(Γραμμικές) Αναδρομικές Σχέσεις

Σχετικά έγγραφα
(Γραμμικές) Αναδρομικές Σχέσεις

(Γραμμικές) Αναδρομικές Σχέσεις

Γεννήτριες Συναρτήσεις

Γεννήτριες Συναρτήσεις

a n + 6a n a n 2 + 8a n 3 = 0, a 0 = 1, a 1 = 2, a 2 = 8

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n

Αναδρομικές Σχέσεις «ιαίρει-και-βασίλευε»

Γεννήτριες Συναρτήσεις

Υπολογιστικά & Διακριτά Μαθηματικά

a n = 3 n a n+1 = 3 a n, a 0 = 1

n ίδια n διαφορετικά n n 0 n n n 1 n n n n 0 4

- εξίσωση που εκφράζει τον n-οστό όρο a n της ακολουθίας, - µέσω ενός ή περισσότερων όρων από τους a 0, a 1,..., a n 1, - για κάθε n n 0, όπου n 0 N.

Ασυμπτωτικός Συμβολισμός

Συνδυαστική Απαρίθμηση

P(n, r) = n! P(n, r) = n r. (n r)! n r. n+r 1 r n!

Ψηφιακή Επεξεργασία Σημάτων

κ.λπ. Ισχύει πως x = 100. Οι διαφορετικές λύσεις αυτής της εξίσωσης χωρίς κανένα περιορισμό είναι

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

ΠΛΗ 20, 1 η ΟΣΣ (Συνδυαστική)

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθµηση Υπολογισµός (µε συνδυαστικά επιχειρήµατα) του πλήθους των διαφορετικών αποτελεσµάτων ενός «πειράµατος». «Πείραµα»: διαδικασία µ

Συνδυαστική Απαρίθμηση

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

α n z n = 1 + 2z 2 + 5z 3 n=0

ΠΛΗ 20, 1 η ΟΣΣ (Συνδυαστική)

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής

Αναδρομικές ακολουθίες και Θεωρία Αριθμών

(a 1, b 1 ) (a 2, b 2 ) = (a 1 a 2, b 1 b 2 ).

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Συνδυαστική Απαρίθμηση

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1

Πεπερασμένα Αυτόματα. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

1 GRAMMIKES DIAFORIKES EXISWSEIS DEUTERAS TAXHS

Κανονικές Γλώσσες. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

2.3 Πολυωνυμικές Εξισώσεις

Διαίρει-και-Βασίλευε. Διαίρει-και-Βασίλευε. MergeSort. MergeSort. Πρόβλημα Ταξινόμησης: Είσοδος : ακολουθία n αριθμών (α 1

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ.

Συνδυαστική Απαρίθμηση

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

Σχέσεις. ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Συνδυαστική Απαρίθμηση

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΚΕΦΑΛΑΙΟ 5 ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΗΤΙΚΗ ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ

ιδάσκοντες: Φ. Αφράτη, Σ. Ζάχος,. Σούλιου

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

, ο αριθμός στον οποίο αντιστοιχεί ο 2 καλείται δεύτερος όρος της ακολουθίας και τον συμβολίζουμε συνήθως με

ΜΕΜ251 Αριθμητική Ανάλυση

Συνδυαστική Απαρίθµηση

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

Γιώργος Καριπίδης-Ανθούλα Σοφιανοπούλου ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΡΙΑ ΣΥΝΑΡΤΗΣΗΣ

ιµελής Σχέση ιατεταγµένο ζεύγος (α, β): ύο αντικείµενα (όχι κατ ανάγκη διαφορετικά) σε καθορισµένη σειρά. Γενίκευση: διατεταγµένη τριάδα (α, β, γ), δι

Εισαγωγικές Έννοιες. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο

Ανισώσεις Γινόμενο και Ανισώσεις Πηλίκο

Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων

3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι

ιακριτές Μέθοδοι για την Επιστήμη των Υπολογιστών

Αρχή του Περιστερώνα. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα.

Ασυμπτωτικός Συμβολισμός

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

Δυναμικός Προγραμματισμός

Αριθμητική Ανάλυση και Εφαρμογές

A N A B P Y T A ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ. 1 (α + β + γ) [(α-β) 2 +(α-γ) 2 +(β-γ) 2 ] και τις υποθέσεις

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ

Να επιλύουμε και να διερευνούμε την εξίσωση αx + β = 0, βάση τη γραφική παράσταση της ευθείας y = ax + β.

Εισαγωγή στην Ανάλυση Αλγορίθμων

Δομές Δεδομένων & Αλγόριθμοι

Αρχή Εγκλεισµού-Αποκλεισµού

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ

Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

υναμικός Προγραμματισμός

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Συνδυασμοί C(n, k): #επιλογών k από n διακεκριμένα αντικείμενα (διαθέσιμα σε ένα «αντίγραφο»).

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές

Ασυμπτωτικός Συμβολισμός

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις Επαναληψης

1 Ανάλυση αλγορίθµων. 2 Συµβολισµοί O, Ω και Θ. 3 Αναδροµικές εξισώσεις

Διάλεξη 04: Παραδείγματα Ανάλυσης

υναμικός Προγραμματισμός

Fast Fourier Transform

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

Δυναμικός Προγραμματισμός

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Α' Γενικού Λυκείου. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ

Γραμμική Διαφορική Εξίσωση 2 ου βαθμού

ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων

Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις-προσθήκες: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ΚΕΦΑΛΑΙΟ 5 ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

Μη γράφετε στο πίσω μέρος της σελίδας

Transcript:

(Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες:. Φωτάκης. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Αναδρομικές Σχέσεις Αναπαράσταση ακολουθίας α εκφράζοντας α n ως συνάρτηση α n-1, α n-2,, με δεδομένες αρχικές συνθήκες. Ακολουθία Fibonacci F n = F n-1 + F n-2, F 0 = 1 και F 1 = 1. Συχνά F 0 = 0 και F 1 = 1 ως αρχικές συνθήκες. Γεωμετρική πρόοδος με λόγο λ: α n = λα n-1, α 0 = 1. Αριθμητική πρόοδος με βήμα ω: α n = α n-1 + ω, α 0 = 0. Άθροισμα n πρώτων φυσικών: α n = α n-1 + n, α 0 = 0. Αναδρομικές σχέσεις προκύπτουν «φυσιολογικά» από την περιγραφή του προβλήματος. Ανάλυση αναδρομικών αλγορίθμων, συνδυαστική,... «Επίλυση» για υπολογισμό n-οστού όρου: όχι πάντα εύκολη. Γραμμικές σχέσεις με σταθερούς συντελεστές. Σχέσεις που προκύπτουν από διαίρει-και-βασίλευε αλγόριθμους. ιακριτά Μαθηματικά (Άνοιξη 2017) Αναδρομικές Σχέσεις 2

Παράδειγμα Οι Πύργοι του Ανόι: #κινήσεων ώστε n δίσκοι, όλοι διαφορετικού μεγέθους, να μεταφερθούν από αριστερά στα δεξιά χωρίς κάποιος δίσκος να βρεθεί πάνω από κάποιον άλλο μικρότερο. T(n): #κινήσεων για n 1 δίσκους. Αρχική συνθήκη: Τ(0) = 0, Τ(1) = 1, Τ(2) = 3, Τ(3) = 7, Τ(n) = 2T(n-1) + 1 ιακριτά Μαθηματικά (Άνοιξη 2017) Αναδρομικές Σχέσεις 3

Παράδειγμα Αναδρομική σχέση για #πενταδικών συμβ/ρών μήκους n με άρτιο αριθμό 0. α 0 = 1, α 1 = 4, α 2 = 17,... Κάθε συμβ/ρά μήκους n-1 με άρτιο αριθμό 0 δίνει 4 συμβ/ρές μήκους n με άρτιο αριθμό 0, με προσθήκη ενός από τα 1, 2, 3, 4. Έτσι παίρνουμε 4α n-1 συμβ/ρές μήκους n με άρτιο αριθμό 0. Κάθε συμβ/ρά μήκους n-1 με περιττό αριθμό 0 δίνει 1 συμβ/ρά μήκους n με άρτιο αριθμό 0, με προσθήκη ενός 0. Έτσι παίρνουμε 5 n-1 α n-1 (διαφορετικές) συμβ/ρές μήκους n με άρτιο αριθμό 0. Συνεπώς α n = 5 n-1 + 3α n-1, με α 0 = 1. ιακριτά Μαθηματικά (Άνοιξη 2017) Αναδρομικές Σχέσεις 4

Παράδειγμα Αναδρομική σχέση για #δυαδικών συμβ/ρών μήκους n που δεν περιέχουν το 00 (δύο συνεχόμενα 0). α 0 = 1, α 1 = 2, α 2 = 3, α 3 = 5,... Κάθε συμβ/ρά μήκους n-1 χωρίς 00 δίνει μία συμβ/ρά μήκους n χωρίς 00 με την προσθήκη του ψηφίου 1. Έτσι παίρνουμε α n-1 συμβ/ρές μήκους n χωρίς 00. Κάθε συμβ/ρά μήκους n-1 χωρίς 00 που τελειώνει σε 1 δίνει άλλη μία συμβ/ρά μήκους n χωρίς 00 με την προσθήκη του ψηφίου 0. Έτσι παίρνουμε α n-2 (διαφορετικές) συμβ/ρές μήκους n χωρίς 00. Συνεπώς α n = α n-1 + α n-2, με α 0 = 1, α 1 = 2. ιακριτά Μαθηματικά (Άνοιξη 2017) Αναδρομικές Σχέσεις 5

Γραμμικές Αναδρομικές Σχέσεις με Σταθερούς Συντελεστές Αναδρομική σχέση όπου C 0,, C k σταθερές, καλείται γραμμική αναδρομική σχέση με σταθερούς συντελεστές και οδηγό συνάρτηση f(n). Αν C 0 0 και C k 0, είναι τάξης k. Αν f(n) = 0, είναι ομογενής. Π.χ. α n + α n-1 = 2 n, α n -2α n-3 = 0, α n -2α n-5 + α n-10 = n 3 Ακολουθία (ή «λύση») της σχέσης προσδιορίζεται μοναδικά από τιμές k αρχικών (ή διαδοχικών) όρων (αρχικές συνθήκες). Αν δίνονται τιμές < k όρων (ή μηδιαδοχικών), μπορεί > 1 «λύσεις». Αν δίνονται τιμές > k διαδοχικών όρων, μπορεί καμία «λύση». ιακριτά Μαθηματικά (Άνοιξη 2017) Αναδρομικές Σχέσεις 6

Επίλυση με Γεννήτριες Συναρτήσεις Για γραμμικές αναδρομικές σχέσεις με σταθερούς συντελεστές είναι (συνήθως) εύκολο να υπολογίσουμε τη ΓΣ της ακολουθίας. Η ακολουθία που αντιστοιχεί στη ΓΣ αποτελεί τη «λύση» της σχέσης. Παράδειγμα (πύργοι του Ανόι): α n 2α n-1 = 1 με α 0 = 0. Για κάθε n 1 πολλαπλασιάζουμε με x n και αθροίζουμε: Αν συμβολίσ. με Α(x) τη ΓΣ της α n έχουμε τώρα μιασχέσηγιαα(x): Χρησιμοποιώντας α 0 = 0 και λύνοντας ως προς A(x): Κλασματική ανάλυση: «Λύση»: ιακριτά Μαθηματικά (Άνοιξη 2017) Αναδρομικές Σχέσεις 7

Επίλυση με Γεννήτριες Συναρτήσεις Παράδειγμα: α n 3α n-1 = 5 n-1 με α 0 = 1. Για κάθε n 1 πολλαπλασιάζουμε με x n και αθροίζουμε: Αν συμβολίσ. με Α(x) τη ΓΣ της α n έχουμε τώρα μιασχέσηγιαα(x): Χρησιμοποιώντας α 0 = 1 και λύνοντας ως προς A(x): Κλασματική ανάλυση: «Λύση»: ιακριτά Μαθηματικά (Άνοιξη 2017) Αναδρομικές Σχέσεις 8

Γραμμικές Αναδρομικές Σχέσεις με Σταθερούς Συντελεστές Αναδρομική σχέση όπου C 0,, C k σταθερές, καλείται γραμμική αναδρομική σχέση με σταθερούς συντελεστές και οδηγό συνάρτηση f(n). Αν C 0 0 και C k 0, είναι τάξης k. Αν f(n) = 0, είναι ομογενής. Π.χ. α n + α n-1 = 2 n, α n -2α n-3 = 0, α n -2α n-5 + α n-10 = n 3 Ακολουθία (ή «λύση») της σχέσης προσδιορίζεται μοναδικά από τιμές k αρχικών (ή διαδοχικών) όρων (αρχικές συνθήκες). Αν δίνονται τιμές < k όρων (ή μηδιαδοχικών), μπορεί > 1 «λύσεις». Αν δίνονται τιμές > k διαδοχικών όρων, μπορεί καμία «λύση». «Λύση»: άθροισμα ομογενούς λύσης και ειδικής λύσης. Ομογενής λύση: προκύπτει από ομογενή και αρχικές συνθήκες. Ειδική λύση: προκύπτει από οδηγό συνάρτηση f(n). ιακριτά Μαθηματικά (Άνοιξη 2017) Αναδρομικές Σχέσεις 9

Ομογενής Λύση Αναζητούμε λύσεις της μορφής α n = x n, x 0. Έτσι θεωρούμε την:... που είναι ισοδύναμη με την χαρακτηριστική εξίσωση: Εξετάζουμε μόνο την περίπτωση που η χ.ε. έχει πραγματικές ρίζες. Αν η χ.ε. έχει k ρίζες x 1,, x k πολλαπλότητας 1, ομογενής λύση: Α 1,..., Α k σταθερές που προσδιορίζονται από αρχικές συνθήκες. Αφού τα x i ρίζες της χ.ε., κάθε A i x in επαληθεύει την ομογενή σχέση. Αυτή η διαδικασία οδηγεί στη συνολική λύση για ομογενείς αναδρομικές σχέσεις (π.χ Fibonacci). ιακριτά Μαθηματικά (Άνοιξη 2017) Αναδρομικές Σχέσεις 10

Ομογενής Λύση: Παραδείγματα α n = 4α n-2 με α 0 = 2 και α 1 = 0: Χαρακτηριστική εξίσωση x 2 4 = 0με ρίζες 2 και -2. Μορφή (ομογενούς) λύσης α n = Α 1 2 n + Α 2 (-2) n n = 0: 2 = A 1 + A 2 Τελικά έχουμε Α 1 = Α 2 = 1. n = 1: 0 = 2A 1 2A 2 (Ομογενής) λύση α n = 2 n + (-2) n Αν α 0 = 1 και α 1 = 2, τότε α n = 2 n α n 6α n-1 + 8α n-2 = 0 με α 0 = 2 και α 1 = -1. Χαρακτηριστική εξίσωση x 2 6x + 8 = 0 με ρίζες 2 και 4. Μορφή (ομογενούς) λύσης α n = Α 1 2 n + Α 2 4 n n = 0: 2 = A 1 + A 2 Τελικά έχουμε Α 1 = 9/2 και Α 2 = -5/2. n = 1: -1 = 2A 1 +4A 2 (Ομογενής) λύση α n = 9 2 n-1 10 4 n-1 ιακριτά Μαθηματικά (Άνοιξη 2017) Αναδρομικές Σχέσεις 11

Ομογενής Λύση: Πολλαπλές Ρίζες Αν χ.ε. έχει κάποια ρίζα x 1 πολλαπλότητας m, τμήμα ομογενούς λύσης που αντιστοιχεί στην x 1 είναι: Ομογενής σχέση επαληθεύεται από κάθε A i n m-i x 1n γιατί x 1 αποτελεί ρίζα της χ.ε. και της 1 ης, 2 ης,..., (m-1)-οστής παραγώγου της. Π.χ. α n 6α n-1 + 9α n-2 = 0 με α 0 = 1 και α 1 = 6. Χαρακτηριστική εξίσωση x 2 6x + 9= 0 με διπλή ρίζα 3. Μορφή (ομογενούς) λύσης α n = Α 1 n 3 n + Α 2 3 n n = 0: 1 = A 2 Τελικά έχουμε Α 1 = Α 2 = 1. n = 1: 6 = 3A 1 +3A 2 (Ομογενής) λύση α n = (n+1)3 n ιακριτά Μαθηματικά (Άνοιξη 2017) Αναδρομικές Σχέσεις 12

Ειδική Λύση... όταν η οδηγός συνάρτηση είναι γινόμενο πολυωνύμου του n με εκθετική συνάρτηση του n. Θεωρούμε οδηγό συνάρτηση: Αν f(n) είναι πολυώνυμο, θεωρούμε ότι β = 1. Όταν β δεν είναι ρίζα της χ.ε., τότε ειδική λύση: Όταν βρίζατης χ.ε. πολλαπλότητας m, τότε ειδική λύση: P 1,, P t+1 σταθερές που προσδιορίζονται ώστε η ειδική λύση να ικανοποιεί την αναδρομική σχέση με οδηγό συνάρτηση f(n). ιακριτά Μαθηματικά (Άνοιξη 2017) Αναδρομικές Σχέσεις 13

Ειδική Λύση: Παραδείγματα α n 6α n-1 + 8α n-2 = 3n 2 14n + 12. To β = 1 δεν είναι ρίζα της χ.ε. Μορφή ειδικής λύσης: α (p) n = P 1 n 2 + P 2 n + P 3 Προσδιορίζουμε τα P 1, P 2, P 3 αντικαθιστώντας στην αναδρομική σχέση και εξισώνοντας συντελεστές αντίστοιχων όρων: Άρα P 1 = 1, P 2 = 2, και P 3 = 2. Ειδική λύση: α (p) n = n 2 + 2n + 2 ιακριτά Μαθηματικά (Άνοιξη 2017) Αναδρομικές Σχέσεις 14

Ειδική Λύση: Παραδείγματα α n 4α n-1 + 3α n-2 = (n+1) 2 n To β = 2 δεν είναι ρίζα της χ.ε. (ηχ.ε. έχει ρίζες 1 και 3). Μορφή ειδικής λύσης: α n (p) = (P 1 n + P 2 ) 2 n Προσδιορίζουμε τα P 1, P 2 αντικαθιστώντας στην αναδρομική σχέση και εξισώνοντας συντελεστές αντίστοιχων όρων: Άρα P 1 = 4 και P 2 = 12. Ειδική λύση: α (p) n = (4n + 12) 2 n ιακριτά Μαθηματικά (Άνοιξη 2017) Αναδρομικές Σχέσεις 15

Ειδική Λύση: Παραδείγματα α n 4α n-1 + 4α n-2 = (n+1) 2 n To β = 2 είναι ρίζα της χ.ε. πολλαπλότητας 2. Μορφή ειδικής λύσης: α n (p) = n 2 (P 1 n + P 2 ) 2 n Προσδιορίζουμε τα P 1, P 2 αντικαθιστώντας στην αναδρομική σχέση και εξισώνοντας συντελεστές αντίστοιχων όρων: Άρα P 1 = 1/6 και P 2 = 1. Ειδική λύση: α (p) n = (n 3 / 6 + n 2 ) 2 n ιακριτά Μαθηματικά (Άνοιξη 2017) Αναδρομικές Σχέσεις 16

Ειδική Λύση: Παραδείγματα α n 6α n-1 + 9α n-2 = (n 2 +1) 3 n To β = 3 είναι ρίζα της χ.ε. πολλαπλότητας 2. Μορφή ειδικής λύσης: α n (p) = n 2 (P 1 n 2 + P 2 n + P 3 ) 3 n Προσδιορίζουμε τα P 1, P 2, P 3 αντικαθιστώντας στην αναδρομική σχέση και εξισώνοντας συντελεστές αντίστοιχων όρων: Άρα P 1 = 1/12, P 2 = 1/3, και P 3 = 11/12. Ειδική λύση: α (p) n = n 2 (n 2 /12 + n/3 + 11/12) 3 n ιακριτά Μαθηματικά (Άνοιξη 2017) Αναδρομικές Σχέσεις 17

Συνολική Λύση Υπολογίζουμε την ειδική λύση (γενική μορφή και τιμές των P i ). Υπολογίζουμε την ομογενή λύση χωρίςτιμέςγιαταα i. Προσδιορίζουμε τα Α i από το άθροισμα ειδικής και ομογενούς λύσεις για αρχικές συνθήκες. Λύση που ικανοποιεί αναδρομική σχέση (ειδική λύση) και τις αρχικές συνθήκες (ομογενής λύση). Μορφή συνολικής λύσης δεν εξαρτάται από αρχικές συνθήκες. Μόνο συντελεστές Α i ομογενούς λύσης εξαρτώνται από αρχικές συνθήκες. ιακριτά Μαθηματικά (Άνοιξη 2017) Αναδρομικές Σχέσεις 18

Συνολική Λύση: Παραδείγματα α n 6α n-1 + 8α n-2 = 3n 2 14n + 12με α 0 = 1 και α 1 = 4. Α 1 = -3/2 και Α 2 = 1/2 Συνολική λύση α n = n 2 + 2n + 2 3 2 n-1 + 2 4 n-1 α n 4α n-1 + 4α n-2 = (n+1) 2 n με α 0 = 0 και α 1 = 2. Α 1 = -1/6 και Α 2 = 0 Συνολική λύση α n = -(1/6) n 2 n (n 2 + 6n 1) ιακριτά Μαθηματικά (Άνοιξη 2017) Αναδρομικές Σχέσεις 19