Στοχαστικές Ανελίξεις- Φεβρουάριος 2015

Σχετικά έγγραφα
Στοχαστικές Ανελίξεις- Ιούλιος 2015

p q 0 P =

Στοχαστικές Ανελίξεις- Σεπτέμβριος 2016

Στοχαστικές Ανελίξεις (3) Αγγελική Αλεξίου

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων 1ο Σετ Ασκήσεων - Λύσεις

Διαδικασίες Markov Υπενθύμιση

P (M = n T = t)µe µt dt. λ+µ

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Markov. Γ. Κορίλη, Αλυσίδες. Αλυσίδες Markov

Μαρκοβιανές Αλυσίδες

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εκθετική Κατανομή, Στοχαστικές Ανελίξεις Διαδικασίες Απαρίθμησης, Κατανομή Poisson

Ονοματεπώνυμο: Ερώτημα: Σύνολο Μονάδες: Βαθμός:

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών Εθνικό Μετσόβιο Πολυτεχνείο. Στοχαστικές Ανελίξεις. Ασκήσεις Κεφαλαίου 2. Κοκολάκης Γεώργιος

Προβλήματα Μαρκοβιανών Αλυσίδων

1 + ρ ρ ρ3. iπ i = Q = λ λ i=0. n=0 tn. n! Qn, t 0

Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη:

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ. (2 μονάδες) Δίνονται τα σημεία (-2, -16), (-1, -3), (0, 0), (1, -1) και (2, 0). Υπολογίστε το πολυώνυμο παρεμβολής Newton.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

DEPARTMENT OF STATISTICS

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α. α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης;

Νικος Χαλιδιας Μαθηματικό Τμήμα κατεύθυνση Στατιστικής και Αναλογιστικών-Χρηματοοικονομικών Μαθηματικών Πανεπιστημιο Αιγαιου

Ασκήσεις 3 ου Κεφαλαίου

Νικος Χαλιδιας Μαθηματικό Τμήμα κατεύθυνση Στατιστικής και Αναλογιστικών-Χρηματοοικονομικών Μαθηματικών Πανεπιστημιο Αιγαιου

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

/ / 38

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες -Εαρινό Εξάµηνο 2016 ιδάσκων : Π.

Συστήματα Αναμονής. Ενότητα 5: Ανέλιξη Poisson. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

«ΔΙΑΚΡΙΤΕΣ ΜΑΡΚΟΒΙΑΝΕΣ ΑΛΥΣΙΔΕΣ»

Συστήματα Αναμονής. Ενότητα 4: Αλυσίδες Markov. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

ΠΙΘΑΝΟΤΗΤΕΣ, ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΣΤΟΙΧΕΙΑ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΘΕΜΑΤΑ ΠΙΘΑΝΟΤΗΤΩΝ ΓΕΩΛΟΓΙΚΟΥ

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 3: Μοντέλα Θεωρίας Αναμονής

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

2.5.1 ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΙΙ

m + s + q r + n + q p + s + n, P Q R P Q P R Q R F G

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων (2/2) Διαδικασία Γεννήσεων Θανάτων Η Ουρά Μ/Μ/1

μιας παρατήρησης όπου λ. Αν για το πλήθος Ν(Ω) των σφαιρών που υπάρχουν στο κουτί ισχύει 64<Ν(Ω)<72, τότε λ

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

Συστήματα Αναμονής. Ενότητα 7: Ουρά Μ/Μ/1. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Η πιθανότητα επομένως που ζητείται να υπολογίσουμε, είναι η P(A 1 M 2 ). Η πιθανότητα αυτή μπορεί να γραφεί ως εξής:

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης

ίκτυα Επικοινωνίας Υπολογιστών

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο. Ενδεικτικές Λύσεις Ασκήσεων. Κεφάλαιο 3. Κοκολάκης Γεώργιος

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις

Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές

Συστήματα Αναμονής. Ενότητα 3: Στοχαστικές Ανελίξεις. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Συστήματα Αναμονής. Ενότητα 9: Ανέλιξη Γέννησης - Θανάτου. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

, και για h 0, . Άρα. Α2. Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε σημεία x.

Συστήματα Αναμονής. Ενότητα 10: Ουρά Μ/Μ/s. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss-Jordan Παραγοντοποίηση LU, LDU

ΟΙ ΔΕΚΑ ΕΝΤΟΛΕΣ ΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 3 18

Θεωρία Τηλεπικοινωνιακής Κίνησης

Συλλογή ασκήσεων στην διδαχθείσα ύλη του μαθήματος. 532 Στοχαστικές Διαδικασίες. Επιμέλεια Ασκήσεων: Απόστολος Μπατσίδης

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009

pdf: X U(a, b) 0, x < a 1 b a, a x b 0, x > b

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2011 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Μοντέλα Ουρών Markov και Εφαρμογές:

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Ι Φεβρουάριος 2018 Σειρά Α Θέματα 3 ως 7 και αναλυτικές (ή σύντομες) απαντήσεις

Θέμα 1. με επαυξημένο 0 1 1/ 2. πίνακα. και κλιμακωτή μορφή αυτού

Αναγνώριση Προτύπων Ι

Παρουσίαση 2 η : Αρχές εκτίμησης παραμέτρων Μέρος 1 ο

Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών Εθνικό Μετσόβιο Πολυτεχνείο. Στοχαστικές Ανελίξεις. Κεφάλαιο 1: Εισαγωγή. Κοκολάκης Γεώργιος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο ιδάσκων : Π.

f ( x) f ( x ) για κάθε x A

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Ορισµός. (neighboring) καταστάσεων. ηλαδή στην περίπτωση αλυσίδας Markov. 1.2 ιαµόρφωση µοντέλου

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

Λύσεις θεμάτων επαναληπτικών πανελληνίων εξετάσεων 2014 Στο μάθημα: «Μαθηματικά και Στοιχεία Στατιστικής» Γενικής Παιδείας ΗΜΕΡΗΣΙΑ ΓΕ.Λ.

Χρονοσειρές, Μέρος Β 1 Πρόβλεψη Χρονικών Σειρών

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Μια φθίνουσα ταλάντωση, στην οποία η μείωση του πλάτους δεν είναι εκθετική.

ΓΕΝΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΔΙΑΓΩΝΙΣΜΑΤΑ ΣΕ ΟΛΗ ΤΗΝ ΔΙΔΑΚΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. αλλού

Στοχαστικές Στρατηγικές

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

P (M = 9) = e 9! =

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΣΤΑΤΙΣΤΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ ΤΗΛΕΦΩΝΙΚΗΣ ΚΙΝΗΣΗΣ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 4

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

P(A ) = 1 P(A). Μονάδες 7

Transcript:

Στοχαστικές Ανελίξεις- Φεβρουάριος 2015 ΟΔΗΓΙΕΣ (1) Απαντήστε σε όλα τα θέματα. Τα θέματα είναι ισοδύναμα. (2) Οι απαντήσεις να είναι αιτιολογημένες. Απαντήσεις χωρίς να φαίνεται η απαιτούμενη εργασία είναι σα να μην έχουν δοθεί. Ειδικότερα, αν σε κάποιο θέμα χρησιμοποιήσετε μια στοχαστική διαδικασία που δεν έχει οριστεί στην εκφώνηση, θα πρέπει να την ορίσετε με ακρίβεια. (3) Γράψτε αμέσως τα στοιχεία σας στο γραπτό σας. Γραπτό χωρίς στοιχεία στη διάρκεια της εξέτασης μηδενίζεται. Στο τέλος του διαγωνίσματος παραδίδονται ΟΛΕΣ οι κόλλες, περιλαμβανομένου και του πρόχειρου. (4) Επιτρέπεται η χρήση calculator αλλά ΟΧΙ κινητού τηλεφώνου. Κινητό τηλέφωνο που εντοπίζεται να χρησιμοποιείται ή να βρίσκεται πάνω στο έδρανο συνεπάγεται μηδενισμό του γραπτού, ΑΝΕΞΑΡΤΗΤΑ απο τον σκοπό για τον οποίο χρησιμοποιείται(π.χ. για ρολόι). (5) Διάρκεια διαγωνίσματος: 2.5 ώρες. Πρώτη αποχώρηση: 45 λεπτά. Καλή Επιτυχία! ΠΡΟΒΛΗΜΑ 1. Μια χημική διαδικασία παρακολουθείται σε διακριτές χρονικές στιγμές και καταγράφεταιηκατάστασήτης,ηοποίαμπορείναείναιενεργήήόχι.ηκατάστασημεταβάλλεταισύμφωναμεμια Μαρκοβιανή διαδικασία ως εξής: Αν κατά τη στιγμή μιας καταγραφής η διαδικασία είναι ανενεργή τότε μέχρι την επόμενη χρονική στιγμή μπορεί να ενεργοποιηθεί ή να παραμείνει ανενεργή με ίσες πιθανότητες. Αν κατά τη στιγμή καταγραφής είναι ενεργή, τότε μέχρι την επόμενη στιγμή μπορεί να απενεργοποιηθεί με πιθανότητα p, ή να παραμείνει ενεργή με πιθανότητα 1 p. Η πιθανότητα απενεργοποίσης p είναι άγνωστη παράμετρος του συστήματος που χρειάζεται να εκτιμηθεί. Για το σκοπό αυτό η κατάσταση της διαδικασίας καταγράφεται για 1000 διαδοχικές χρονικές στιγμές. Στο διάστημα αυτό παρατηρείται ότι η διαδικασία ήταν ενεργή συνολικά σε 765 στιγμές καταγραφής. Με βάση την πληροφόρηση αυτή ποια είναι μια λογική εκτίμηση για την άγνωστη παράμετρο p; ΠΡΟΒΛΗΜΑ 2. Εστω μια Μαρκοβιανή αλυσίδα διακριτού χρόνου με χώρο καταστάσεων S = {1,2,...,6},καιπίνακαπιθανοτήτωνμετάβασηςενόςβήματοςτονπαρακάτω: 1 2 1 5 1 1 5 0 10 0 0 0 0 0 1 0 P = 0 0 0 0 0 1 2 2 1 5 0 0 0 5 5 1 1 0 2 0 0 2 0 0 0 0 0 0 1 (α) Να βρεθούν και να χαρακτηριστούν οι κλάσεις επικοινωνίας ως προς την επαναληπτικότητα και περιοδικότητα. (β)ναβρεθούνταόρια: lim n p (n) 45,lim n p (n) 46. ΠΡΟΒΛΗΜΑ 3. Θεωρούμε 3 σφαίρες που βρίσκονται κατανεμημένες με τυχαίο τρόπο σε δύο κουτιά, ένα άσπρο και ένα μαύρο. Σε κάθε βήμα της διαδικασίας επιλέγεται μια σφαίρα στην τύχη και μεταφέρεται απότοκουτίπουβρίσκεταιστοάλλοκουτί. Εστω X t οαριθμόςτωνσφαιρώνπουβρίσκονταιστοάσπρο κουτίστοβήμα t. (α)ναδειχθείότιηστοχαστικήδιαδικασία {X t,t = 1,2,...}είναιμαρκοβιανήαλυσίδα,καικαιναβρεθεί ο πίνακας μεταβάσεων ενός βήματος. (β) Να δειχθεί ότι η αλυσίδα είναι αδιαχώριστη και περιοδική. Ποιά είναι η περίοδος; (γ) Να διατυπωθούν και να επιλυθούν οι εξισώσεις στάσιμης κατάστασης.

(δ) Εστωότιγιακάθεσφαίραπουυπάρχειστοάσπροκουτίυπάρχεικόστοςίσομε2ανάβήμαενώγια κάθεσφαίραπουβρίσκεταιστομαύροκουτίυπάρχεικόστοςίσομε1. Ναβρεθείτοαναμενόμενομέσο κόστος ανά βήμα για μεγάλο ορίζοντα. (ε) Προαιρετικό ερώτημα: Επιπλέον βαθμολογία 10/100. Να επαναληφθούν τα ερωτήματα(α)και(γ)γιατηγενικήπερίπτωση N σφαιρών. Ποιαείναιηστάσιμηκατανομήσεαυτήτην περίπτωση; ΠΡΟΒΛΗΜΑ 4. Σε μια δοκιμαστική γυάλινη πλάκα έχει τοποθετηθεί ένα υλικό στο οποίο αναπτύσσονται μικρόβια. Τα μικρόβια αναπτύσσονται σύμφωνα με μια διαδικασία Poisson με ρυθμό θ. Σε τυχαίες χρονικές στιγμές στην πλάκα πέφτει μια υπεριώδης ακτινοβολία που σκοτώνει όλα τα μικρόβια που έχουν αναπτυχθεί. Μετά από κάθε ακτινοβολία τα μικρόβια συνεχίζουν να αναπτύσσονται με τον ίδιο τρόπο όπως και πριν. Ο χρόνος μεταξύ δύο διαδοχικών ακτινοβολιών ακολουθεί εκθετική κατανομή με παράμετρο ζ. Εστω X(t) ο αριθμός μικροβίων στην πλάκα τη χρονική στιγμή t. (α)ναδειχθείότιη{x(t),t 0}είναιΜαρκοβιανήαλυσίδασυνεχούςχρόνουκαιναδοθείτοδιάγραμμα ρυθμών μετάβασης. (β) Να δειχθεί ότι η παραπάνω αλυσίδα είναι αδιαχώριστη και θετικά επαναληπτική και να βρεθεί η οριακή κατανομή.