ΕΠΑΝΑΛΗΠΣΙΚΕ ΑΚΗΕΙ ΜΙΓΑΔΙΚΟΤ-ΟΡΙΑ-ΤΝΕΧΕΙΑ

Σχετικά έγγραφα
ΔΗΜΟΣΘΕΝΕΙΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΙΑΝΙΑΣ. ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ xo ΑΣΚΗΣΕΙΣ Α. ΑΠΛΟΠΟΙΗΣΗ ΤΟΥ ΟΡΟΥ ( x. 2 lim χ + χ 5χ. χ 5χ+ lim. χ χ. lim.

ΤΡΥΦΩΝ ΠΑΥΛΟΣ Μαθηµατικά Γ Λυκείου - Κατεύθυνσης

JEAN-CHARLES BLATZ 02XD RE52755

2. Ιδιότητες Συναρτήσεων

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011

ΛΤΕΙ ΣΩΝ ΑΚΗΕΩΝ ΜΕ ΣΟΝ ΟΡΙΜΟ ΣΗ ΠΑΡΑΓΩΓΟΤ

Μαθηματικά Κατεύθυνσης Γ Λυκείου ( ) ( ) ( ) α β, παραγωγίσιμη στο ( ) β με. β α β α. f β f α. g ( ξ ) = 0, δηλαδή

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

Συναρτήσεις. Ισότητα - Πράξεις Συναρτήσεων Σύνθεση συναρτήσεων Αντίστροφη συνάρτηση. Φιλεκπαιδευτική Εταιρεία Αρσάκεια - Τοσίτσεια Σχολεία

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ - Θ. BOLZANO - Θ. ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ. , ώστε η συνάρτηση. η γραφική της παράσταση να διέρχεται από το σημείο M

Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ


(2 x) ( x 5) 2(2x 11) 1 x 5

Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν

4 ΤΥΠΟΣ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΑΡΤΗΣΕΙΣ Στο δι λανό Έστω η συνάρτηση f(x) = l n Αν f( x) = x+ x + 1. Να α οδείξετε ότι

3. Παράγωγοι. f(χ) f(χ. χ χ. + χ χ. 2. Παρατηρήσεις f(χ0 h) f(χ 0) h Πολλές φορές το χ χ0. συμβολίζεται με Δx ενώ το f(χ0 h) f(χ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ

1. Συναρτήσεις. R όπου για κάθε χ Α, υπάρχει ένα μόνο y Β

d u d dt u e u d dt e u d u 1 u dt e 0 2 e

ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ - Θ. BOLZANO - Θ. ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ. , ώστε η συνάρτηση. æ η γραφική της παράσταση να διέρχεται από το σημείο Mç

Φροντιστήρια. Κεφαλά. ( x) = + ( ) ( ) ( )

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Θετικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ

20/5/ /5/ /5/ /5/2005

1 ο Διαγώνισμα Ύλη: Συναρτήσεις μέχρι και τα ακρότατα

ΑΣΚΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ

Θεωρι α Γραφημα των 9η Δια λεξη

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΑΡΑΓΩΓΟΥΣ

( ) f( x ) ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Επώνυμο: Όνομα: Τμήμα: Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. (ενδεικτικές λύσεις)

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΛΥΚΕΙΟΥ

2. Έστω η συνάρτηση f :[0, 6] με την παρακάτω γραφική παράσταση.

f ( x) x EΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ Συναρτήσεις ( ) 1. Έστω συνάρτηση f γνησίως αύξουσα στο R τέτοια ώστε να ισχύει

α) () z i z iz i Αν z i τότε i( yi) i + + y y y ( y) i i y + 4y + 4, y y 4. Άρα z i. 4 β) ( z) z i z z i z ( i) z, οπότε ( z ) i z z Άρα z z γ) Αν z τ

ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ

( ) x. 1.1 Τριγωνομετρικές Συναρτήσεις. =. Να. 1. Δίνονται οι συναρτήσεις f ( x ) ( x 2

f(x 2) 5 x 1 α) Να αποδείξετε ότι: i) f (3) = 5 και ii) f (3) = 6 x 2 f(x)

ο Θε ος η η µων κα τα φυ γη η και δυ υ υ να α α α µις βο η θο ος ε εν θλι ψε ε ε σι ταις ευ ρου ου ου ου ου σαις η η µα α α ας σφο ο ο ο

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÏÅÖÅ. x και f ( x ) >, τότε f ( ) 0

Κεφάλαιο 3ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 1 ΛΥΣΗ. Η τελευταία σχέση εκφράζει μια εξίσωση κύκλου που επαληθεύεται για w=0.

Οι τα α α α α α α α Κ. ε ε ε ε ε ε ε ε ε Χε ε ε. ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι. ιµ µυ στι κω ω ω ω ω ως ει κο ο

( f( )) ( f( )) 0. f( ) f( ) 0 θέτουμε αντίστοιχα. ΕΞΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ. 2. Μορφή 0 με 0. Λύση: Λύση: 3. Μορφή Λύση: Βρίσκουμε,,

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ

ΦΥΛΛΆΔΙΟ ΑΣΚΉΣΕΩΝ 2 ΣΥΝΑΡΤΗΣΕΙΣ

Πα κ έ τ ο Ε ρ γ α σ ί α ς 4 Α ν ά π τ υ ξ η κ α ι π ρ ο σ α ρ µ ο γ ή έ ν τ υ π ο υ κ α ι η λ ε κ τ ρ ο ν ι κ ο ύ ε κ π α ι δ ε υ τ ι κ ο ύ υ λ ι κ ο

Α όρι μοι και Πο υπ οκότητα 1η Σειρά Γραπτών Ασκήσε ν

ΦΕΒΡΟΥΑΡΙΟΣ Ο συντελεστής διεύθυνσης της εφαπτοµένης της γραφικής παράστασης τη f(x) στο σηµείο x ο είναι f x ) (Μονάδες 4)

Κανονισμός Εκτε εστικής Επιτροπής

1. * Η γραφική παράσταση µιας συνάρτησης f έχει εφαπτοµένη στο x 0 την ευθεία y = αx + β, µε α 0, όταν. είναι + είναι -

Tη λ.: +30 (210) Fax: +30 (210)

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΑΣΚΗΣΕΙΣ (1) Να ανάγετε τους πιο κάτω τριγωνομετρικούς αριθμούς σε τριγωνομετρικούς αριθμούς οξειών γωνιών: α) 160 β) 135 γ) 150 δ) ( 120

2.2. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. e = 2. e, x ο. e f ( ln 2 ) = όταν : 4

Φορέας υλοποίησης: Φ.Μ.Ε. ΑΛΦΑ

47 Να προσδιορίσετε τη συνάρτηση gof, αν α) f και g, β) f ηµ και π γ) f ( ) και g εφ 4 g 48 ίνονται οι συναρτήσεις f + και g Να προσδιορίσετε τις συνα

ικά Κατεύθυνσης Γ Λυκείου 4 ο ΓΛΧ M. Ι. Παπαγρηγοράκης Χανιά [Μαθηματικά] Θετικών Σπουδών Α ΜΕΡΟΣ ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ - ΣΥΝΕΧΕΙΑ

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ

Aριστοβάθμιο ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΟΠ ΓΕΛ 2017 ΘΕΜΑ Α. β) Αντιπαράδειγμα η f(x)= x που είναι συνεχής στο 0 αλλά όχι παραγωγίσιμη σε αυτό αφού Β) Σ

ΚΕΦΑΛΑΙΟ 2ο Μιγαδικοί Αριθμοί (Νο 1) ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α. A1. Έστω μια συνάρτηση f παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο x

FAX : spudonpe@ypepth.gr) Φ. 12 / 600 / /Γ1

1. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους. 2. Να βρεθεί ο λ R ώστε f(x) = ln ( x 2 +2λx+9) να έχει πεδίο ορισμού Α = R

Α Ρ Ι Θ Μ Ο Σ : 6.913

Θεωρι α Γραφημα των 7η Δια λεξη

14/5/ /12/ /5/ /5/2007

1.2.3 ιαρ θρω τι κές πο λι τι κές Σύ στη μα έ λεγ χου της κοι νής α λιευ τι κής πο λι τι κής...37

ΑΣΚΗΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ (1o Γ Λυκείου) να ανήκουν στη γραφική παράσταση της συνάρτησης f( x)

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ

Fax: +30 (210)

1 4 / 1 2 / ποσά σε ευρώ

ΕΡΩΤΗΣΕΙΣ Σ-Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΕΣΠΕΡΙΝΟY. 0, τότε είναι και παραγωγίσιμη στο σημείο αυτό.

Θ έ λ ω ξ ε κ ι ν ώ ν τ α ς ν α σ α ς μ ε τ α φ έ ρ ω α υ τ ό π ο υ μ ο υ ε ί π ε π ρ ι ν α π ό μ ε ρ ι κ ά χ ρ ό ν ι α ο Μ ι χ ά λ η ς

ΘΕΜΑ: ΔΙΑΡΘΡΩΤΙΚΑ ΧΑ ΡΑ ΚΤ ΗΡ ΙΣ ΤΙ ΚΑ ΤΗΣ ΑΝΕΡΓΙΑΣ - ΠΤΥΧΙΑΚΗ ΕΡΓΑ ΣΙ Α - ΚΑΡΑ ΣΑ ΒΒ ΟΓ ΠΟ Υ ΑΝ ΑΣΤΑΣΙΟΣ

Α θ ή ν α, 7 Α π ρ ι λ ί ο υ

(x - 1) 2 + (y + 1) 2 = 8.

ΣΥΝΘΕΤΑ ΘΕΜΑΤΑ ΜΙΓΑΔΙΚΟΙ ΣΥΝΑΡΤΗΣΕΙΣ

. Όλες οι συναρτήσεις δεν μπορούν να παρασταθούν στο καρτεσιανό επίπεδο όπως για παράδειγμα η συνάρτηση του Dirichlet:

ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0.

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Εκθετική - Λογαριθµ ική Συνάρτηση)

Α3. Π ό τε λέμε ότι μια συνάρτηση f είναι παραγωγίσιμη σε ένα κ λειστό δ ιάστη μ α [ α,β]; Μονάδες 5

Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης

Αλγεβρικές Παραστάσεις-Μονώνυμα

Μαθηματικά Προσανατολισμού Γ Λυκείου Τελική Επανάληψη

ΚΑΝΟΝΙΣ ΜΟ Ι ΙΕΞΑΓΩΓΗΣ ΑΓΩΝΩΝ 1 / 8 SCALE IC TRA CK ΕΛ. Μ. Ε

Αναλυτικές λύσεις όλων των θεµάτων στα Μαθηµατικά των Πανελλαδικών εξετάσεων και των Επαναληπτικών εξετάσεων Θεολόγης Καρκαλέτσης

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ

2 ο Διαγώνισμα Ύλη: Συναρτήσεις

1. Για οποιουσδήποτε μιγαδικούς z 1, z 2 με Re (z 1 + z 2 ) = 0, ισχύει: Re (z 1 ) + Re (z 2 ) = 0

ΤΜΗΜΑ ΦΩΚΑ/ΤΕΤΑΡΤΗ

ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΣΤΟ ΘΕΩΡΗΜΑ ROLLE

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

f( ) + f( ) + f( ) + f( ). 4 γ) υπάρχει x 2 (0, 1), ώστε η εφαπτοµένη της γραφικής παράστασης της

αβ (, ) τέτοιος ώστε f(x

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

Τ Ο Υ Π Α Γ Ι Α Τ Η Β Υ Ρ Ω Ν Λ Ο Γ Α Ρ Ι Α Ε Μ Ο Ι Ε Κ Μ Ε Τ Α Λ Ε Υ Ε Ε Ω Ν ΚΑ Ι Ο Λ Ο Γ Α Ρ Ι Α Ε Μ Ο Ε Α Π Ο Τ Ε Λ Ε Ε Μ Α Τ Α Χ Ρ Η Ε Ε Ω Ε

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

Transcript:

(ΠΕΡΙΕΧΕΙ ΑΚΗΕΙ ΚΑΙ ΑΠΟ ΣΗΝ ΣΡΑΠΕΖΑ ΘΕΜΑΣΩΝ ΣΗ Ε.Μ.Ε) ΑΚΗΗ 1 Έςτω ςυνεήσ ςυνάρτηςη :RR, με (0)=2 η οποία ικανοποιεί τη ςέςη ( ) 4 = 6 ια κά ε R α) Να βρείτε τισ τιμέσ (2) και (-2) β) Να απο είξετε τι υπάρει (0,2) ςτε ( ) = 0. Να απο είξετε τι το ί ιο ις ει και ια το ιάςτημα ( 2,0) ) Να απο είξετε τι 2 = 2 = 0 4 5 ) Αν = 4, να βρείτε το 1 ( ) ε) Να απο είξετε τι η εξίςωςη ( ) 1 = 0 έει ο τουλάιςτον ρί εσ ςτο 2, 2 ΑΚΗΗ 2 Δίνεται η ςυνάρτηςη = 1 και οι μι α ικοί αρι μοί z=, =, 1. Να βρείτε τουσ πρα ματικο σ αρι μο σ ςτε να ις ει z= 2. Αν =-1, να είξετε τι οι εικ νεσ των μι α ικ ν z,, μα ί μα την αρή των αξ νων ςηματί ουν ορ ο νιο τρί ωνο ΑΚΗΗ 3 1 Δίνεται η ςυνεήσ και νηςίωσ φ ίνουςα ςυνάρτηςη : R R. Αν = 1, τ τε: ( 1) α) Να απο είξετε τι η ραφική παράςταςη τησ ςυνάρτηςησ ιέρεται απ την αρή των αξ νων (ημ) β) να βρείτε το ) Να απο είξετε τι η ραφική παράςταςη τησ ςυνάρτηςησ τέμνει την ευ εία = 1 ςε ένα ακριβ σ ςημείο (, ) με (0,1) ΑΚΗΗ 4 Δί ονται οι μι α ικοί αρι μοί z και και η ςυνάρτηςη = z,. 1) Να απο είξετε τι η αντιςτρέφεται 2) Εάν η εξίςωςη = έει μονα ική λ ςη, να υπολο ίςετε τη ιαφορά - z. 3) Να απο είξετε τι +z ΑΚΗΗ 5 Έςτω η ςυνεήσ ςυνάρτηςη : R R που ικανοποιεί τη ςέςη = ια κά ε R. α) Να λ ςετε την εξίςωςη = 0 β) Να απο είξετε τι η ιατηρεί ςτα ερ ςε κα ένα απ τα ιαςτήματα (, 0) και (0, ) ) Αν ( 2) 0 και (2) 0, να απο είξετε τι = 1

) Να απο είξετε τι η αντιςτρέφεται και να ορίςετε την ε) Να βρείτε τα κοινά ςημεία των ραφικ ν παραςτάςεων των ςυναρτήςεων και ΑΚΗΗ 6 Δί ονται οι μι α ικοί αρι μοί z και των οποίων οι εικ νεσ ςτο μι α ικ επίπε ο είναι Α, Β αντίςτοια. Δίνεται ακ μα η ςυνάρτηςη με τ πο = z, 0 z, 0 ςυνευ ειακά, (Ο είναι η αρή των αξ νων). Εάν η f ςυνεήσ, να απο είξετε τι τα ςημεία Α,Β,Ο είναι ΑΚΗΗ 7 Δίνεται ςυνεήσ ςυνάρτηςη : R R και 1 2 έτςι ςτε να ις ουν (1) ημ = 2 ια κά ε R (2) 2 =, με = 2 1 α) Να απο είξετε τι: 1) 2 = 2 1 και 2) Οι εικ νεσ των μι α ικ ν αρι μ ν ανήκουν ςτον κ κλο = 1. (ημ) β) Να βρείτε το ) Να απο είξετε τι η ςυνάρτηςη = ιατηρεί ςτα ερ το πρ ςημο ςε κα ένα απ τα ιαςτήματα (, 0)και (0, ) ) Να βρείτε λουσ τουσ υνατο σ τ πουσ τησ ε) Να απο είξετε τι η εξίςωςη ( 3 4 5) = 10, έει μια τουλάιςτον ρί α ςτο ιάςτημα 1,2. ΑΚΗΗ 8 Δί ονται οι μι α ικοί αρι μοί z και = 2 z, 0 3 z, 0 και η ςυνάρτηςη Εάν είναι νωςτ τι υπάρει το, να απο είξετε τι ο αρι μ σ z είναι πρα ματικ σ ΑΚΗΗ 9 Έςτω οι μη μη ενικοί μι α ικοί αρι μοί,. Αν = 1 3 και η εικ να Α του μι α ικο αρι μο, ςτο μι α ικ επίπε ο ανήκει ςτο κ κλο κέντρου Ο(0,0)και ακτίνα ρ = 2, τ τε: α) Να απο είξετε τι η εικ να Β του μι α ικο ανήκει ςε μονα ιαίο κ κλο 2

β) Να απο είξετε τι = 3 και = 7 ) Να απο είξετε τι υπάρει ξ (0,1) τέτοιο ςτε να ις ει (ξ 2) ξ ξ = 2 (3 4) 2010 ) Αν = κ, με κ R, να απο είξετε τι 3 κ 7 ημ ΑΚΗΗ 10 Εςτω : R R ςυνεήσ ςυνάρτηςη τέτοια ςτε 2 = 3ημ ια κά ε R. Αν = α τ τε: α) Να είξετε τι α=1 (ημ) ( ) β) Να βρείτε τα ρια 1) 2) 3) 3 2 ΑΚΗΗ 11 Δί ονται ο ςυναρτήςεισ,g οριςμένεσ ςτο, και οι μι α ικοί z= g με. Ακ μα ις ει z 1, να βρείτε τα ρια και g ΑΚΗΗ 12 Εςτω : R R ςυνεήσ ςυνάρτηςη και νηςίωσ α ξουςα. Αν α) Να βρείτε το ριο (ημ) ςυν 1 = 1 β) Να είξετε τι (1) = 0 ) Να βρείτε την τιμή του κ, ςτε η ςυνάρτηςη = 1, 1 να είναι ςυνεήσ ςτο R κ, = 1 ) Για την τιμή του κ = 1 να είξετε τι η ραφική παράςταςη τησ τέμνει την ευ εία = 2 ςε ένα τουλάιςτον ςημείο με τετμημένη (0,1). ΑΚΗΗ 13 Να προς ιορίςετε τον εωμετρικ τ πο των μι α ικ ν z, ια τουσ οποίουσ το ριο z 4 z 4 5 5 1 υπάρει και είναι πρα ματικ σ αρι μ σ. ΑΚΗΗ 14 Εςτω : R R ςυνάρτηςη τέτοια ςτε 1 ια κά ε R. 3

α) Να είξετε τι = 1 β) Να βρείτε τα ρια 1), ν Ν 2) 1 3) 2 1 ΑΚΗΑΗ 15 Δί ονται ο ςυναρτήςεισ,g οριςμένεσ ςτο, και οι μι α ικοί z= g και ο = ια κά ε. Αν z =Re να απο είξετε τι οι ςυναρτήςεισ και g είναι ςυνεείσ ςτα ςημεία = 1 και = 1 ΑΚΗΗ 16 Έςτω ςυνάρτηςη ςυνεήσ ςτο R ια την οποία ις ει: α) Να είξετε τι β) Να βρείτε το (1) ) Να είξετε τι υπάρει 1 ημ 1 = 0 = ημ 1, ια κά ε R π π 6, π π 2 τέτοιο ςτε ( ) = 0 ΑΚΗΗ 17 Δί εται μία ςυνάρτηςη ςυνεήσ ςτο ιάςτημα α,β και το πολυ νυμο Ρ(z)=z (α)z (β)z 1, z. Αν ο αρι μ σ 1 είναι ρί α του πολυων μου, να απο είξετε τι υπάρει τουλάιςτον ένα (α,β) ςτε να ις ει ( )=0 ΑΚΗΗ 18 Δίνεται ςυνάρτηςη νηςίωσ α ξουςα ςτο R και (-1) 0 και ο μι α ικ σ αρι μ σ ( 1) (0) 4 3 = 2 (1), ια τον οποίο ις ει τι = 1 2 3. Να απο είξετε τι α) ( 1) (0) (1) = 8 β) 2R ( ) = ) ( 1) 2 (1) ) η αντιςτρέφεται και ις ει 1 0 ΑΚΗΗ 19 Να απο είξετε τι η εξίςωςη = 1, με ν, έει το πολ 2ν-2 το πλή οσ λ ςεισ ςτο ς νολο -R. 4

ΑΚΗΗ 20 Εςτω τέτοιοσ ςτε α β = 0, που α, β, R με α β. Να απο είξετε τι: α) α β = 0 β) R ΑΚΗΗ 21 Αν ο μι α ικ σ επαλη ε ει τη ςέςη 2 5 7 = 0, τ τε: α) Να απο είξετε τι: 1) = = 1 2) = 1 3) Να βρείτε τον μι α ικ αρι μ ΑΚΗΗ 22 Δίνεται μια ςυνάρτηςη ςυνεήσ ςτο α,β και μια ςυνάρτηςη g ια την οποία (α 1 )( β) (β 1 )( α) ις ει g = (α β ) ια κά ε α, β. α β Αν η εξίςωςη (β) -2 (α)z (β)=0 έει ο λ ςεισ ςτο -, να είξετε τι η εξίςωςη g=0 έει μία τουλάιςτον λ ςη ςτο (α,β) ΑΚΗΗ 23 Δίνονται ο μι α ικοί αρι μοί z, και η ςυνάρτηςη = z z. Να απο είξετε τι η εξίςωςη = 0 έει μία τουλάιςτον λ ςη ςτο -1,1] ΑΚΗΗ 24 Δίνεται ένασ μη μη ενικ σ μι α ικ σ z και μια ςυνάρτηςη ςυνεήσ ςτο. Αν υπάρουν τα ( ) ( ) ςτο, να απο είξετε τι υπάρει τουλάιςτον ένα [0,1] ςτε ( )=0 και ΑΚΗΗ 25 Δίνεται η ςυνάρτηςη = z ( z 1 1) 7, ν, z. Αν ια τον μι α ικ z ις ει z-1 =4- z+1, τ τε 1) Να βρείτε το εωμετρικ τ πο των εικ νων του z 2) Να απο είξετε τι z z 1 = 7 3) Να απο είξετε τι η αντιςτρέφεται 4) Να βρείτε τα κοινά ςημεία των ραφικ ν παραςτάςεων των και 5

6