ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 0 ΘΕΜΑΤΑ Α Θέµα ο. Να βρεθεί (α) η γενική λύση yy() της διαφορικής εξίσωσης y' y + καθώς και (β) η µερική λύση που διέρχεται από το σηµείο y(/). (γ) Από ποια σηµεία του επιπέδου y διέρχονται δύο λύσεις; Η Ε είναι πρώτης τάξης της µορφής y f(α+βy+γ) και ορίζεται στον τόπο y + 0. Θέτουµε z y + z' y' y' z' + και η Ε γίνεται dz z' z d z + c () z Θα πρέπει να + c> 0 ή < c (). Αντικαθιστώντας το z στην () βρίσκουµε c y +, < c (3) β) Για /, y, η (3) µας δίνει c 5/ ή c 3/ Λόγω της () πρέπει να πάρουµε την περίπτωση c5/. Η (3) µε c5/ είναι η ζητούµενη µερική λύση. γ) Εφαρµόζουµε το θεώρηµα του Cauchy. Η Ε ορίζεται στον τόπο y + 0. Όµως η f(, y) ( y + ) y y y + δεν ορίζεται για y + 0και συνεπώς από τα σηµεία αυτά µπορούν να περνούν περισσότερες από µια λύσεις. Πράγµατι διέρχεται πάντα µια λύση (3) καθώς και η ιδιάζουσα λύση y. Θέµα ο. Να βρεθεί η λύση της Ε ( + y ) y'' ( + ( y') ) y' που τέµνει τον άξονα Οy στο y µε γωνία 45 ο. Η Ε είναι µη γραµµική ης τάξης στην οποία λείπει η ανεξάρτητη µεταβλητή. Θέτουµε
dp dp dy dp y' p, y'' p d dy d dy και η Ε γίνεται. p 0 η& dp ( + y ) p ( + p ) p dp dy ( + y ) + p dy Η p 0δεν συµφωνεί µε τις αρχικές συνθήκες που δίνονται. Η η εξίσωση µας δίνει dp dy tan p tan y+ c () + p + y Επειδή για y είναι και p έχουµε c0 και άρα py, δηλαδή dy dy y d y ce () d y Για 0 είναι y άρα c και η ζητούµενη λύση είναι η y e Θέµα 3 ο. Θεωρούµε την φθίνουσα αρµονική ταλάντωση, που περιγράφεται από την.ε m && + & + k 0, όπου mk,, είναι θετικές σταθερές. de α) Αν E m& + k είναι η ενέργεια του αρµονικού ταλαντωτή, δείξτε ότι 0 dt < για & t. ώστε τη φυσική σηµασία του αποτελέσµατος. () 0 β) Να βρεθεί η γενική λύση του ταλαντωτή, µε mk και συντελεστή αντίστασης >0, && y+ y& + y 0 (Να διακρίνετε τις διαφορετικές περιπτώσεις που προκύπτουν) α) Η Ε είναι οµογενής γραµµική µε σταθερούς συντελεστές. Το χαρακτηριστικό πολυώνυµο και οι ρίζες του είναι οι ± 4 ρ + ρ+ 0 ρ, ιακρίνουµε τις περιπτώσεις i) Μεγάλη αντίσταση >. Οι ρίζες είναι πραγµατικές και αρνητικές και προκύπτει η γενική λύση t t y ce ρ ρ + ce ii) Κρίσιµη τιµή αντίστασης. Έχουµε µια διπλή ρίζα ρ- και η γενική λύση που αντιστοιχεί θα είναι η t t y ce + c te iii) Μικρή αντίσταση <. Είναι 4< 0και οι ρίζες γράφονται ως συζυγείς µιγαδικές
και η γενική λύση θα είναι η ρ ω ω, + i, 4 t t cosω y ce t+ c e sinωt β) Είναι E & m &&& + k & (), ισχύει όµως και m && & k 0 (). Από τις () και () έχουµε ( ) E& & & + k + k& & < 0 Η εξίσωση (3) δείχνει ότι η συνολική ενέργεια στην φθίνουσα αρµονική ταλάντωση µειώνεται µε τον χρόνο. (3) Θέµα 4 ο. Η γραµµική πυκνότητα ρ ρ(, t) ενός αερίου που κινείται σε λεπτό σωλήνα Ο σωλήνα µε ταχύτητα υ περιγράφεται από την εξίσωση συνέχειας. ρ + υ ρ + ρ υ 0 t Θεωρούµε έναν τέτοιο λεπτό σωλήνα όπου τα σωµατίδια κινούνται µε ταχύτητα 3/ υ a t, όπου a 3 sec. Επίσης µετρούµε συνεχώς την πυκνότητα ρ στο και τη βρίσκουµε να αυξάνει µε το χρόνο ως ρkt 3 3, όπου k Kgrm sec. Να βρεθεί η συνάρτηση της πυκνότητας ρ ρ(, t). Αντικαθιστώντας την ταχύτητα στην εξίσωση συνέχειας παίρνουµε ρ ρ ρ t t 0 η ρ + + ρ & + t t 3 3 t 3 3 tρ Η παραπάνω ΕΜΠ για την συνάρτηση ρ ρ(, t) είναι γραµµική ης τάξης µε σύστηµα βοηθητικών εξισώσεων dt 3d 3d ρ t tρ Είναι λοιπόν dt 3 3/ ln () d d tdt t c t 3 3d 3d d d ln ln c c () t ρ ρ ρ ρ tρ ρ + Αναζητούµε µια µερική λύση της ΕΜΠ για την οποία ισχύει
3, ρ t Αντικαθιστώντας τις παραπάνω στις () και () βρίσκουµε 3/ 3 t c και t c άρα c c και η ζητούµενη µερική λύση είναι η ( t ln ) ρ ρ ( t ln ) 3/ 3/ ΘΕΜΑΤΑ Β Θέµα ο. Να βρεθεί (α) η γενική λύση yy() της διαφορικής εξίσωσης y' + y + καθώς και (β) η µερική λύση που διέρχεται από το σηµείο y(0)3/. (γ) Από ποια σηµεία του επιπέδου y διέρχονται δύο λύσεις;. Παρόµοια µε το θέµα Α βρίσκουµε ( + c) y + /, c, y + / 0 Θέµα ο. Να βρεθεί η λύση της διαφορικής εξίσωσης y'' yy' 0 που εφάπτεται στην ευθεία y / στο σηµείο (0,0).. Παρόµοια µε το θέµα Α βρίσκουµε y tan Θέµα 3 ο. Θεωρούµε την φθίνουσα αρµονική ταλάντωση, που περιγράφεται από την.ε m && + & + k 0, όπου mk,, είναι θετικές σταθερές. de α) Αν E m& + k είναι η ενέργεια του αρµονικού ταλαντωτή, δείξτε ότι 0 dt < για & t. ώστε τη φυσική σηµασία του αποτελέσµατος. () 0 β) Να βρεθεί η γενική λύση του ταλαντωτή, µε m και αντίσταση, && y+ y& + ky 0 (Να διακρίνετε τις διαφορετικές περιπτώσεις που προκύπτουν)
α) όπως στο Α. ± 4k β) Παρόµοια µε το Α βρίσκουµε ρ, t t i) Μεγάλη αντίσταση για k</4. y ce ρ ρ + c e ii) Κρίσιµη τιµή αντίστασης για k/4. y ce + c te t/ t/ iii) Μικρή αντίσταση για k>/4. y ce cosωt+ c e sin ωt, ω 4 k t/ t/ Θέµα 4 ο. Η γραµµική πυκνότητα ρ ρ(, t) ενός αερίου που κινείται σε λεπτό σωλήνα Ο σωλήνα µε ταχύτητα υ περιγράφεται από την εξίσωση συνέχειας. ρ + υ ρ + ρ υ 0 t Θεωρούµε έναν τέτοιο λεπτό σωλήνα όπου τα σωµατίδια κινούνται µε ταχύτητα υ at, όπου a sec. Επίσης µετρούµε συνεχώς την πυκνότητα ρ στο και τη βρίσκουµε να αυξάνει µε το χρόνο ως ρkt 4 4, όπου k Kgrm sec. Να βρεθεί η συνάρτηση της πυκνότητας ρ ρ(, t).. Παρόµοια µε το θέµα Α βρίσκουµε ρ ( t ln ).