το πεδίο ορισμού των συναρτήσεων f με τύπο:
Διαβάστε περισσότερα( f ) ( T) ( g) ( H)
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 8 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. Αόδειξη (iii), σελ.44 σχολικού βιβλίου Α. Ορισµός,
Διαβάστε περισσότεραΓ ΩΝΙΕΣ Π ΟΥ Σ ΥΝΔΕΟΝΤΑΙ Μ ΕΤΑΞΥ Τ ΟΥΣ
Γ ΩΝΙΕΣ Π ΟΥ Σ ΥΝΔΕΟΝΤΑΙ Μ ΕΤΑΞΥ Τ ΟΥΣ Γωνίες με την ίδια τελική λευρά Γωνίες με άθροισμα 180 - Γωνίες με διαφορά 180 - Γωνίες αντίθετες Γωνίες με άθροισμα 90 - Γωνίες με διαφορά 90 Γωνίες με την ίδια
Διαβάστε περισσότεραΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΣΗΣ
ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΣΗΣ ΑΣΚΗΣΗ η : f :[ ] IR δύο φορές αραγωγίσιµη στο διάστηµα ( ) ώστε: [ ] f () + f() f () = IR και ακόµη. Να αοδείξετε ότι f() > ( ) f() = και f () =. Να αοδείξετε ότι ο τύος της
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
http://eepgr/pli/pli/studetshtm ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ), - ΕΡΓΑΣΙΑ ΣΤ Τα κάτωθι ροβλήµατα ροέρχονται αό την ύλη και των συγγραµµάτων της
Διαβάστε περισσότεραΆγγελος Λιβαθινός, Μαθηματικός. ΑΠΑΝΤΗΣΕΙΣ-ΛΥΣΕΙΣ. Α1. Θεωρία ( Σχολικό Βιβλίο, Σελίδα 98. Μέτρο Μιγαδικού αριθμού- ιδιότητα)
ΘΕΜΑ 1 ο ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΕΩΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 4 ΜΑΪΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ-ΛΥΣΕΙΣ Α1 Θεωρία ( Σχολικό Βιβλίο, Σελίδα
Διαβάστε περισσότεραΑχ, πονεμένη μου συνάρτηση ολοκλήρωμα
Αχ, ονεμένη μου συνάρτηση ολοκλήρωμα F() f (t)dt! ) Μια σύντομη αναδρομή Ειμέλεια: Μάκης Χατζόουλος Όλα ξεκίνησαν στις 7 Ιουνίου 5 όταν ανακοινώθηκε η διδακτέα εξεταστέα ύλη για τους μαθητές της Γ Λυκείου
Διαβάστε περισσότεραΔιαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση;
Κεφάλαιο 1 Διαφορικός Λογισμός 1.1 Συναρτήσεις Κατανόηση εννοιών - Θεωρία 1. Τι ονομάζουμε συνάρτηση; 2. Πως ορίζονται οι πράξεις της πρόσθεσης, της διαφοράς, του γινομένου και του πηλίκου μεταξύ δύο συναρτήσεων;
Διαβάστε περισσότεραΕλευθέριος Πρωτοπαπάς. Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Β Γενικού Λυκείου
Ελευθέριος Πρωτοαάς Εκφωνήσεις και λύσεις των ασκήσεων της Τράεζας Θεμάτων στην Άλγεβρα Β Γενικού Λυκείου Δεκέμβριος 04 Περιεχόµενα o Θέμα Θέµα Σελίδα Θέµα Σελίδα Θέµα Σελίδα Θέµα Σελίδα 6950 8 6954 9
Διαβάστε περισσότερα(Ενδεικτικές Απαντήσεις) ΘΕΜΑ Α. Α1. Βλέπε απόδειξη Σελ. 262, σχολικού βιβλίου. Α2. Βλέπε ορισμό Σελ. 141, σχολικού βιβλίου
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 18 ΜΑΪΟΥ 16 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΚΑΤΕΥΘΥΝΣΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) (Ενδεικτικές Ααντήσεις)
Διαβάστε περισσότερα1 η δεκάδα θεµάτων επανάληψης
1 1 η δεκάδα θεµάτων εανάληψης 1. ίνεται το ολυώνυµο Ρ(x) = x 3 x 2 4x + 4 Να αοδείξετε ότι ο αριθµός ρ = 1 είναι ρίζα του ολυωνύµου i Να βρείτε το ηλίκο της διαίρεσης του ολυωνύµου Ρ(x) µε το ολυώνυµο
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 6 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο
Διαβάστε περισσότεραΕργασία 1 η & Λύσεις 2009/10 Θεματική Ενότητα ΦΥΕ14 " ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ "
Άσκηση Εργασία η & Λύσεις 9/ Θεματική Ενότητα ΦΥΕ4 Παράδοση 6//9 Αν υοθέσουμε ως στο τρισορθογώνιο σύστημα αξόνων yz ο άξονας των z συμίτει με τη διεύθυνση της κατακόρυφου, να γράψετε αναλυτικά (με την
Διαβάστε περισσότεραΜΔΕ Άσκηση 6 Α. Τόγκας
Πρόβλημα 15. Για κάθε μια αό τις ακόλουθες αρχικές τιμές θερμοκρασίας i) να βρεθεί η λύση στην μορφή μια σειράς Fourier της εξίσωσης της θερμότητας με εριοδικές συνοριακές συνθήκες u t = u x x < x
Διαβάστε περισσότερασώμα από τη θέση ισορροπίας του με οριζόντια ταχύτητα μέτρου 4 m/s και με φορά προς τα δεξιά.
ΕΙΣΑΓΩΓΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΕ ΕΛΑΤΗΡΙΑ. Ένα σώμα μάζας m = kg βρίσκεται άνω σε λείο δάεδο και είναι δεμένο στο ένα άκρο οριζόντιου ελατηρίου σταθεράς k = N/m, το άλλο άκρο του οοίου είναι στερεωμένο σε κατακόρυφο
Διαβάστε περισσότεραΣΕΙΡΕΣ FOURIER. ο µετασχηµατισµός αυτός δίνεται από την σχέση x = ). Έτσι, χωρίς βλάβη της γενικότητας,
ΣΕΙΡΕΣ FOURIER. Η ροσέγγιση συναρτήσεων µέσω ολυωνύµων, την οοία µελετήσαµε στην ροηγούµενη Ενότητα, αρά την αοτελεσµατικότητα και την, σχετική, αλότητά της, αοδεικνύεται ανεαρκής για την εριγραφή/ροσέγγιση
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α Ερώτηση θεωρίας Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c είναι μια πραγματική σταθερά, να δείξετε ότι: ( c f( )) = c f ( ),. Έστω F( )
Διαβάστε περισσότεραΜια φθίνουσα ταλάντωση, στην οποία η μείωση του πλάτους δεν είναι εκθετική.
Μια φθίνουσα ταλάντωση, στην οοία η μείωση του λάτους δεν είναι εκθετική. Το ένα άκρο οριζόντιου ελατηρίου σταθεράς =100N/, το οοίο έχει το φυσικό του μήκος, είναι ακλόνητα στερεωμένο σε ακλόνητο σημείο.
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α Ερώτηση θεωρίας Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c είναι μια πραγματική σταθερά, να δείξετε ότι: ( c f) = c f, Έστω F = c f Έχουμε
Διαβάστε περισσότεραΤριγωνομετρικοί αριθμοί οξείας γωνίας. Τριγωνομετρικοί αριθμοί γωνίας. Τριγωνομετρικοί αριθμοί οποιασδήποτε γωνίας. . Τότε ορίζουμε: ί ά ά.
ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ Τριγωνομετρικοί αριθμοί οξείας γωνίας Αό το Γυμνάσιο ξέρουμε ότι σε κάθε ορθογώνιο τρίγωνο ΑΒΓ ισχύει: ημβ = = έάά ί Γ συνβ = = ίάά ί β α εφβ = = έάά ίάά Τριγωνομετρικοί
Διαβάστε περισσότεραΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΕΥΘΕΙΑ Β ΛΥΚΕΙΟΥ. i) Μία ευθεία με συντελεστή διεύθυνσης ίσο με το μηδέν, θα είναι παράλληλη στον άξονα των y.
ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΕΥΘΕΙΑ Β ΛΥΚΕΙΟΥ Θέμα Α. Να αποδείξετε ότι ο συντελεστής διεύθυνσης ευθείας στο επίπεδο της μορφής x y 0, με 0, 0 θα δίνεται από τον τύπο. ( μονάδες) Β. Να γράψετε τους τύπους του εμβαδού
Διαβάστε περισσότεραΓια τις λύσεις συνεργάστηκαν οι μαθηματικοί: Κολλινιάτη Γιωργία. Μάκος Σπύρος. Πανούσης Γιώργος. Παπαθανάση Κέλλυ. Ραμαντάνης Βαγγέλης.
Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Κολλινιάτη Γιωργία Μάκος Σύρος Πανούσης Γιώργος Πααθανάση Κέλλυ Ραμαντάνης Βαγγέλης Σαμάνης Νίκος Τόλης Ευάγγελος -1-01 18808Δίνεται η εξίσωση x y 7 Γραμμικά
Διαβάστε περισσότερα