Θεωρία Αλγόριθμοι Γραμμικής Βελτιστοποίησης 3/4/2012. Lecture08 1

Σχετικά έγγραφα
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Θεωρία Αλγόριθμοι Γραμμικής Βελτιστοποίησης 28/3/2012. Lecture07 1

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΚΕΦΑΛΑΙΟ 2 ΑΛΓΟΡΙΘΜΟΙ ΤΥΠΟΥ SIMPLEX. 2.1 Βασικές έννοιες - Ορισμοί

ΕΠΙΛΥΣΗ ΕΚΦΥΛΙΣΜΕΝΩΝ ΚΑΙ ΓΕΝΙΚΩΝ ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ. 4.1 Επίλυση Εκφυλισμένων Γραμμικών Προβλημάτων

ΕΝΑΣ ΔΙΚΡΙΤΗΡΙΟΣ ΑΛΓΟΡΙΘΜΟΣ SIMPLEX

z = c 1 x 1 + c 2 x c n x n

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Τμήμα Εφαρμοσμένης Πληροφορικής

Διαχείριση ενεργειακών πόρων & συστημάτων Πρακτικά συνεδρίου(isbn: )

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Τμήμα Εφαρμοσμένης Πληροφορικής

Γραμμικός Προγραμματισμός Μέθοδος Simplex

ΑΛΓΟΡΙΘΜΟΙ Ενότητα 10

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Επιχειρησιακή Έρευνα I

Τμήμα Μηχανικών Πληροφορικής ΤΕ Η μέθοδος Simplex. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 19/01/2017

Η μέθοδος Simplex. Γεωργία Φουτσιτζή-Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. Τμήμα Μηχανικών Πληροφορικής ΤΕ

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΜΙΑ ΣΥΓΚΡΙΤΙΚΗ ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΕΛΕΤΗ

Θεωρία Αλγόριθμοι Γραμμικής Βελτιστοποίησης

Επιχειρησιακή Έρευνα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Συγκριτική Υπολογιστική Μελέτη Αλγορίθµων Εξωτερικών Σηµείων

Επιχειρησιακή Έρευνα I

ΟΠΤΙΚΟΠΟΙΗΣΗ ΑΛΓΟΡΙΘΜΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

Γραμμικός Προγραμματισμός

Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ

Η αγορά μπορεί να απορροφήσει οποιονδήποτε αριθμό σε θρανία και καρέκλες, αλλά το πολύ πέντε τραπέζια. Έχουμε το εξής π.γ.π.

Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυϊκότητα. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 1/12/2016

3.7 Παραδείγματα Μεθόδου Simplex

Επιχειρησιακή Έρευνα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΕΝΑΣ ΝΕΟΣ ΤΡΟΠΟΣ ΔΗΜΙΟΥΡΓΙΑΣ ΤΥΧΑΙΩΝ ΒΕΛΤΙΣΤΩΝ ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ ΚΑΙ ΜΙΑ ΣΥΓΚΡΙΤΙΚΗ ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΕΛΕΤΗ

Ο Αλγόριθµος της Simplex

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήμη των Αποφάσεων, Διοικητική Επιστήμη

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού

Τμήμα Μηχανικών Πληροφορικής ΤΕ Πρόβλημα Μεταφοράς. Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα

Ανάλυση Ευαισθησίας. αναζητάμε τις επιπτώσεις που επιφέρει στη βέλτιστη λύση η

Γραμμικός Προγραμματισμός

12/3/2012. Εργαστήριο Αλγόριθμοι Γραμμικής Βελτιστοποίησης. Lab03 1. Διανυσματοποίηση Βρόχων. Αρχικοποίηση μητρών (preallocating)

Γραμμικός Προγραμματισμός

Βασική Εφικτή Λύση. Βασική Εφικτή Λύση

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Β. Βασιλειάδης. Επιχειρησιακή Έρευνα Διάλεξη 5 η -Αλγόριθμος Simplex

Ένα ολοκληρωμένο σύστημα για την διδασκαλία του αναθεωρημένου αλγορίθμου simplex A complete training system for teaching revised simplex algorithm

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. του Τσιπλίδη Κωνσταντίνου, ΑΜ: 3615 ΥΛΟΠΟΙΗΣΗ ΠΡΟΛΥΤΙΚΩΝ ΔΙΑΔΙΚΑΣΙΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΩΝ ΤΥΠΟΥ SIMPLEX MΕ PYTHON

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Υπολογιστική πολυπλοκότητα του πρωτεύοντος αλγόριθμου εξωτερικών σημείων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήµη τωναποφάσεων, ιοικητική Επιστήµη

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

Επιχειρησιακή Έρευνα

Προβλήµατα Μεταφορών (Transportation)

Συστήματα Παραγωγής ΠΑΡΑΔΕΙΓΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

Το Πρόβλημα Μεταφοράς

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΜΑΘΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος. Ε. Μαρκάκης. Επικ. Καθηγητής

Παράλληλος προγραμματισμός περιστροφικών αλγορίθμων εξωτερικών σημείων τύπου simplex ΠΛΟΣΚΑΣ ΝΙΚΟΛΑΟΣ

Διερεύνηση και Αξιολόγηση Διαφορετικών Κανόνων Περιστροφής για τον Αναθεωρημένο Αλγόριθμο Simplex

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου

Γραµµικός Προγραµµατισµός (ΓΠ)

Λύσεις θεμάτων Επιχειρησιακής Έρευνας (17/09/2014)

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Επιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex

min f(x) x R n b j - g j (x) = s j - b j = 0 g j (x) + s j = 0 - b j ) min L(x, s, λ) x R n λ, s R m L x i = 1, 2,, n (1) m L(x, s, λ) = f(x) +

ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ ΔΙΑΛΕΞΗ 6 η -Η ΔΥΙΚΗ ΜΕΘΟΔΟΣ SIMPLEX

d k 10 k + d k 1 10 k d d = k i=0 d i 10 i.

Εφαρμοσμένη Βελτιστοποίηση

Εισαγωγή. Οπως είδαµε για την εκκίνηση της Simplex χρειαζόµαστε µια Αρχική Βασική Εφικτή Λύση. υϊσµός

ΠΡΟΛΟΓΟΣ. Θεσσαλονίκη, Μάρτιος Οι συγγραφείς. Κ. Παπαρρίζος, Ν. Σαμαράς, Α. Σιφαλέρας.

Προβλήματα Μεταφορών (Transportation)

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Αλγεβρική Μέθοδος Επίλυσης Γραμμικών Μοντέλων Η μέθοδος SIMPLEX (Both Simple and Complex ) 1

3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 2 ΠΡΟΒΛΗΜΑΤΑ ΔΙΚΤΥΩΝ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ

2. ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Παράλληλος προγραμματισμός περιστροφικών αλγορίθμων εξωτερικών σημείων τύπου simplex ΠΛΟΣΚΑΣ ΝΙΚΟΛΑΟΣ

ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΙΚΑ ΣΤΟΙΧΕΙΑ. 1.1 Εισαγωγή

Μέθοδοι Βελτιστοποίησης

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 8/6/2017 Διδάσκων: Ι. Λυχναρόπουλος

Η μέθοδος Simplex. Χρήστος Γκόγκος. Χειμερινό Εξάμηνο ΤΕΙ Ηπείρου

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων

ΑΚΕΡΑΙΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

Transcript:

Τμήμα Εφαρμοσμένης Πληροφορικής ΑΛΓΟΡΙΘΜΟΙ ΓΡΑΜΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ 8 Ο ΕΞΑΜΗΝΟ ΣΑΜΑΡΑΣ ΝΙΚΟΛΑΟΣ, ΕΠ. ΚΑΘΗΓΗΤΗΣ Μεθοδολογία αλγορίθμων τύπου simplex (5) Βήμα 0: Αρχικοποίηση (Initialization). Στο βήμα αυτό υπολογίζονται όλες οι μεταβλητές οι οποίες είναι απαραίτητες για να αρχίσει να εκτελείται ο αλγόριθμος. Βήμα 1: Έλεγχος βελτιστότητας (Test of Optimality). Πραγματοποίηση ελέγχου βελτιστότητας για το τρέχον βασικό σημείο. Αν αυτό είναι βέλτιστο, τότε οι υπολογισμοί σταματούν και τερματίζεται οι αλγόριθμος. 2 Μεθοδολογία αλγορίθμων τύπου simplex (6) Βήμα 2: Επιλογή εισερχόμενης και εξερχόμενης μεταβλητής (Choice of Entering and Leaving Variable). Η επιλογή της εισερχόμενης και εξερχόμενης μεταβλητής μπορεί να γίνει εφαρμόζοντας διαφορετικούς κανόνες περιστροφής. Αν δεν μπορεί να επιλεγεί η εξερχόμενη μεταβλητή τότε το Γ.Π. είναι απεριόριστο. Η ανταλλαγή αυτή των μεταβλητών γεωμετρικά σημαίνει μετακίνηση από ένα βασικό σημείο σε ένα άλλο γειτονικό. Βήμα 3: Περιστροφή (Pivoting). Στο βήμα αυτό υπολογίζεται ηνέαβάση, οι τιμές των βασικών μεταβλητών καθώς και οι δυϊκές και οι δυϊκές χαλαρές μεταβλητές. 3 Lecture08 1

Simplex (1) Πράξεις Πολ/σμοί ιαιρέσεις Προσθέσεις Αφαιρέσεις Κλασική Αναθεωρημένη m(n m) + n + 1 m(n + 2) + 1 m(n m + 1) m(n + 1) Σύνολο n(2m + 1) m(2m 1) + 1 m(2 (2n +3)+1 +1 Μνήμη Καλύτερη Περίπτωση Χειρότερη Περίπτωση Κλασική Αναθεωρημένη Ο(mn) Ο(m 2 ) Ο(mn) Ο(m 2 ) Ο(mn) Ο(mn) 4 Simplex (2) Έστω Β μια εφικτή βάση του προβλήματος min{c T x: Ax = b, x 0} όπου c, x R n, b R m και Α R mxn, Β -1 είναι η αντίστροφη βασική μήτρα και x B =B -1 b 0, είναι οι τιμές των βασικών μεταβλητών. Basis Inverse RHS w Τ = (c Β ) Τ Β -1 z = (c B ) T b Β -1 x B = Β -1 b 5 Simplex (3) Περιγραφή Τιμές βασικών μεταβλητών Υπολογισμός x Β = b =B - 1 b Τιμή αντικειμενικής συνάρτησης z = (c - B ) T B 1 b Στήλη περιστροφής h l =B - 1 A.l υϊκές χαλαρές μεταβλητές s N =(c N ) T -(c B ) T B - 1 A N 6 Lecture08 2

Simplex (4) ΕΠΙΛΟΓΗ ΕΙΣΕΡΧΟΜΕΝΗΣ ΜΕΤΑΒΛΗΤΗΣ Κανόνας του Dantzig ή Κανόνας του ελαχίστου στοιχείου (Least element rule) ή s = min l { s :s < 0 j N} j j { } s = max s : s < 0 j N l j j Οι δείκτες j ονομάζονται επιλέξιμοι (elligible). Η εισερχόμενη μεταβλητή είναι η x l με l=n(t). 7 Simplex (5) ΕΠΙΛΟΓΗ ΕΞΕΡΧΟΜΕΝΗΣ ΜΕΤΑΒΛΗΤΗΣ Έλεγχος ελαχίστου λόγου (minimum ratio test). 1 ( B b ) ( B 1 b ) r i xk = xb[r] = = min : hil > 0 i= 1,2,,m hrl hil Η εξερχόμενη μεταβλητή είναι η x k με k=b(r). Σε περίπτωση που δεν υπάρχει h il > 0, ισχύει x k = και το Γ.Π. είναι απεριόριστο. 8 Simplex (6) Ο αριθμός r ονομάζεται δείκτης περιστροφής (pivot index) Το στοιχείο h rl στοιχείο περιστροφής (pivot element) Στην περίπτωση που το τρέχον σημείο είναι εκφυλισμένο ισχύει x k =0 και δεν υπάρχει βλί βελτίωση στην αντικειμενική συνάρτηση σε σχέση με την προηγούμενη επανάληψη. Στην περίπτωση που η επιλογή της εισεχόμενης μεταβλητής ή ο έλεγχος ελαχίστου λόγου προσδιορίζει περισσότερους από έναν επιλέξιμους δείκτες, τότε το φαινόμενο αυτό ονομάζεται δεσμός (tie). 9 Lecture08 3

Simplex (7) ΑΝΑΝΕΩΣΗ ΣΥΝΟΛΩΝ ΕΙΚΤΩΝ B ΚΑΙ N Η ανανέωση πραγματοποιείται χρησιμοποιώντας τις ακόλουθες σχέσεις BB Β \ {k} {l} και N Ν \{l} {k} Η βασική μεταβλητή x k θα γίνει μη-βασική ενώ η μη-βασική x l θα γίνει βασική. Κατασκευάστηκε η νέα βάση Β. Ηδιαδικασία εναλλαγής των δεικτών (k, l) ονομάζεται περιστροφή (pivoting). 10 Simplex (8) ΑΝΑΝΕΩΣΗ ΤΗΣ ΒΑΣΗΣ Η ανανέωση της βάσης Β R mxm γίνεται με τη σχέση όπου E 1 Β -1 = (ΒΕ) -1 = Ε -1 Β -1 1 = h 1/ h h ml / h / h 1l r r r 1 11 Simplex (9) Χαρακτηριστικό του γραμμικού προγραμματισμού μεγάλης κλίμακας (large-scale linear programming) είναι ότι ο υπολογισμός της αντίστροφης Β -1 εκφράζεται σαν γινόμενο μητρών. Αυτή η αναπαράσταση της Β -1 ονομάζεται μορφή γινομένου της αντίστροφης (product form of the inverse). Υπολογιστικό πλεονέκτημα: απαιτείται η αποθήκευση μόνο των διανυσμάτων εκείνων που σχηματίζουν τις στοιχειώδεις μήτρες και όχι ολόκληρων των μητρών. 12 Lecture08 4

Simplex (10) Ο αλγόριθμος simplex εφαρμόζεται στο Γ.Π. της μορφής min z = μ. π. Ax = b x 0 c T x Βήμα 0: (Αρχικοποίηση). Ξεκινά με μια εφικτή βασική διαμέριση (Β, Ν) του γραμμικού προβλήματος. Υπολόγισε τη μήτρα Β -1 και τα διανύσματα x B,s N και w. Βήμα 1: (Έλεγχος βελτιστότητας). Αν s N πρόβλημα είναι βέλτιστο. 0, STOP, το 13 Simplex (11) Βήμα 2: (Επιλογή εισερχόμενης/εξερχόμενης μεταβλητής). α) Επέλεξε την εισερχόμενη μεταβλητή με τον κανόνα του Dantzig. Η μεταβλητή x l είναι εισερχόμενη, όπου l=n(t). β) Υπολόγισε τη στήλη περιστροφής h l. Αν ισχύει h l 0, STOP, το πρόβλημα είναι απεριόριστο. ιαφορετικά, επέλεξε την εξερχόμενη μεταβλητή με τον έλεγχο ελαχίστου λόγου. Η μεταβλητή x k είναι εξερχόμενη όπου x B(r) =x k. Βήμα 3: (Περιστροφή). Ανανέωσε τα σύνολα δεικτών Β και Ν. Θέσε Ν(t)=k και B(r)=l. Υπολόγισε τη νέα αντίστροφη της βάσης, Β -1 και τα διανύσματα x B και s N. Πήγαινε στο Βήμα 1. Επαναλαμβάνονται τα βήματα 1 ως 3. 14 Simplex (12) ΠΑΡΑΤΗΡΗΣΕΙΣ Ο αλγόριθμος simplex χρειάζεται μια εφικτή βάση για να ξεκινήσει. Σε μερικά προβλήματα η βασική λύση, στην οποία όλες οι χαλαρές μεταβλητές είναι βασικές και όλες οι μεταβλητές απόφασης μη βασικές, είναι εφικτή. Μια επανάληψη του αλγορίθμου συμπληρώνεται όταν προσδιοριστεί η επόμενη βασική διαμέριση, [B,N]. Σε περίπτωση που το Γ.Π. περιλαμβάνει εξαρχής ισοτικούς περιορισμούς, πρέπει να γίνει έλεγχος αν η επαυξημένη μήτρα [Α b] είναι πλήρους βαθμού. Κάποιες από τις αρχικές μεταβλητές θα επιλεγούν ως βασικές. 15 Lecture08 5

Περατότητα Αλγορίθμου Simplex Το πλήθος των βασικών λύσεων είναι πεπερασμένο. Μια βάση κατασκευάζεται παίρνοντας m διαφορετικούς δείκτες από το σύνολο των n δεικτών {1,2,,n}. Το πλήθος αυτών των διαφορετικών συνδυασμών είναι n n! = m m!( n m)! το οποίο είναι πεπερασμένο. Αν η αντικειμενική συνάρτηση ελαττώνεται αυστηρά, ((c T x) k+1 <(c T x) k ), καμία από τις βάσεις δεν θα επαναληφθεί. 16 Παράδειγμα (1) Να λυθεί το παρακάτω γραμμικό πρόβλημα min x 1 + x 2 4x 3 st s.t. x 1 +x 2 + 2x 3 9 x 1 + x 2 x 3 2 x 1 + x 2 + x 3 4 x j 0, j= 1, 2, 3 17 Παράδειγμα (2) Μετά την προσθήκη χαλαρών μεταβλητών το γραμμικό πρόβλημα με χρήση μητρών γράφεται [ ] T c = 1 1 4 0 0 0 1 1 2 1 0 0 9 A= 1 1 1 0 1 0,b 2 = 1 1 1 0 0 1 4 18 Lecture08 6

Παράδειγμα (3) ΕΠΑΝΑΛΗΨΗ 1. Βήμα 0. Β=[4 5 6] και Ν=[1 2 3] {1ηβασικήδιαμέριση} 1 0 0 B= 0 1 0 = B 0 0 1 1 9 4 1 x B = B b= 2 0 w T =(c B ) T B -1 =[0 0 0]B -1 =[0 0 0] s N =(c N ) T -(c B ) T B -1 A N =[1 1-4]-[0 0 0]=[1 1-4] Εφικτή 19 Παράδειγμα (4) Βήμα 1. Επειδή s N 0, ο αλγόριθμος δε σταματά Βήμα 2. α) Επιλογή εισερχόμενης s l =min{s j :s j <0 j N}=min{x, x, -4}=-4 t=3 και l=n(t)=n(3)=3, Άρα x l =x 3 εισερχόμενη β) h l =h 3 =B -1 A.3 = 2 1 0 1 x k =x B[r] =min{x B[i] /h i3 :h i3 >0}=min{9/2, x, 4/1}=4 r=3 και k=b(r)=b(3)=6, Άρα x k =x 6 εξερχόμενη 20 Παράδειγμα (5) Βήμα 3. N(t)=k N(3)=6 N=[1 2 6] B(r)=l B(3)=3 B=[4 5 3] 1 0 2 1 0 2 = = = 0 0 1 0 0 1 1 T xb = 6,w = [ 0 0 4 ],sn = [ 3 5 4] 4 1 1 1 1 E 0 1 1,B E B 0 1 1 21 Lecture08 7

Παράδειγμα (6) ΕΠΑΝΑΛΗΨΗ 2. Βήμα 1. Επειδή s N 0, ο αλγόριθμος δε σταματά Βήμα 2. α) Επιλογή εισερχόμενης s l =min{s j :s j <0 j N}=min{-3, x, x}=-3 t=1 και l=n(t)=n(1)=1, Άρα x l =x 1 εισερχόμενη β) h l =h 1 =B -1 A.1 = 3 0 0 1 x k =x B[r] =min{x B[i] /h i3 :h i3 >0}=min{1/3, x, x}=1/3 r=1 και k=b(r)=b(1)=4, Άρα x k =x 4 εξερχόμενη 22 Παράδειγμα (7) Βήμα 3. N(t)=k N(1)=4 N=[4 2 6] B(r)=l B(1)=1 B=[1 5 3] 1 1 2 0 0 0 3 3 3 = = = 1 1 1 0 1 0 3 3 3 1 3 T xb = 6,w = [ 1 0 2 ],sn = [ 1 4 2] 13 3 1 1 1 1 E 0 1 0,B E B 0 1 1 23 Παράδειγμα (8) ΕΠΑΝΑΛΗΨΗ 3. Βήμα 1. Επειδή s N 0, ο αλγόριθμος σταματά Η βέλτιστη βασική διαμέριση είναι Β=[1 5 3], Ν=[4 2 6] Η βέλτιστη λύση είναι x T =(x 1, x 2, x 3, x 4, x 5, x 6 )=(1/3, 0 13/3, 0, 6, 0) Η βέλτιστη λύση της αντικειμενικής συνάρτησης είναι z=w T b=-17 24 Lecture08 8