Strong global attractors for non-damping weak dissipative abstract evolution equations

Σχετικά έγγραφα
High order interpolation function for surface contact problem

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Prey-Taxis Holling-Tanner

Single-value extension property for anti-diagonal operator matrices and their square

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

. (1) 2c Bahri- Bahri-Coron u = u 4/(N 2) u

u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) XJ130246).

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

I. Μητρώο Εξωτερικών Μελών της ημεδαπής για το γνωστικό αντικείμενο «Μη Γραμμικές Ελλειπτικές Διαφορικές Εξισώσεις»

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

PULLBACK D-ATTRACTORS FOR THE NON-AUTONOMOUS NEWTON-BOUSSINESQ EQUATION IN TWO-DIMENSIONAL BOUNDED DOMAIN. Xue-Li Song.

L p approach to free boundary problems of the Navier-Stokes equation

Journal of East China Normal University (Natural Science) DGH. Stability of peakons for the DGH equation. CHEN Hui-ping

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM

Bulletin of the. Iranian Mathematical Society

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

(II) * PACS: a, Hj 300. ) [6 9] ) [10 23] ) [26 30]. . Deng [24,25] Acta Phys. Sin. Vol. 61, No. 15 (2012)

New Soliton and Periodic Solutions for Nonlinear Wave Equation in Finite Deformation Elastic Rod. 1 Introduction

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

Congruence Classes of Invertible Matrices of Order 3 over F 2

EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A

Solvability of Brinkman-Forchheimer equations of flow in double-diffusive convection

Markov chains model reduction

Second Order Partial Differential Equations

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

ER-Tree (Extended R*-Tree)

Τεχνική Έκθεση Συνοπτική παρουσίαση... 3

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Antimicrobial Ability of Limonene, a Natural and Active Monoterpene

Envelope Periodic Solutions to Coupled Nonlinear Equations

W, W, W(r) = (1/4)(r 2 1), W (r) = r 3 r

Asymptotic stability of boundary layers to the Euler-Poisson equation arising in plasma physics. Based on joint research with

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

DOI /J. 1SSN

Quick algorithm f or computing core attribute

LAD Estimation for Time Series Models With Finite and Infinite Variance

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

D Alembert s Solution to the Wave Equation

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Resilient static output feedback robust H control for controlled positive systems

Research on vehicle routing problem with stochastic demand and PSO2DP algorithm with Inver2over operator

Local Fractional Variational Iteration Algorithms for the Parabolic Fokker-Planck Equation Defined on Cantor Sets

The Pohozaev identity for the fractional Laplacian

= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

A summation formula ramified with hypergeometric function and involving recurrence relation

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

DECAY RATES FOR SOLUTIONS TO THERMOELASTIC BRESSE SYSTEMS OF TYPES I AND III

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

Spectrum Representation (5A) Young Won Lim 11/3/16

Adachi-Tamura [4] [5] Gérard- Laba Adachi [1] 1

Decision making under model uncertainty: Hamilton-Jacobi-Belman-Isaacs approach, weak solutions and applications in Economics and Finance

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

[I2], [IK1], [IK2], [AI], [AIK], [INA], [IN], [IK2], [IA1], [I3], [IKP], [BIK], [IA2], [KB]

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

Fundamentals of Signals, Systems and Filtering

Global solutions and exponential decay for a nonlinear coupled system of beam equations of Kirchhoff type with memory in a domain with moving boundary

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan

Space-Time Symmetries

Vol. 41 No Journal of Jiangxi Normal University Natural Science May A DOI /j. cnki. issn

Durbin-Levinson recursive method

Probabilistic Approach to Robust Optimization

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Research Article Existence of Positive Solutions for m-point Boundary Value Problems on Time Scales

Approximation Expressions for the Temperature Integral

Diderot (Paris VII) les caractères des groupes de Lie résolubles

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Sampling Basics (1B) Young Won Lim 9/21/13

Mesh Parameterization: Theory and Practice

LTI Systems (1A) Young Won Lim 3/21/15

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

Motion analysis and simulation of a stratospheric airship

Ηλεκτρονικοί Υπολογιστές IV

Lotka Volterra. Stability Analysis of Delayed Periodic Lotka Volterra Systems

ΑΠΟΣΠΑΣΜΑ Π Ρ Α Κ Τ Ι Κ ΟΥ 3 ΤΟΥ ΣΥΜΒΟΥΛΙΟΥ ΣΧΟΛΗΣ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ

Higher spin gauge theories and their CFT duals

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

Adaptive grouping difference variation wolf pack algorithm

Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Ελαφρές κυψελωτές πλάκες - ένα νέο προϊόν για την επιπλοποιία και ξυλουργική. ΒΑΣΙΛΕΙΟΥ ΒΑΣΙΛΕΙΟΣ και ΜΠΑΡΜΠΟΥΤΗΣ ΙΩΑΝΝΗΣ

Study of limit cycles for some non-smooth Liénard systems

Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul. 2016

Γεώργιος Ακρίβης. Προσωπικά στοιχεία. Εκπαίδευση. Ακαδημαϊκές Θέσεις. Ηράκλειο. Country, Ισπανία. Λευκωσία, Κύπρος. Rennes, Γαλλία.

A research on the influence of dummy activity on float in an AOA network and its amendments

Transcript:

17 3 Journal of East China Normal University Natural Science No. Mar. 17 : 1-564117-8-1,, 737 :,, V θ V θ L µr + ; V θ. : ; ; : O175.9 : A DOI: 1.3969/j.issn.1-5641.17.. Strong global attractors for non-amping weak issipative abstract evolution equations ZHANG Yu-bao, WANG Xuan College of Mathematics an Statistics, Northwest Normal University, Lanzhou 737, China Abstract: In this paper, by using the theory of semigroup, contractive function an the metho of efining functionals, the existence of the global attractors for nonamping weak issipative abstract evolution equations with strong solutions in the space V θ V θ L µr + ; V θ was obtaine when the nonlinear term satisfies the weaker issipative conition. Key wors: abstract evolution equation; contractive function; global attractor R 3, αu t t u tt t + ka θ ut + k sa θ ut ss + gut = f, x, t R +, ux, t =, x, t R,.1 ux, t = u x, t, x, t, : 16-3-8 : 1136153; 145RJZA11 :,,,. E-mail: blcx7@gmail.com. :,,,,. E-mail: wangxuan@nwnu.eu.cn.

, : 9. θ >, k, k > s R +, k s. ux, t,,, u = ux,, x..1 [1-], [3].,.,,.,,,., V θ V θ L µr + ; V θ. u tt t + αu t t + ka θ ut + k sa θ ut ss + gut = f, x, t R +,.. A =, θ = 1,, [4-5],. [6]., k s, [7], g., gu = sin u, Sine-Goron [8]. A =, θ =, [9], u.,. [1], María Anguiano. [11],. [1],,..1, [13],, : C >, g C 1 R lim inf y y gss ygy C y y, liminf gss y y. [13],, g 1.5,.,,.,, u t + σu ;,,, Soblev, C.1..1 [14] Banach X {St} t C, ε > B X, tb > X 1, {PStx x B, t tb}, I PStx < ε, t tb, x B,

1 17 P : X X 1.,, V θ V θ L µr + ; V θ.3. : 1,, ;, V θ V θ L µr + ; V θ,,. 1 H = L, Au, v = bu, v, u, v H, bu, v H,. A H, DA H. {λ j } j N, {ω j } j N A, {ω j } j N H, Aω j = λ j ω j, < λ 1 λ λ j, λ j j., A A θ, DA θ H. DA = H, DA θ = { V θ, DA θ = Vθ, } DAθ = V θ. V θ = u H : λ θ j u, ω j <. : u, v θ = j=1 λ θ ju, ω j v, ω j, u θ = u, u θ, u, v V θ. j=1 Hilbert, A r DA s DA s r, s, r R. A, A θ. θ 1 θ, DA θ1 DA θ, V θ H H. :V θ V θ H, V θ V θ H = H Vθ,, H, Vθ H, V θ., H, V θ V θ : u, v = u vx, u = u x, u, v H; u, v θ = u, v θ = A θ u A θ vx, u θ = A θ u A θ vx, u θ = A θ u x, u, v V θ ; A θ u x, u, v V θ. L µr + ; V θ R + V θ Hilbert, : ϕ, ψ µ,θ = µs A θ ϕa θ ψxs, ϕ µ,θ = Hilbert H = V θ V θ L µr + ; V θ, : µs A θ ϕ xs. z H = u, u t, η t H = 1 u θ + u t θ + η t µ,θ.

, : 11 Poincaré, λ > λ v λ v θ v θ, v V θ. 1.1 η t s = η t x, s = ux, t ux, t s, s R +. µs = k s k = 1,.1 : u tt t + A θ ut + µsa θ η t ss + gut = f, ηts t = ηss t + u t t. - : ux, t =, η t x, s =, x, t, ux, = u x, u t x, = u t x, x, η x, s = u x ux, s, x, s R +. 1. 1.3 µs : h 1 µs C 1 R + L 1 R +, µs µ s, s R + ; h µss = k > ; h 3 δ >, µ s + δµs, s R + ; h 4 s >, M >, µ s L, s µ s + Mµs, s s. g :g C R, R, : g y C1 + y, y R, 1.4 gy lim inf > λ. 1.5 y + y, l >, g : 1.1 [15] g y < l. 1.6 I = [, T ], µ h 1 h 3, T >, η t s CI; L µ R+ ; V θ, δ >, η t s, ηss t µ,θ δ ηt s µ,θ. 1.1 [7,16] X Banach, B X. X X φ, B B, {x n } n=1 B,, {x n}, lim n CB B B. lim φx n, x m =, m

1 17 1. [7-8,16-17] {St} t Banach X,, B, ε >, T = TB, ε φ T, CB, STx STy ε + φ T x, y, x, y B. {St} t X, {y n } n=1 X {t n }, n, {St n y n } n=1 X. 1. [14] X Banach {St} t X. {St} t X, {St} t : 1S = I ; StSs = St + s, t, s ; 3 t n t, x n x, St n x n Stx. 1.3 [14] X, Y Banach, X, Y, X Y Y X, i : X Y i : Y X. {St} t X Y,, Y. X B, {St} t SB, SB = {x B Stx B, t }. 1.4 [8,14] X Banach, {St} t X. {St} t 1 {St} t B X; {St} t..1, 1. 1.3..1 I = [, T ], T >, f V θ. z H, zt = ut, u t t, η t s 1. 1.3 I, zt 1., ut L I; V θ, u t t L I; V θ L I; V θ, η t s L I; L µr + ; V θ, ηts t + ηss t L I; L µr + ; V θ L I; L µr + ; V θ.,, Galerkin, 1. 1.3,..1, h 1 h 4 1.4 1.6, g CV θ ; V θ, f V θ, T > z H, 1. 1.3 zt = ut, u t t, η t s, zt L [, T ]; H..1, H St : z zt, t R +, {St} t, {St} t 1. 1.3 H.., 1. 1.3. N 1 >

, : 13, ν 1 >, Et = 1 ut θ + u tt θ + ηt s µ,θ, Ft = u t t µsa θ η t ssx, Gut = ut gssx, J t = N 1 Et + N 1 A θ Gut + Ft + ν 1 A θ utu t tx + C, C >, J t., N 1, ν 1 C 1 >, C >, 1 C 1 Et J t C 1 Et + C..1.1 zt = ut, u t t, η t s 1. 1.3. f V θ, g CV θ ; V θ 1.4 1.6, h 1 h 4, Q >, B H, t = t B H, zt H = 1 ut θ + u tt θ + ηt s µ,θ Q, t t. A θ u t t 1. H, 1.1, t Et + Aθ Gut + δ ηt s µ,θ f θ u t t θ k 4N 1 u t t θ + N 1 k f θ.. Ft t Ft = u tt t µsa θ η t ssx u t t µsa θ ηt t ssx..3.3, 1. u tt t µsa θ η t ssx = A θ ut µsa θ η t ssx x + µsa θ η ss t + gut µsa θ η t ssx f µsa θ η t ssx..4.4 1 >, Young A θ ut µsa θ η t x ssx + µsa θ η ss t 1 ut θ + k 1 + 1 η t s µ,θ..5 1

14 17.4, 1.1 gut µsa θ η t ssx k 1 l ut + g µs A θ η t s s 1 1 ut θ + + k l λ η t s µ,θ + k 1 g..6.4, 1.1, Cauchy Young f µsa θ η t ssx k 1 f η t s µ,θ 1 ηt s µ,θ + k f θ λ..7.3, h h 4 1.1 u t t µsa θ ηt t ssx = u t t µsa θ u t t η t sssx = k u t t s θ u t t µ sa θ η t ss + µ sa θ η t ss x s k u t t s θ + µ s u t t µ 1 s µ 1 s A θ η t s s + M µs A θ η t s s x s k u t t µ s 1 θ + µs s + Mk 1 u t t k u tt θ + 1 λ k s.3.8 1 µs A θ η t s s µ s µs s 1 + Mk 1 η t s µ,θ..8 t Ft 1 ut θ k u tt θ + C 4 η t s µ,θ + k λ f θ + k g,.9 C 4 = k + 1 + k + k l 1 λ + 1 s µ s 1 1 λ k µs s. + Mk 1 [15], 1.1 1.5 gut, A θ ut λ γ ut θ 1 γ ut θ λ,.1 γ >., 1..1 A θ utu t tx u t t θ t γ ut θ λ + λ k γ ηt s µ,θ + 1 γ f θ..11..9.11 J t N 1δ t + C 4 + ν 1λ k γ + k 4 + ν 1 η t s µ,θ + 1 γν 1 ut θ λ u t t θ + N 1 k f θ + k λ f θ + k g + ν 1 γ f θ. x 1 x

, : 15 1 = γν 1 4λ, N 1, ν 1, { N1 δ ε 1 = min.1 C 4 ν 1λ k γ Gronwall. N 1 δ C 4 ν 1λ k γ J t t >, k 4 ν 1 >., k 4 ν 1, γν } 1 N, C 5 = 1 + k + ν 1 f θ + k 4λ k λ γ g, J t t + ε 1 Et C 5. + ε 1 C 1 J t C 5 + ε 1C C 1. J t J e ε 1 C 1 t + C 1C 5 ε 1 + C..1,. f V θ, g CV θ ; V θ 1.4 1.6, h 1 h 4, 1. 1.3 {St} t B. B H, t = t B H, StB B..3, {St} t.. f V θ, g CV θ ; V θ 1.4 1.5, h 1 h 4, 1. 1.3 {St} t H. z n t = u n t, u nt t, ηn t s z mt = u m t, u mt t, ηm t s 1. 1.3, z n = u n, u nt, η n z m = u m, u mt, η m. ωt = u nt u m t, ω t t = u nt t u mt t, ξ t s = ηn t s ηt m s, 1. ω tt t + A θ ωt + µsa θ ξ t ss + gu n t gu m t =,.1 ξt ts = ω tt ξs ts. N >, ν >, E ω t = 1 ωt θ + ω t t θ + ξ t s µ,θ, G ω t = t F ω t = A θ ω s gu n s gu m ssx, ω t t µsa θ ξ t ssx, J ω t = N E ω t + N G ω t + F ω t + ν A θ ωtω t tx + C ω,

16 17 C ω >, J ω t. N ν C 6, C 7, 1 C 6 E ω t J ω t C 6 E ω t + C 7. A θ ω t t.1 H, 1.1, F ω t, t F ωt = ω tt t t E ωt + G ω t + δ ξt s µ,θ..13.14,.1 ω tt t µsa θ ξ t ssx = µsa θ ξ t ssx ω t t + A θ ωt µsa θ ξ t ssx µsa θ ξ ss t x + gu n t gu m t µsa θ ξt t ssx..14 µsa θ ξ t ssx..15.15, >, Cauchy Young, A θ ωt ωt θ + k µsa θ ξ t ssx + µsa θ ξ ss t x 1 + 1 ξ t s µ,θ..16.15, 1.1 1.4 C 8 = C gu n t gu m t C 1 + u n t + u m t ωt µsa θ ξ t ssx µsa θ ξ t ssx C 8 ωt θ + k 4λ ξ t s µ,θ,.17 1 + 4Q λ.

, : 17.14, h h 4 1.1, ω t t µsa θ ξtssx t = ω t t = k ω t t θ k ω t t θ + k ω t t θ + µsa θ ω t t ξ t s ssx s ω t t µ sa θ ξ t ss + s ω t t s µ sa θ ξ t ss x s µ s µ 1 s µ 1 s A θ ξ t s s + M µ s 1 µs s 1 + Mk k ω tt θ + 1 s µ s 1 λ k µs s.14.18 + Mk 1 ω t t µs A θ ξ t s s x 1 µs A θ ξ t s s x ξ t s µ,θ..18 t F ωt ωt θ k ω tt θ + C 9 ξ t s µ,θ + C 8 ωt θ,.19 C 9 = k + k + k + 1 s µ s 1 4λ λ k µs s. + Mk 1,.1 1.1, A θ ωtω t tx ω t t θ 1 t ωt θ + k ξt s µ,θ + C 8 ωt θ...13.19., J ω t t N δ + C 9 ν k C 8 + ν C 8 ωt θ, J ω t t N δ + C 9 ν k ν k 8λ N + ν 4N F ω t + ν 4 G ωt + ν 4N C 1 = C 8 + 9ν C 8 8 + ν3 8N. ξ t s µ,θ + ν ξ t s µ,θ + ν = ν, N > 1, ν < 1, N δ C 9 ν k ν k 8λ N ωt θ + k ν ω t t θ ωt θ + k 3ν ω t t θ A θ ωtω t tx + ν 4 C ω C 1 ωt θ + ν 4 C ω,.1 ν 4, k 3ν ν 4.

18 17 ε = ν 4N,.1 t J ωt + ε J ω t C 1 ωt θ + ν 4 C ω, e εt, t [, T ], ǫ [, T ], t > ǫ, C 11 = C 11 ǫ C 1, J ω T J ω e εt + C 11 T ǫ J ω e εt + C 11 T ωt θ t + C 1 ǫ ωt θt + ν ǫ 4 C ωe εǫ T. ωt θ t + ν ǫ 4 C ωe εǫ T φ T z n, z m = φ T z n t, z m t = C 11 T. ωt θ t + ν ǫ 4 C ωe εǫ T, φ T, z n t = u n t, u nt t, ηn t s z n = u n, u nt, η n B, V θ V θ, u n C[, T ]; V θ, lim ν ε, lim T n m..3, u n s u m s θs =,. ν ǫ lim ǫ 4 C ωe εǫ T =..3 lim n lim φ Tz n, z m =. m 1., {St} t.. 1.4,..3 f V θ, g CV θ ; V θ 1.4 1.5, h 1 h 4. 1. 1.3 {St} t H B,, {St} t H A, H - H. [ ] [ 1 ] COLEMAN B D, NOLL W. Founations of linear viscoelasticity [J]. Reviews of Moern Physics, 1961, 33: 39-49. [ ] DAFERMOS C M. Asymptotic stability in viscoelasticity [J]. Archive for Rational Mechanics an Analysis, 197, 374: 97-38. [ 3 ] FABRIZIO M, MORRO A. Mathematical Problems in Linear Viscoelasticity [M]. Pennsylvania: Society for Inustrial an Applie Mathematics, 199. [ 4 ] GIORGI C, RIVERA J M, PATA V. Global attractors for a semilinear hyperbolic equations in viscoelasticity [J]. J Math Anal Appl, 1, 61: 83-99. [ 5 ] PATA V, ZUCCHI A. Attractors for a ampe hyperbolic equation with linear memory [J]. Av Math Sci Appl, 1, 11: 55-59.

, : 19 [ 6 ] MA Q Z, ZHONG C K. Exitence of strong global attractors for hyperbolic equation with linear memory [J]. Applie Mathematics an Computation, 4, 1573: 745-758. [ 7 ] SUN C Y, CAO D M, DUAN J Q. Non-autonomous wave ynamics with memory-asymptotic regularity an uniform attractors [J]. Discrete & Continuous Dynamical Systems, 8, 93-4: 743-761. [ 8 ] TEMAM R. Infinite Dimensional Dynamical System in Mechanics an Physics [M]. n e. New York: Spring- Verlag, 1997. [ 9 ],,. [J]., 7, 75: 941-948. [1] ANGUIANO M, MARIN-RUBIO P, REAL J. Regularity results an exponential growth for pullback attractors of a non-autonomous reaction-iffusion moel with ynamical bounary conitions [J]. Nonlinear Analysis Real Worl Applications, 14, 1: 11-15. [11],,,. [J]., 15, 353: 65-76. [1] MA Q Z, XU L. Ranom attractors for the extensible suspension brige equation with white noise [J]. Computers & Mathematics with Applications, 15, 71: 895-93. [13],,. [J]., 1, 83: 41-411. [14] ZHONG C K, YANG M H, SUN C Y. The existence of global attractors for the norm-to-weak continuous semigroup an application to the nonlinear reaction-iffusion equations [J]. Journal of Differential Equations, 6, 3: 367-399. [15] WANG X, YANG L, ZHONG C K. Attractors for the nonclassical iffusion equations with faing memory [J]. Journal of Mathematical Analysis & Applications, 1, 36: 37-337. [16] SUN C Y, CAO D M, DUAN J Q. Non-autonomous ynamics of wave equations with nonlinear amping an critical nonlinearity [J]. Nonlinearity, 6, 1911: 645-665. [17] ROBINSON J C. Infinite-imensional Dynamical Systems: An Introuction to Dissipative Parabolic PDEs an the Theory of Global Attractors [M]. Cambrige: Cambrige University Press, 1. : 7 [ 9 ] MADAN D B, CARR P P, CHANG E C. The variance gamma process an option pricing [J]. European Finance Review, 1998, : 79-15. [1] BRODY D C, HUGHSTON L P, MACKIE E. General theory of geometric Lévy moels for ynamic asset pricing [J]. Proceeings of The Royal Society A, 1, 468: 1778-1798. [11] MEERSCHAERT M M, SCHEFFLER H P. Triangular array limits for continuous time ranom walks [J]. Stochastic Processes an Their Applications, 8, 118: 166-1633. [1] ZHANG Y X, GU H, LIANG J R. Fokker-Planck type equations associate with suborinate processes controlle by tempere α-stable processes [J]. Journal of Statistical Physics, 13, 154: 74-75. [13] GAJDA J, A. WYLOMANSKA A. Anomalous iffusion moels: Different types of suborinator istribution [J]. Acta Physica Polonica B, 1, 43: 11. [14] PODLUBNY I, Fractional Differential Equations [M]. New York: Acaemic Press, 1999. :