Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Σχετικά έγγραφα
Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Περιλήψεις Κβαντικής Μηχανικής ΙΙ Α. Λαχανάς

Περιλήψεις Κβαντικής Μηχανικής ΙΙ Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Κεφάλαιο 4

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Εξετάσεις 1ης Ιουλίου Για την ϐασική κατάσταση του ατόµου του Υδρογόνου της οποίας η κανονικοποιηµένη στην µονάδα

ETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ

Κβαντομηχανική Ι 6o Σετ Ασκήσεων. Άσκηση 1

fysikoblog.blogspot.com

Δομή Διάλεξης. Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης. Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 1

Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής. Σημειώσεις I: Κίνηση σε τρεις διαστάσεις, στροφορμή

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι (Τµήµα Α. Λαχανά) 1 Φεβρουαρίου 2010

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι

Κβαντική Φυσική Ι. Ενότητα 29: Το άτομο του υδρογόνου. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Μηχανική ΙΙ. Ενότητα 1: Γενική διατύπωση της Κβαντικής Μηχανικής Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 )

Συνεχές Φάσµα - Συνάρτηση δέλτα (Dirac)

Διάλεξη 2: Κεντρικά Δυναμικά. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για κεντρικά δυναμικά

Κβαντική Μηχανική ΙΙ. Ενότητα 8: Ερωτήσεις και Ασκήσεις (Ασκήσεις προς Λύση) Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 30 Αυγούστου 2010 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης 2,5 ώρες.

Σχετικιστικές συμμετρίες και σωμάτια

Κβαντική Φυσική Ι. Ενότητα 25: Μαθηματική μελέτη του κβαντικού αρμονικού ταλαντωτή. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Χρησιμοποιείστε την πληροφορία αυτή για να δείξετε ότι ο τελεστής που θα μεταφέρει το άνυσμα

Κβαντική Φυσική Ι. Ενότητα 31: Εφαρμογές και η ακτινική εξίσωση του ατόμου του υδρογόνου. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Ιδιοσυναρτήσεις του αρμονικού ταλαντωτή Πολυώνυμα Hermite

Εύρεση των ιδιοτιμών της στροφορμής

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής

Αρμονικός Ταλαντωτής

Δύο διακρίσιμα σωμάτια με σπιν s 1

Η άλγεβρα της στροφορμής

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013

Μετασχηματισμοί Καταστάσεων και Τελεστών

21/11/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης

Δομή Διάλεξης. Εύρεση ακτινικού μέρους εξίσωσης Schrödinger. Εφαρμογή σε σφαιρικό πηγάδι δυναμικού απείρου βάθους. Εφαρμογή σε άτομο υδρογόνου

ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ. Θέμα 2. α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει

υναµικό Coulomb - Λύση της εξίσωσης του Schrödinger

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κεντρικά Δυναμικά Διδάσκων : Επίκ. Καθ. Μ. Μπενής

Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών

() 1 = 17 ΣΥΝΑΡΤΗΣΕΙΣ LEGENDRE Ορισµοί

= + =. cos ( ) sin ( ) ˆ ˆ ˆ. Άσκηση 4.

Δομή Διάλεξης. Ορισμός Ολικής Στροφορμής. Σχέση βάσης ολικής στροφορμής (j,m j ) με βάση επιμέρους στροφορμών (m 1,m 2 )

Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας

Το ελαστικο κωνικο εκκρεμε ς

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ψ (x) = e γ x A 3 x < a b / 2 A 2 cos(kx) B 2 b / 2 < x < b / 2 sin(kx) cosh(γ x) A 1 sin(kx) a b / 2 < x < b / 2 cos(kx) + B 2 e γ x x > a + b / 2

ˆ ˆ. (τελεστής καταστροφής) (τελεστής δημιουργίας) Το δυναμικό του συστήματός μας (αρμονικός ταλαντωτής μέσα σε ομογενές ηλεκτρικό πεδίο) είναι

8. Πολλαπλές μερικές παράγωγοι

1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1.

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ (ΚΕΦΑΛΑΙΟ 39 +)

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville

Επίλυση Συστήματος Γραμμικών Διαφορικών Εξισώσεων

1. Μετάπτωση Larmor (γενικά)

Κεφάλαιο 14: Πρόσθεση Στροφορμών

Κ. Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής Παράγωγος. x ορίζεται ως

Κίνηση σε Μονοδιάστατα Τετραγωνικά Δυναμικά

, που, χωρίς βλάβη της γενικότητας, μπορούμε να θεωρήσουμε χρονική στιγμή μηδέν, δηλαδή

και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για

Κβαντική Φυσική Ι. Ενότητα 17: Εφαρμογή στην αναπαράσταση τελεστών με μήτρα και εισαγωγή στον συμβολισμό Dirac

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Πρόσθεση Στροφορμών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΦΟΡΤΙΣΜΕΝΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΑ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΤΕΛΕΣΤΕΣ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ, ΒΑΣΙΚΗ ΚΑΤΑΣΤΑΣΗ, ΕΛΑΧΙΣΤΗ ΕΝΕΡΓΕΙΑ ΣΥΖΗΤΗΣΗ

Κβαντική Φυσική Ι. Ενότητα 26: Ολοκλήρωση της αλγεβρικής μεθόδου για την μελέτη του αρμονικού ταλαντωτή

Η κυματοσυνάρτηση στην αναπαράσταση ορμής Ασκήσεις. Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. 8 Δεκεμβρίου 2017

Κβαντική Μηχανική ΙΙ. Ενότητα 8: Ερωτήσεις και Ασκήσεις (Θέματα Εξετάσεων) Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Λυμένες ασκήσεις στροφορμής

7. Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας

. Να βρεθεί η Ψ(x,t).

Μέϑοδοι Εφαρμοσμένων Μαϑηματιϰών (ΜΕΜ 274) Φυλλάδιο 8

Απαντησεις στις ερωτησεις της εξετασης της 24 ης Ιουνιου 2005

( x) (( ) ( )) ( ) ( ) ψ = 0 (1)

Μάθημα 7ο. Υλοκύματα Και Η Σύγχρονη Ατομική Θεωρία

Μηχανική ΙI. Μετασχηµατισµοί Legendre. της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

Ποια απο τις παρακάτω είναι η σωστή µορφή του πραγµατικού µέρους της κυµατοσυνάρτησης του

8. Πολλαπλές μερικές παράγωγοι

Στατιστική περιγραφή τουπεδίουβαρύτητας

Ατομική και Μοριακή Φυσική

Η Αναπαράσταση της Θέσης (Position Representation)

2.5. Απλές λύσεις κυματικών εξισώσεων σε δύο και τρεις διαστάσεις

Σπιν 1 2. Γενικά. Ŝ και S ˆz γράφονται. ιδιοκαταστάσεις αποτελούν ορθοκανονική βάση στον χώρο των καταστάσεων του σπιν 1 2.

Μάθηµα 13 ο, 30 Οκτωβρίου 2008 (9:00-11:00).

Δομή Διάλεξης. Κλασσική Θεωρία Σκέδασης Ορισμοί μεγεθών σκέδασης. Κβαντική θεωρία σκέδασης Πλάτος σκέδασης

Μέϑοδοι Εφαρμοσμένων Μαϑηματιϰών (ΜΕΜ 274) Λύσεις Θεμάτων Εξέτασης Ιούνη 2019

KΒΑΝΤΟΜΗΧΑΝΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

Ξ. Ασλάνογλου Τμήμα Φυσικής Ακαδ. Έτος ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ

Τροχιακή Στροφορµή - spin - Πρόσθεση στροφορµών

( ) * Λύση (α) Καθώς η Χαµιλτονιανή είναι ερµιτιανός τελεστής έχουµε ότι = = = = 0. (β) Απαιτούµε

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 7

Εφαρμογές κβαντικής θεωρίας

Κλασική Ηλεκτροδυναμική

(φορτισμένος αρμονικός 2 ταλαντωτής μέσα σε ομογενές ηλεκτρικό πεδίο) είναι

3/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 08. ΤΟ ΣΠΙΝ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΟ ΣΠΙΝ

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

ii) Υπολογίστε τις μέσες τιμές της θέσης και της ορμής του ταλαντωτή όταν t 0.

(1) (3) x a. Από την (3) βλέπουµε ότι η ( ) τυχαία συνοχική κατάσταση ενός αρµονικού ταλαντωτή µε κλίµακα µήκους a. â a, θα είναι,

Transcript:

Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Ο Μονοδιάστατος Γραµµικός Αρµονικός Ταλαντωτής 1.1.1 Εύρεση των ιδιοτοµών και ιδιοσυναρτήσεων της ενέργειας µε την επίλυση της εξίσωσης Schrödinger Η χρονικά ανεξάρτητη εξίσωση Schrödinger του µονοδιάστατου ταλαντωτή είναι h2 d 2 Ψ 2m dx 2 + mω2 2 x2 Ψ = E Ψ (1.1) Με αλλαγή της µεταβλητής x = λξ, όπου λ = ( h/mω) 1/2 και ξ αδιάστατη, και συµβολίζοντας µε Φ(ξ) Ψ(λξ) αυτή γίνεται d2 Φ dξ 2 + ξ 2 Φ = ɛ Φ (1.2) όπου ɛ 2E/ hω. Για µεγάλα ξ η εξ. (;;) έχει ως ασυµπτωτικές λύσεις Φ exp(±ξ 2 ). Οι λύσεις Ψ(x) οι οποίες αντιστοιχούν σε δέσµιες καταστάσεις µηδενίζονται για µεγάλα x, και εποµένως οι Φ(ξ) µηδενίζονται για µεγάλα ξ. Αρα η λύση µε την συµπεριφορά Φ exp( ξ 2 ) είναι αυτή που αντιστοιχεί σε δέσµια κατάσταση. Με ϐάση αυτήν την παρατήρηση ορίζουµε την H(ξ) µέσω της σχέσης Αντικαθιστώντας στην εξίσωση (;;) έχουµε Φ(ξ) e ξ2 /2 H(ξ). (1.3) H + ( 2ξ)H + (ɛ 1)H = 0. (1.4) Το πλεονέκτηµα της (;;) είναι ότι επιδέχεται λύσεις οι οποίες έχουν την µορφή αναπτύγµατος H(ξ) = ξ s (a 0 + a 1 ξ + a 2 ξ 2 + ) (1.5) Χρησιµοποιώντας την (;;) στην εξίσωση (;;) παίρνουµε s(s 1) = 0, a 1 s(s + 1) = 0 (1.6) 2(s + k) + 1 ɛ a k+2 = a k, k = 0, 1, 2,. (1.7) (s + k + 1)(s + k + 2) Από την (;;) προκύπτει ότι s = 0 η s = 1. Με a 1 = 0 όλοι οι συντελεστές a 3,5,7, µε περιττό δείκτη µηδενίζονται, λόγω της (;;), και εποµένως από τις δύο περιπτώσεις s = 0, 1 παίρνουµε δύο ανεξάρτητες λύσεις, µία άρτια και µία περιττή όταν ξ ξ. Οι λύσεις αυτές δίνονται από την

1.1 Ο Μονοδιάστατος Γραµµικός Αρµονικός Ταλαντωτής 3 H(ξ) = ξ s (a 0 + a 2 ξ 2 + a 4 ξ 4 + ), s = 0, 1 (1.8) 2(s + 2n) + 1 ɛ a 2n+2 = a 2n, n = 0, 1, 2 (1.9) (s + 2n + 1)(s + 2n + 2) Για µεγάλες τιµές του ακεραιου n η σχέση ( ;;) δίνει a 2n+2 a 2n /n ακριβώς όπως στους αντίστοιχους συντελεστές του αναπτύγµατος της εκθετικής συνάρτησης exp( ξ 2 ). Με ϐάση αυτό συµπεραίνει κανείς ότι για µεγάλα ξ η συνάρτηση H(ξ) συµπεριφέρεται ως H(ξ) exp( ξ 2 ) και αυτό είναι σε ασυνέπεια µε την απαίτηση Φ(ξ) ξ 0 όπως απαιτείται για δέσµια κατάσταση. Από το επιχείρηµα αυτό εξαιρούνται µόνον οι περιπτώσεις που η παράµετρος ɛ παίρνει τιµές ɛ = 2(s + 2n 0 ) + 1, (1.10) όπου n 0 είναι ϑετικός ακέραιος 0, 1, 2,. Σε αυτήν την περίπτωση η συνάρτηση H(ξ) είναι πολυώνυµο ϐαθµού 2n 0 + s, δεν αυξάνει εκθετικά όταν το ξ γίνεται µεγάλο και εποµένως Φ(ξ) ξ 0 όπως απαιτείται. Αρα µόνον για αυτές της τιµές του ɛ έχουµε αποδεκτές λύσεις στο ϕυσικό µας πρόβληµα. Για κάθε n 0 = 0, 1, 2, οι ϕυσικά αποδεκτές λυσεις, για τις δύο περιπτώσεις s = 0, 1, δίνονται παρακάτω. Στους πίνακες αυτούς εµφανίζεται η τιµή των s, n 0, η αντίστοιχη τιµή της παραµέτρου ɛ καθώς και η τιµή της ενέργειας E = hωɛ/2 όπως επίσης και η συνάρτηση H(ξ) η οποία προσδιορίζεται πλή- ϱως µέσω της αναδροµικής σχέσης (;;) εκτός µιάς πολλαπλασιαστικής σταθεράς c η οποία ϑα προσδιορισθεί από την κανονοκοποίηση της κυµατικής συνάρτησης. Οι τιµές της ενέργειας όπως ϕαίνεται από τους ακόλουθους πίνακες είναι E = hω(n + 1 2 ), όπου n = 0, 1, 2,. s = 0 n 0 ɛ ( Ε ) H(ξ) 0 1 ( hω/2 ) c 1 5 ( 5 hω/2 ) c (1 2ξ 2 ) 2 9 ( 9 hω/2 ) c (1 4ξ 2 + 4 3 ξ4 ) s = 1 n 0 ɛ ( Ε ) H(ξ) 0 3 ( 3 hω/2 ) c ξ 1 7 ( 7 hω/2 ) c (ξ 2 3 ξ3 ) 2 11 ( 11 hω/2 ) c (ξ 4 3 ξ3 + 4 15 ξ5 ) Στην µαθηµατική ϐιβλιογραφία οι συναρτήσεις H(ξ), µε κατάλληλη επιλογή µιας πολλαπλασιαστικής σταθεράς, είναι γνωστές και ως πολυώνυµα του Hermite.

4 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.2 Στροφορµή στην Κβαντική Μηχανική 1.2.1 Τροχιακή Στροφορµή Η Τροχιακή Στροφορµή στην Κβαντική Μηχανική δίνεται από τον τελεστή ˆL = ˆr ˆp (1.11) Οι ˆr και ˆp ειναι οι τελεστές της ϑέσης και της ορµής αντίστοιχα ( το παχύ σύµβολο υποδηλώνει ότι είναι ανύσµατα). Είναι σύνηθες να χρησιµοποιείται ο συµβολισµός 1, 2, 3 αντί των x, y, z για τις συνιστώσες. Σε αυτον τον συµβολισµό ˆr = (ˆx 1, ˆx 2, ˆx 3 ), ˆp = (ˆp 1, ˆp 2, ˆp 3 ) Εποµένως οι συνιστώσες της τροχιακής στροφορµής οπως αυτή ορίσθηκε πιο πάνω είναι ˆL = (ˆL 1, ˆL2, ˆL3 ) µε τις ˆL 1, ˆL 2, ˆL 3 να δίνονται απο τις σχέσεις ˆL 1 = ˆx 2 ˆp 3 ˆx 3 ˆp 2, ˆL2 = ˆx 3 ˆp 1 ˆx 1 ˆp 3, ˆL3 = ˆx 1 ˆp 2 ˆx 2 ˆp 1. Ο τελεστής που δίνει το τετράγωνο του µέτρου της τροχιακής στροφορµής είναι L 2 = ˆL 2 1 + ˆL 2 2 + ˆL 2 3 Χρησιµοποιώντας τις γνωστές σχέσεις µετάθεσης για τους τελεστές ϑέσης και ορµής [ˆx i, ˆp j ] = i h δ ij,, i, j = 1, 2, 3 µπορεί εύκολα να δείξει κανείς τις σχέσεις µετάθεσης και εξ αυτών ότι [ˆL 1, ˆL2 ] = i hˆl 3, [ˆL 2, ˆL 3 ] = i hˆl 1, [ˆL 3, ˆL1 ] = i hˆl 2. [L 2, ˆL k ] = 0, k = 1, 2, 3 (1.12) Αυτές οι σχεσεις µετάθεσης µεταξύ των συνιστωσών της στροφορµής ονοµάζεται Αλγεβρα της Στροφορµής.

1.2 Στροφορµή στην Κβαντική Μηχανική 5 Πρόταση: Αν τρείς αυτοσυζυγείς τελεστές Ĵ1, Ĵ 2, Ĵ 3 ικανοποιούν την Αλγεβρα της Στροφορµής [Ĵ1, Ĵ 2 ] = i hĵ3, [Ĵ2, Ĵ 3 ] = i hĵ1, [Ĵ3, Ĵ 1 ] = i hĵ2 [J 2, Ĵ k ] = 0, k = 1, 2, 3 τότε αποδεικνύεται ότι ισχύουν τα ακόλουθα : Οι ιδιοτιµές του τελεστή J 2 είναι h 2 j (j + 1) 1 όπου ο j παίρνει ακέραιες η ηµιακέραιες τιµές j = 0, 2, 1, 3 2, 2,... εδοµένου του j οι ιδιοτιµές οποιασδήποτε συνιστώσας Ĵ1, Ĵ 2, Ĵ 3, είναι h m όπου ο κβαντικός αριθµός m παίρνει τις 2 j + 1 τιµές m = j, j + 1, j + 2,...j 1, j Ο τελεστής J 2 µετατίθεται µε όλες τις συνιστώσες Ĵk αλλά οι συνιστώσες δεν µετατίθενται µεταξύ τους. Εποµένως µπορούµε να ϑεωρήσουµε τα κοινά ιδιοανύσµατα αυτού και µόνον µιάς εκ των συνιστωσών, που συνήθως επιλέγουµε να είναι η Ĵ3.Τα ιδιοανύσµατα αυτά χαρακτηρίζονται από του κβαντικούς αριθµούς j, m, µέσω των οποίων εκφράζονται οι αντίστοιχες ιδιοτιµές των όπως αυτές εδόθησαν παραπάνω, και συνήθως συµβολίζονται µε j, m >. Ως ιδιοανύσµατα των J 2 Ĵ 3 ικανοποιούν τις σχέσεις J 2 j, m > = h 2 j(j + 1) j, m >, Ĵ 3 j, m > = hm j, m > Τα ιδιοανύσµατα που ορίσθηκαν προηγουµένως µπορούµε, χωρίς ϐλάβη της γενικότητας,να ϑεωρήσουµε ότι είναι κανονικοποιηµένα στην µονάδα. Αντί των τελεστών Ĵ1, Ĵ 2, Ĵ 3 µπορούµε να ϑεωρήσουµε τους Ĵ+, Ĵ, Ĵ 3 όπου οι Ĵ± είναι οι ακόλουθοι γραµµικοί συνδυασµοί των Ĵ1, Ĵ 2 Ĵ + = Ĵ1 + i Ĵ2, Ĵ = Ĵ1 i Ĵ2 Συναρτήσει αυτών των τελεστών η Αλγεβρα της Στροφορµής δίνεται από τις σχέσεις µετάθεσης [Ĵ+, Ĵ ] = 2 hĵ3, [Ĵ+, Ĵ 3 ] = hĵ+, [Ĵ, Ĵ 3 ] = + hĵ

6 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς Από αυτές µπορεί να αποδειχθεί εύκολα ότι ο τελεστής J 2 Ĵ2 1 + Ĵ2 2 + Ĵ2 3 εκφράζεται συναρτήσει των Ĵ±, Ĵ 3 ως ακολούθως J 2 = Ĵ+ Ĵ + Ĵ2 3 h Ĵ3 η ισοδύναµα J 2 = Ĵ Ĵ+ + Ĵ2 3 + h Ĵ3 Οι τελεστές Ĵ± ενεργώντας στα ιδιοανύσµατα j, m > δίνουν ιδιοανύσµατα του ίδιου j αλλά διαφορετικού m. Αποδεικνύεται ότι Ĵ ± j, m > = C ± j, m ± 1 > όπου οι σταθερές C ± για τις δύο περιπτώσεις ( +, η -) δίνονται από 1 C ± = h [j (j + 1 ) m (m ± 1 )] 1/2 1.2.2 Τροχιακή Στροφορµή στην αναπαράσταση ϑέσης Τα γενικά συµπεράσµατα που εξετέθηκαν πιο πάνω για τους τελεστές Ĵ1,2,3 µπορουν να εφαρµοσθούν και για την περίπτωση της τροχιακής στροφορµής που τις συντεταγµένες της συνήθως συµβολίζουµε µε ˆL 1,2,3, αντί Ĵ 1,2,3, και τον κβαντικό αριθµό που δίνει την ολική στροφορµή µε l αντί για j. Θα πρέπει να σηµειωθεί όµως ότι στην περίπτωση της τροχιακής στροφορµής µόνον ακέραιες τιµές έιναι επιτρεπτές για τον κβαντικό αριθµό l όπως ϑα δούµε πιο κάτω. Στην αναπαράσταση ϑέσης οι συνιστώσες της τροχιακής στροφορµής σε σφαι- ϱικές συντεταγµένες δίνονται από τις ακόλουθες εκφράσεις ˆL ± = h e ±iφ ( ± θ + i cotθ φ ) ˆL 3 = i h φ (1.13) όπου κατ αντιστοιχία µε τους τελεστές Ĵ± ˆL ± ˆL 1 ± i ˆL 2. Ο τελεστής που δίνει το µέτρο της τροχιακής στροφορµής σε σφαιρικές συντεταγ- µένες εκφράζεται ως ακολούθως L 2 = h 2 1 sin 2 θ [ sinθ θ ( sin θ θ ) + 2 φ 2 ] 1 Για την ακρίβεια µόνο το µέτρο των σταθερών προσδιορίζεται αλλά όχι η ϕάση. Η ϕάση αυτή, χωρίς ϐλάβη της γενικότητας, επιλέγουµε να είναι ίση µε την µοναδα. Αυτή η σύµβαση της επιλογής της ϕάσης ϕέρει το όνοµα των Condon Shortley", και υιοθετείται συνήθως στην διεθνή ϐιβλιογραφία.

1.2 Στροφορµή στην Κβαντική Μηχανική 7 Οι κοινές ιδιοσυναρτήσεις των L 2, ˆL3 που συµβολίζονται µε Y lm (θ, φ) και ικανοποιούν τις σχέσεις ιδιοσυναρτήσεων, ιδιοτιµών L 2 Y lm (θ, φ) = h 2 l ( l + 1 ) Y lm (θ, φ) ˆL 3 Y lm (θ, φ) = h m Y lm (θ, φ) (1.14) Ο κβαντικός αριθµός l λαµβάνει µόνο ακέραιες τιµές 0, 1, 2,... εδοµένου του l ο κβαντικός αριθµός m παίρνει τις 2l + 1 τιµές l, l + 1, l + 2,...l 1, l οι οποίες είναι επίσης ακέραιες εφ όσον ο κβαντικός αριθµός l είναι ακέραιος. Οι συναρτήσεις Y lm (θ, φ) είναι γνωστές στην ϐιβλιογραφία µε το όνοµα Σφαι- ϱικές Αρµονικές. Η µαθηµατική τους µορφή δίνεται από τις εκφράσεις Y lm (θ, φ) = N lm P m l ( cosθ ) e i m φ, όπου οι συναρτήσεις P m l ( cos θ ) είναι γνωστές ως συσχετισµένα πολυώνυµα Legendre. Η αναλυτικές εκφράσεις αυτών και οι ιδιότητες τους µπορούν να ϐρε- ϑούν στην ϐιβλιογραφία και δεν ϑα µας απασχολήσουν περαιτέρω. Το µέτρο του παράγοντα N lm στον ορισµό των σφαιρικών αρµονικών προσδιορίζεται από την συνθήκη κανονικοποίησης Y lm (θ, φ)y l m (θ, φ) dω = δ ll δ mm. Στην ανωτέρω έκφραση dω = sin θ dθ dφ είναι στοιχείο της στερεάς γωνίας και η ολοκλήρωση εννοείται από 0, 2π για την γωνία φ και από 0, π για την θ. Η συνθήκη κανονικοποίησης οδηγεί 2 στην N lm = ( 1) m [ 2l + 1 4π Οι Y lm (θ, φ) ϑα πρέπει να έχουν την ιδιότητα 1/2 (l m)! (l + m)! ]. Y lm (θ, φ) = Y lm (θ, φ + 2 π) διότι τα σηµεία φ και φ + 2 π αναφέρονται στο ίδιο σηµείο του χώρου. Από αυτήν την απαίτηση, λόγω του εκθετικού παράγοντα e i m φ, ο κβαντικός αριθµός m περιορίζεται να λαµβάνει µόνον ακέραιες τιµές. Επόµένως και ο κβαντικός αριθµός l παίρνει επίσης ακέραιες τιµές λόγω ότι οι δυο αριθµοί συνδέονται µε την σχέση m = l, l + 1, l + 2,...l 1, l. Οι Σφαιρικές Αρµονικές γιά l = 0, 1 δίνονται από τις ακόλουθες εκφράσεις Y 00 (θ, φ) = 1 4 π 3 Y 11 (θ, φ) = 8 π ei φ sinθ, Y 10 (θ, φ) = 3 3 4 π cosθ, Y 1 1 (θ, φ) = + 8 π e i φ sin θ 2 µε κατάλληλη επιλογή της ϕάσης η οποία δεν προσδιορίζεται και συνήθως επιλέγεται ίση µε ( 1) m.