Pricing Asian option under mixed jump-fraction process

Σχετικά έγγραφα
Vulnerable European option pricing with the time-dependent for double jump-diffusion process

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A

Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul. 2016

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

High order interpolation function for surface contact problem

DOI /J. 1SSN

Levin Lin(1992) Oh(1996),Wu(1996) Papell(1997) Im, Pesaran Shin(1996) Canzoneri, Cumby Diba(1999) Lee, Pesaran Smith(1997) FGLS SUR

Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009

& Risk Management , A.T.E.I.

d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i

The martingale pricing method for pricing fluctuation concerning stock models of callable bonds with random parameters

A Control Method of Errors in Long-Term Integration

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

ΑΠΟΣΗΜΖΖ ΠΑΡΑΓΩΓΩΝ ΔΤΡΩΠΑΗΚΟΤ ΣΤΠΟΤ (CURRENCY OPTIONS, BINARY OPTIONS, COMPOUND OPTIONS, CHOOSER OPTIONS, LOOKBACK OPTIONS, ASIAN OPTIONS)

Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations

TRM +4!5"2# 6!#!-!2&'!5$27!842//22&'9&2:1*;832<

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

Arbitrage Analysis of Futures Market with Frictions

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

No General Serial No JOURNAL OF XIAMEN UNIVERSITY Arts & Social Sciences CTD F CTD

WTO. ( Kanamori and Zhao,2006 ;,2006), ,,2005, , , 1114 % 1116 % 1119 %,

Financial Risk Management

Analiza reakcji wybranych modeli

Mean-Variance Hedging on uncertain time horizon in a market with a jump

Positive solutions for a multi-point eigenvalue. problem involving the one dimensional

( ) ( ) ( ) ( ) ( ) 槡 槡 槡 ( ) 槡 槡 槡 槡 ( ) ( )

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

Non-Markovian dynamics of an open quantum system in fermionic environments

The Student s t and F Distributions Page 1

ΑΝΕΛΙΞΕΙΣ LÉVY: ΘΕΩΡΙΑ & ΕΦΑΡΜΟΓΕΣ ΣΤΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ

, 11 1 / 49

Study of limit cycles for some non-smooth Liénard systems

90 [, ] p Panel nested error structure) : Lagrange-multiple LM) Honda [3] LM ; King Wu, Baltagi, Chang Li [4] Moulton Randolph ANOVA) F p Panel,, p Z

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

P ²ÒÏ 1,,.Š. μ μ 1, 2, 1, 3, ,. ʳÌÊÊ. Œ œ ˆ ŒˆŠˆ ˆŒ œ ƒ Š ˆ -2Œ ˆ Š Œ ˆ ˆ Œ ˆŸ Œ ˆ. ² μ Ê ² Annals of Nuclear Energy

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM



Theory and Effectiveness Evaluation of the Chinese Government s Intervention in the Housing Market

Cointegrated Commodity Pricing Model

Αλγοριθμική ασυμπτωτική ανάλυση πεπερασμένης αργής πολλαπλότητας: O ελκυστής Rössler

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

ACTA MATHEMATICAE APPLICATAE SINICA Sep., ( MR (2000) Õ È 32C17; 32F07; 35G30; 53C55

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Adaptive grouping difference variation wolf pack algorithm

(1) P(Ω) = 1. i=1 A i) = i=1 P(A i)

Motion analysis and simulation of a stratospheric airship

Financial Risk Management

Appendix A. Stability of the logistic semi-discrete model.

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) XJ130246).

Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4,

Riemann Hypothesis: a GGC representation

Decision making under model uncertainty: Hamilton-Jacobi-Belman-Isaacs approach, weak solutions and applications in Economics and Finance

2002 Journal of Software

ER-Tree (Extended R*-Tree)

On shift Harnack inequalities for subordinate semigroups and moment estimates for Lévy processes

Solutions - Chapter 4

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

Key Formulas From Larson/Farber Elementary Statistics: Picturing the World, Second Edition 2002 Prentice Hall

A research on the influence of dummy activity on float in an AOA network and its amendments

Oscillation criteria for two-dimensional system of non-linear ordinary differential equations

4.6 Autoregressive Moving Average Model ARMA(1,1)

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Analysis of optimal harvesting of a prey-predator fishery model with the limited sources of prey and presence of toxicity

On Strong Product of Two Fuzzy Graphs

Blowup of regular solutions for radial relativistic Euler equations with damping

Ó³ Ÿ , º 7(163).. 755Ä764 ˆ ˆŠ ˆ ˆŠ Š ˆ .. ± Î,. ˆ. ³. ƒ ˆ, Œμ ±

Markov chains model reduction

552 Lee (2006),,, BIC,. : ; ; ;. 2., Poisson (Zero-Inflated Poisson Distribution), ZIP. Y ZIP(φ, λ), φ + (1 φ) exp( λ), y = 0; P {Y = y} = (1 φ) exp(

TeSys contactors a.c. coils for 3-pole contactors LC1-D

ΕΝΑ ΜΑΘΗΜΑΤΙΚΟ ΜΟΝΤΕΛΟ ΕΞΕΛΙΞΗΣ ΕΝΕΡΓΟΥ ΚΑΙ ΣΒΗΣΜΕΝΟΥ ΗΦΑΙΣΤΕΙΟΥ. Γεώργιος Αιµ. Σκιάνης και ηµήτριος Βαϊόπουλος

Math 6 SL Probability Distributions Practice Test Mark Scheme

172,,,,. P,. Box (1980)P, Guttman (1967)Rubin (1984)P, Meng (1994), Gelman(1996)De la HorraRodriguez-Bernal (2003). BayarriBerger (2000)P P.. : Casell

ΚΑΛΟΓΡΙΔΟΥ ΑΝΑΣΤΑΣΙΑ ΕΝΕΡΓΕΙΑΚΑ ΠΑΡΑΓΩΓΑ ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΔΘΝΙΚΗ ΥΟΛΗ ΓΗΜΟΙΑ ΓΙΟΙΚΗΗ ΚΑ ΔΚΠΑΙΓΔΤΣΙΚΗ ΔΙΡΑ ΣΔΛΙΚΗ ΔΡΓΑΙΑ

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

- 1+x 2 - x 3 + 7x x x x x x 2 - x 3 - -

Supplementary Information for

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

Quantitative Finance and Investment Core Formula Sheet. Spring 2017

Χρονοσειρές Μάθημα 3

JMAK の式の一般化と粒子サイズ分布の計算 by T.Koyama

Linear singular perturbations of hyperbolic-parabolic type

is the home less foreign interest rate differential (expressed as it

The conditional CAPM does not explain assetpricing. Jonathan Lewellen & Stefan Nagel. HEC School of Management, March 17, 2005

Experimental Study of Dielectric Properties on Human Lung Tissue

ΑΝΑΛΥΣΗ ΔΙΤΙΜΩΝ ΧΡΟΝΟΣΕΙΡΩΝ: ΒΡΟΧΟΠΤΩΣΕΙΣ ΤΟΥ ΝΟΜΟΥ ΙΩΑΝΝΙΝΩΝ

Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices

Polyvinyl Chloride PVC, The effects of organotin thermal stabilizers on the dehydrochlorination of TPUΠPVC blends

ΧΩΡΙΚΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΤΩΝ ΤΙΜΩΝ ΤΩΝ ΑΚΙΝΗΤΩΝ SPATIAL ECONOMETRIC MODELS FOR VALUATION OF THE PROPERTY PRICES

7 Η ΕΞΕΡΓΕΙΑ. 7.1 Εισαγωγή και ορισμός της έννοιας της εξέργειας. 7.2 Ενέργεια, ύλη και ποιότητα

ΑΝΑΛΥΣΗ ΚΑΙ ΠΡΟΒΛΕΨΗ ΤΟΥ ΣΥΝΟΛΙΚΟΥ ΑΡΙΘΜΟΥ ΤΩΝ ΓΕΩΡΓΙΚΩΝ ΕΛΚΥΣΤΗΡΩΝ ΤΗΣ ΕΛΛΑΔΑΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ ΧΡΟΝΙΚΗΣ ΤΑΣΗΣ

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

Transcript:

3 17 ( ) Journal of Eas China Normal Universiy (Naural Science) No. 3 May 17 : 1-641(17)3-9-1 - ( 18) : -. Iô.... : -; ; : O11.6 : A DOI: 1.3969/j.issn.1-641.17.3.3 Pricing Asian opion under mixed jump-fracion process GENG Yan-jing ZHOU Sheng-wu (Deparmen of Mahemaics China Universiy of Mining and Technology Xuzhou Jiangsu 18 China) Absrac: This paper mainly sudied he geomeric average Asian opion pricing on he condiion ha he underlying asse followed mixed jump-fracion process. The general Iô s lemma and he self-financing dynamic sraegy were obained by using he parial differenial equaion of such opion pricing in he mixed fracional environmen wih jump. Wih he combinaion of boundary condiion an analyic formula for he geomeric average Asian opion was derived by solving he parial differenial equaion. The numerical experimens were showed o discuss he influence of differen parameers on he opion value. The resuls were he generalizaion of some exising resuls which was closer o he real financial marke. Key words: mixed jump-fracion process; geomeric average Asian opion; parial differenial equaion. Kemna Vors [1 : 16-6-3 : (13XK3) :. E-mail: gengyanjing ah@qq.com. :. E-mail: zswcum@163.com.

3 ( ) 17 ; Wong Cheung [ ; Ching-Sung Chou [3 -. ( ) ;. Markov Iô. Cheridio [4-. Kuznesov [6 Zähle [7 Mishura [8 Black-Scholes. [9-1 Black-Scholes. Poisson. Farshid Mehrdous [11 ; Nisha Rambeerich [1 -.. [13 - ; [14 - Iô. [1 [16 - Iô. FoadShokrollahi [17 -. - - - Black-Scholes. 1. ds = (µ q )S d + σs (dm + dn ) (1) µ q σ M H = B + B H B B H H ( 1) ; N = Q λ Q λ Q B B H. 1( - Iô ) W = B + B H + N f( x) C 1 (R + R R) f( W ) τ (τ W τ)dτ f x (τ W τ )dτ f x (τ W τ )τ H 1 dτ L (P)

3 : - 31 f( W ) =f( ) + x (τ W τ)dw τ + [ τ (τ W τ) + 1 (1 + λ + HτH 1 ) f x (τ W τ) dτ. () N i i. W = B + B H + Q λ i = 1 W ( ) 1 ( 1 ) ( 1 ) Iô f( 1 W ) = f( ) + 1 1 [ τ + 1 (1 + HτH 1 ) f 1 x λ dτ + x x db τ + [ f( W ) = f( 1 W 1 ) + 1 τ + 1 (1 + HτH 1 ) f x λ dτ + x f( W ) 1 f( 1 W 1 ) f( 1 W ) 1 [ f( W ) =f( ) + τ + 1 (1 + HτH 1 ) f i ( ) f( W ) =f( ) + x λ x 1 x db τ + dτ + x db τ + x dbh τ + f( 1 W 1 ) f( 1 W ). 1 [ τ + 1 (1 + HτH 1 ) f x λ dτ x + x db τ + x dbh τ + f(τ W τ ) f(τ W τ ). τ g(φ) C (R R) (dq dq ) = λd g(q ) Iô [14 τ [ g(q τ ) g(q τ ) = g (Q τ )dq τ + λ g (Q τ )dτ. 1 x dbh τ 1 x dbh τ. W = B + B H + Q λ τ [ f(τ W τ ) f(τ W τ ) = x dq τ + λ f x dτ. f( W ) =f( ) + + x db τ + =f( ) + [ τ + 1 (1 + HτH 1 ) f x λ x dτ x dbh τ + x dq τ + λ f x dτ [ τ + 1 (1 + λ + HτH 1 ) f x λ dτ + x x dw τ.

3 ( ) 17 (1) { S = S exp (µ τ q τ )dτ σ (H + λ + ) + σw }. (3) f( W ) = S exp { (µ τ q τ )dτ σ (H + λ + ) + σw } 1. 3 S - (1) K T ( T) V c ( J S ) : + (r q )S + 1 S σ S V S + J (lns lnj ) J = r V (4) T < S < + < J < + σ = σ (1 + H H 1 + λ) V c (T J T S T ) = (J T K) +. V = V c ( J S ) J J = e 1 [ ( dj = J 1 lns τ dτ + 1 ) lns lns lnj = J. ln Sτdτ : dp = r P d ds = (µ q )S d + σs (db + db H + dn ) θ = (θ θ 1 ) V = θ P + θ 1 S 1 dv = θ dp + θ 1 ds + θ 1 q S d dv = θ dp + θ 1 ds + θ 1 q S d = (V θ 1 S )r d + θ 1 (µ q )S d + θ 1 σs dw + θ 1 q S d = (V θ 1 S )r d + θ 1 µ S d + θ 1 σs dw. [ dv = + (µ q )S + lns lnj S J J d + 1 σ S (1 + H H 1 + λ) V S d + σs dw. S

3 : - 33 θ 1 = S µ S S d + r V d r S S d + σs S dw = d + [(µ q )S d + σs dw S + dj + 1 J V S [σ S (d + HH 1 d + λd) r V = + (r ln S ln J q )S S + J J + 1 σ S (1 + HH 1 + λ) V. σ = S σ (1 + H H 1 + λ). r V = + (r q )S + lns lnj S J + 1 J σ S V S. 4 S - (1) K T ( T) V c ( J S ) T V c ( J S ) =(J ST ) 1 T exp {r (T ) T r (r θ q θ ) T θ = T dθ T σ H = r θ dθ + (σ H ) (T H H ) + (σ λ ) (T ) }N(d 1 ) Ke T rθdθ N(d ) () (λσ + σ )(T ) 4T σ (T H H ) (T ) + Hσ (T H+1 H+1 ) (H + 1)(T ) [ 1 4H(T H+1 H+1 ) (H + 1)(T H H ) + H(T H+ H+ ) 1 σ T (H + 1)(T H H σλ = T ( λ + 1σ) ) 3T (σλ ) (T ) + (σh ) (T H H ) + 1 d 1 = T ln J S T K T + r (T ) (σ λ ) (T ) + (σh ) (T H H ) d = d 1 (σλ ) (T ) + (σh ) (T H H ) N(x) = 1 x e d. π 3 ( T) V c ( J S ) (4). ξ = 1 T [ lnj + (T )lns V c ( J S ) = U( ξ )

34 ( ) 17 = U + U lnj lns ξ T = U T = U S ξ TS J ξ TJ V S = ( U T ) ( T ) U = S ξ TS TS ξ T TS U ξ (4) U ( + r q 1 ) T σ U + 1 ( T ) U T ξ σ T ξ U(T ξ T ) = (e ξt K) +. = r U (6) α() β() γ() τ = γ() η τ = ξ + α() W(τ η τ ) = U( ξ )e β() U = e β()[ W τ γ () β ()W + W α () η τ U ξ = e β() W η τ U ξ = ( e β() W ) = e β() W ξ η τ ητ (6) γ () W [ τ + α () + (r q 1 σ ) T W T η τ + 1 σ( T ) W T ητ (r + β ())W =. (7) γ () + 1 σ( T ) ( = α () + r q 1 T σ) T = r + β () = T α(t) = β(t) = γ(t) = β() = α() = T T r θ dθ γ() = σ + λσ 6 (r θ q θ )dθ σ + λσ (T )3 T 4T (T ) + Hσ (T H+1 H+1 ) T(H + 1) [ + Hσ T H H + (T H+ H+ ) H T (H + 1) σ (T H H ) 4(T H+1 H+1 ) T(H + 1)

3 : - 3 (7) W τ = W ητ W( η ) = (e η K) + (8) (8) W(τ η τ ) = 1 πτ = 1 πτ = I 1 + I. + + (e y K)e (y η τ ) 4τ dy e y e (y η τ ) 4τ dy K πτ + e (y η τ ) 4τ dy I 1 = 1 πτ = e τ+η τ + 1 + π y η τ τ τ = e y e (y η τ ) 4τ dy = e τ+η τ η τ +τ τ 1 + π e (y η τ τ) 4τ dy e d = e τ+η τ N ( ητ + τ lnk τ ). I = K πτ + y η τ τ = e (y η τ ) 4τ dy = K + π η τ π e ( ητ lnk d = KN ). π (8) ( W(τ η τ ) = e τ+η ητ + τ lnk ) ( ητ lnk ) τ N KN τ τ d 1 = τ + η τ lnk τ = d = η τ lnk τ = = e τ+η τ N(d1 ) KN(d ). (9) (σλ ) (T ) + (σh ) (T H H ) + 1 T ln J ST (σ λ ) (T ) + (σh ) (T H H ) 1 T ln J S T K T + r (T ) (σ λ ) (T ) + (σh ) (T H H ) = d 1 (σλ ) (T ) + (σh ) (T H H ). K T + r (T )

36 ( ) 17 1 S - (1) K T ( T) V p ( J S ) T V p ( J S ) = (J ST ) 1 T exp {r (T ) 4. r θ dθ + (σ H ) (T H H ) + (σ λ ) (T ) }N( d 1 ) + Ke T rθdθ N( d ). (1) V (T J T S T ) = (K J T ) + 3 (4) V p ( J S ). 3 4. - (1). S = 8 K = 8 σ =.4 r =. q =.1 S = 8 = T = 1 r =. q =.1 σ =.4 K = 8... 1. 1.. /V 4 4 3 3 1 1 H =.1 H =.3 H =. H =.7 H =.9 3 4 6 7 8 9 1 11 1 /S /V P 6 4 3 1 1 H H =.1 H =.3 H =. H =.7 H =.9 3 4 6 7 8 9 1 11 1 /S Fig. 1 Asian opion pricing corresponding o differen H 3 4. 3 4.

13Ï ñò : Ü êa-*ñ.e æªï ½d 4 6 lambda = lambda = lambda = 4 lambda = 6 ⴻ ᵏᵳԧ /V 3 lambda = lambda = lambda = 4 lambda = 6 ⴻ䏼ᵏᵳԧ /V 3 1 1 4 3 1 3 4 6 7 8 9 1 11 1 㛑 ԧṭ /S 4 6 Fig. Asian opion pricing corresponding o differen λ ⴻ䏼ᵏᵳԧ /Vp 1 ⴻ ᵏᵳԧ /Vc 1 1 1. ᵏ. 䰤 T. ã3 Fig. 3.8.6.4 H. ᮠ 䎛ᯟ 1 1. 1. ᵏ. 䰤 T..8.6.4. ᮠ H 䎛ᯟ 1. âda ê! Ï múæªï d 'X The relaion of Hurs exponen expiry dae and Asian opion ⴻ䏼ᵏᵳԧ /Vp 1 8 1 1 14 16 18 㛑 ԧṭ /S éaøó λ æªï d ã ⴻ ᵏᵳԧ /Vc 37 1 1 1 8 8 6 T ã4 Fig. 4 4 ( bda Lam ᕪᓖ 䐣䏳 6 T bda Lam ᕪᓖ 䐣䏳 a rý! Ï múæªwþï d 'X The relaion of jump inensiy expiry dae and Asian opion Ø b d v Ü êa-*ñl ÏL Iˆo ÚnÚgK üñí Ñ Ü êùk$äe a æªï ½d. $^CþO {é½d.?1 )

38 ( ) 17.. [ [ 1 KEMNA A G Z VORST A C F. A pricing mehod for opions based on average asse values [J. Journal of Banking and Finance 199 14(1): 113-19. [ WONG H Y CHEUNG H L. Geomeric Asian opions: Valuaion and calibraion wih sochasic volailiy [J. Quaniaive Finance 4 4(3): 31-314. [ 3 CHOU C S LIN H J. Asian opions wih jumps [J. Saisics & Probabiliy 6 6(14): 1983-1993. [ 4 CHERIDITO P. Regularizing fracional Brownian moion wih a view owards sock price modelling [D. Zürich: Swiss Federal Insiue of Technology 1. [ CHERIDITO P. Arbirage in fracional Brownian moion models [J. Finance and Sochasics 3 7(4): 33-3. [ 6 KUZNETSOV Y A. The absence of arbirage in a model wih fracal Brownian moion [J. Russian Mahemaical Surveys 1999 4(4): 847-848. [ 7 ZÄHLE M. Long range dependence no arbirage and he Black Scholes formula [J. Sochasics and Dynamics (): 6-8. [ 8 MISHURA Y S. Sochasic Calculus for Fracional Brownian Moion and Relaed Processes [M. Berlin: Springer 8. [ 9 WANG X T. Scaling and long-range dependence in opion pricing I: Pricing European opion wih ransacion coss under he fracional Black Scholes model [J. Physica A 1 389(3): 438-444. [1 WANG X T. Scaling and long-range dependence in opion pricing V: Muliscaling hedging and implied volailiy smiles under he fracional Black Scholes model wih ransacion coss [J. Physica A 11 39(9): 163-1634. [11 MEHRDOUST F SABER N. Pricing arihmeic Asian opion under a wo-facor sochasic volailiy model wih jumps [J. Journal of Saisical Compuaion and Simulaion 1 8(18): 3811-3819. [1 RAMBEERICH N. A high order finie elemen scheme for pricing opions under regime swiching jump diffusion processes [J. Journal of Compuaional and Applied Mahemaics 16 3(): 83-96. [13 XIAO W L. Pricing currency opions in a fracional Brownian moion wih jumps[j. Economic Modelling 1 7(): 93-94. [14 PENG B. Pricing Asian power opions under jump-fracion process [J. Journal of Economics Finance and Adminisraive Science 1 17(33): -9. [1. [J. ( ) 13 3(6): 9-9. [16. [J. 13 3(11): 1377-138. [17 SHOKROLLAHI F. Acuarial approach in a mixed fracional Brownian moion wih jumps environmen for pricing currency opion [J. Advances in Difference Equaions 1 7(1): 1-8. (: )