Ενότητα: Ο Δακτύλιος Πολυωνύμων μιας Μεταβλητής. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Σχετικά έγγραφα
Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

1.3 Ιδεώδη και Περιοχές κυρίων Ιδεωδών 1.3. Ι Π Ι. Για το σύμβολο δεχόμαστε ότι n N {0}, < n καθώς και ότι:

Υπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ. Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Επιλύσιμες Ομάδες. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Μικροβιολογία & Υγιεινή Τροφίμων

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Ηλεκτρονικοί Υπολογιστές I

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Ευθέα Γινόμενα Ομάδων. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνδυαστική Ανάλυση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Βαθµίδα Πίνακα. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Υπολογιστική άλγεβρα Ενότητα 6: Ο αλγόριθμος της διαίρεσης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Ιστορία των Μαθηματικών

Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Μαθηματική Ανάλυση Ι

Υπολογιστική άλγεβρα Ενότητα 7: Βάσεις Groebner I

Υπολογιστική άλγεβρα Ενότητα 1: Πολυωνυμικές σχέσεις και ταυτότητες, μέρος Ι

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Οικονομετρία. Εξειδίκευση του υποδείγματος. Μορφή της συνάρτησης: Πολυωνυμική, αντίστροφη και αλληλεπίδραση μεταβλητών

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Υπολογιστική άλγεβρα Ενότητα 3: Πολυώνυμα τρίτου βαθμού

Εφαρμοσμένη Στατιστική

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Γενικά Μαθηματικά Ι. Ενότητα 7: Σειρές Taylor, Maclaurin. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Υπολογιστές Ι. Άδειες Χρήσης. Τύποι δεδομένων. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανυσματικοί Χώροι (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Γενικά Μαθηματικά Ι. Ενότητα 14: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Τμήμα Φυσικής

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Ιστορία της μετάφρασης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Εκκλησιαστικό Δίκαιο

Κλασσική Θεωρία Ελέγχου

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματική Ανάλυση ΙI

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Υπολογιστικά & Διακριτά Μαθηματικά

Προγραμματισμός Υπολογιστών & Υπολογιστική Φυσική

Σχεδιασμός & Αξιολόγηση Προγραμμάτων Εκπαίδευσης Ενηλίκων

ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ

Εκκλησιαστικό Δίκαιο

Υπολογιστική άλγεβρα Ενότητα 4: Πολυώνυμα τετάρτου και μεγαλύτερου βαθμού

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Υπολογιστές Ι. Άδειες Χρήσης. Δομή του προγράμματος. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

Υπολογιστικά & Διακριτά Μαθηματικά

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Κβαντική Επεξεργασία Πληροφορίας

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο

Εισαγωγή στους Αλγορίθμους

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συναρτήσεις πολλών μεταβλητών Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνεχείς τυχαίες μεταβλητές Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙ

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Δείκτες Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

ΑΡΙΣΤΟΤΕΛΕΙΟ ΑΝΟΙΚΤΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΜΑΘΗΜΑΤΑ Γενικά Μαθηματικά Ι Ενότητα 11 : Ακολουθίες και Σειρές Λουκάς Βλάχος Τμήμα Φυσικής

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Εισαγωγή στους Υπολογιστές

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Αλγεβρικές Δομές ΙΙ. 1 Ομάδα I. Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο

Τίτλος Μαθήματος: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Γενικά Μαθηματικά Ι. Ενότητα 13: Ακτίνα Σύγκλισης, Αριθμητική Ολοκλήρωση, Ολοκλήρωση Κατά Παράγοντες. Λουκάς Βλάχος Τμήμα Φυσικής

Μαθηματικά και Φυσική με Υπολογιστές

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 13: Τύπος του Taylor. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Υπόγεια Υδραυλική και Υδρολογία

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Οικονομετρία. Πολλαπλή Παλινδρόμηση. Στατιστικός έλεγχος γραμμικού συνδυασμού συντελεστών. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης

Γενικά Μαθηματικά Ι. Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης. Λουκάς Βλάχος Τμήμα Φυσικής

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Παράκτια Τεχνικά Έργα

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Μαθηματικά Και Στατιστική Στη Βιολογία

1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

Εισαγωγή στους Αλγορίθμους

Transcript:

Τίτλος Μαθήματος: Αλγεβρικές Δομές ΙΙ Ενότητα: Ο Δακτύλιος Πολυωνύμων μιας Μεταβλητής Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τμήμα: Μαθηματικών

12 Ο Δ Π Μ δακτύλιο με τις πράξεις τού R και όπου το μοναδιαίο στοιχείο τού R συμπίπτει με το μοναδιαίο στοιχείο τού R Είναι δυνατόν ένας δακτύλιος (R, +, ) να μην είναι σώμα, αλλά ωστόσο να περιέχει έναν υποδακτύλιο ο οποίος να είναι σώμα Παραδείγματα 114 Θεωρούμε το ευθύ γινόμενο Q Q τού σώματος των ρητών αριθμών (Q, +, ) με τον εαυτό του Το υποσύνολο = {(q, q) q Q} Q Q είναι ένας υποδακτύλιος τού Q Q, που αποτελεί ένα σώμα 12 Ο Δακτύλιος Πολυωνύμων μιας Μεταβλητής Ένα πολυώνυμο μιας μεταβλητής με συντελεστές από έναν μεταθετικό μοναδιαίο δακτύλιο (R, +, ) ορίζεται ως μια απεικόνιση f : N {0} R, όπου το σύνολο {n N {0} f(n) 0 R } είναι πεπερασμένο Το σύνολο των πολυωνύμων μιας μεταβλητής με συντελεστές από έναν μεταθετικό μοναδιαίο δακτύλιο (R, +, ) συμβολίζεται με R[x] Στο σύνολο R[x] ορίζουμε την πράξη τής πρόσθεσης + : R[x] R[x] R[x], (f, g) f + g, όπου(f + g)(n) := f(n) + g(n), n N {0} και την πράξη τού πολλαπλασιασμού : R[x] R[x] R[x], (f, g) f g, όπου(f g)(n) := Κάθε στοιχείο a R, το ταυτίζουμε με το πολυώνυμο a : N {0} R, i+j=n f(i)g(j), n N {0} (*) που απεικονίζει το 0 N {0} στο a R και όλα τα υπόλοιπα στοιχεία τού N {0} στο 0 R Κάθε τέτοιου είδους πολυώνυμο ονομάζεται σταθερό πολυώνυμο (η απλώς σταθερά) Ειδικότερα το πολυώνυμο 0 : N {0} R, δηλαδή το πολυώνυμο που απεικονίζει κάθε στοιχείο τού N {0} στο 0 R, το ονομάζουμε μηδενικό πολυώνυμο Συμβολίζοντας με x : N {0} R 5 Ν Μ

1 Π Έ το πολυώνυμο που απεικονίζει το 1 N {0} στο μοναδιαίο στοιχείο 1 R R και όλα τα υπόλοιπα στοιχεία τού N {0} στο 0 R, διαπιστώνουμε ότι οποιοδήποτε πολυώνυμο f παριστάνεται μοναδικώς ως f = f(i)x i i N {0} Προσέξτε, ότι από τον ορισμό τού πολλαπλασιασμού πολυωνύμων, η δύναμη x i : N {0} R, i N, i N απεικονίζει το i N {0} στο 1 R και όλα τα υπόλοιπα στοιχεία τού N {0} στο 0 R Τέλος, δεχόμαστε ότι η δύναμη x 0 ταυτίζεται με το πολυώνυμο 1, δηλαδή απεικονίζει το 0 N {0} στο 1 R και όλα τα υπόλοιπα στοιχεία τού N {0} στο 0 R Έτσι, γράφοντας a 0 x 0 + a 1 x + + a n x n ή απλώς a 0 + a 1 x + + a n x n εννοούμε το πολυώνυμο f : N {0} R με f(i) = a i, i = 0, 1, 2,, n και f(i) = 0, i > n Τα a 0, a 1,, a n ονομάζονται οι συντελεστές τού πολυωνύμου Πρόταση 121 Αν (R, +, ) είναι ένας μοναδιαίος μεταθετικός δακτύλιος, τότε η τριάδα (R[x], +, ) αποτελεί επίσης έναν μοναδιαίο μεταθετικό δακτύλιο Ο δακτύλιος R[x] ονομάζεται ο δακτύλιος πολυωνύμων μιας μεταβλητής με συντελεστές από τον δακτύλιο R (ή υπεράνω τού δακτυλίου R) Παραδοσιακά, η έννοια τού πολυωνύμου προέρχεται από την έννοια τής πραγματικής πολυωνυμικής συνάρτησης f(x) = a 0 + a 1 x + + a n x n : R R, r a 0 + a 1 r + + a n r n, όπου n N, a 0, a 1,, a n R Έτσι για να δηλώσουμε ένα πολυώνυμο, θα γράφουμε συχνά f(x) και θα ονομάζουμε το x μια μεταβλητή, μολονότι όπως είδαμε πιο πάνω το x δεν είναι μεταβλητή, αλλά μια εντελώς συγκεκριμένη απεικόνιση Ορισμός 121 Καλούμε βαθμό ενός μη μηδενικού πολυωνύμου f(x) = a 0 + a 1 x + + a n x n τον μεγαλύτερο αριθμό i N {0} με f(i) = a i 0 R Επιπλέον, θεωρούμε ότι ο βαθμός τού μηδενικού πολυωνύμου ισούται με το (πλην άπειρο) Συνήθως συμβολίζουμε με deg f(x) τον βαθμό τού πολυωνύμου f(x) Συνεπώς, {deg f(x) f(x) R[x]} = N {0} { } Ν Μ 6

13 Ι Π Ι Για το σύμβολο δεχόμαστε ότι n N {0}, < n καθώς και ότι: n N {0}, ( ) + n = = n + ( ) και ( ) + ( ) = (**) Ονομάζουμε επικεφαλής συντελεστή ενός μη μηδενικού πολυωνύμου f, τον συντελεστή f(i) = a i με το μεγαλύτερο i N {0}, όπου f(i) 0 R Ονομάζουμε ένα μη μηδενικό πολυώνυμο μονοστό, αν ο επικεφαλής του συντελεστής ισούται με 1 R Παραδείγματα 121 Έστω ο δακτύλιος των ακεραίων αριθμών (Z, +, ) και Z[x] ο αντίστοιχος δακτύλιος των πολυωνύμων μιας μεταβλητής υπεράνω τού Z Το πολυώνυμο f 1 (x) = 2 Z[x] έχει deg f 1 (x) = 0, το f 2 (x) = 2+x 3n Z[x], n N έχει deg f 2 (x) = 3n και το πολυώνυμο f 3 (x) = 1 + x + x 2 + + x n, n N έχει deg f 3 (x) = n Ο επικεφαλής συντελεστής τού f 1 (x) είναι 2 Tα f 2 (x) και f 3 (x) είναι μονοστά πολυώνυμα Πρόταση 122 Αν ο δακτύλιος (R, +, ) είναι ακέραια περιοχή, τότε και ο δακτύλιος R[x] είναι ακέραια περιοχή και μάλιστα f(x), g(x) R[x] είναι deg f(x)g(x) = deg f(x) + deg g(x) Απόδειξη Αν ένα από τα δύο πολυώνυμα είναι το μηδενικό, τότε το γινόμενό τους είναι επίσης το μηδενικό πολυώνυμο και από την παραδοχή που κάναμε, βλ (**), σχετικά με τον βαθμό τού μηδενικού πολυνωύμου έπεται η ισότητα deg f(x)g(x) = deg f(x) + deg g(x) Αν ούτε το f(x) = a 0 +a 1 x+ +a n x n είναι το μηδενικό πολυώνυμο, ας πούμε ότι deg f(x) = n, ούτε το g(x) = b 0 +b 1 x+ +b m x m είναι το μηδενικό πολυώνυμο, ας πούμε ότι deg g(x) = m, τότε ο επικεφαλής συντελεστής τού γινομένου f(x)g(x) είναι ο a n b m 0 R, επειδή a n 0 R, b m 0 R και επειδή ο R είναι ακεραια περιοχή Συνεπώς, deg f(x)g(x) = n + m = deg f(x) + deg g(x) Παρατηρήσεις 121 Εππιλέον αν, (R, +, ) είναι οποιοσδήποτε μοναδιαίος δακτύλιος, f(x), g(x) R[x], deg(f(x) + g(x)) max{deg f(x), deg g(x)} 13 Ιδεώδη και Περιοχές κυρίων Ιδεωδών Έστω (R, +, ) ένας μοναδιαίος μεταθετικός δακτύλιος και I R ένα υποσύνολό του Υπενθυμίζουμε ότι Ορισμός 131 Το I R είναι ένα ιδεώδες τού (R, +, ) αν, το ζεύγος (I, +) είναι μια υποομάδα τού (R, +) και το I είναι κλειστό ως προς τον πολλαπλασιασμό με τα στοιχεία τού R, δηλαδή a I και r R, το στοιχείο ra ανήκει στο I 7 Ν Μ

Ανοικτά Ακαδημαϊκά Μαθήματα Πανεπιστήμιο Ιωαννίνων Τέλος Ενότητας

Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Ιωαννίνων» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους Σημειώματα Σημείωμα Αναφοράς Copyright Πανεπιστήμιο Ιωαννίνων, Διδάσκων : Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος «Αλγεβρικές Δομές ΙΙ Ο Δακτύλιος Πολυωνύμων μιας Μεταβλητής» Έκδοση: 10 Ιωάννινα 2014 Διαθέσιμο από τη δικτυακή διεύθυνση: http://ecourseuoigr/course/viewphp?id=1299 Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά Δημιουργού - Παρόμοια Διανομή, Διεθνής Έκδοση 40 [1] ή μεταγενέστερη [1] https://creativecommonsorg/licenses/by-sa/40/