6.642, Continuum Electromechanics, Fall 2004 Prof. Markus Zahn Lecture 8: Electrohydrodynamic and Ferrohydrodynamic Instabilities

Σχετικά έγγραφα
6.642 Continuum Electromechanics

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

6.642 Continuum Electromechanics

Α Ρ Ι Θ Μ Ο Σ : 6.913

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

Προβολές και Μετασχηματισμοί Παρατήρησης

Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s

T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ

Note: Please use the actual date you accessed this material in your citation.

(i) f(x, y) = xy + iy (iii) f(x, y) = e y e ix. f(z) = U(r, θ) + iv (r, θ) ; z = re iθ

ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Αγωγιμότητα σε ημιαγωγούς

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

k = j + x 3 j + i + + f 2

Second Order Partial Differential Equations

= df. f (n) (x) = dn f dx n

F19MC2 Solutions 9 Complex Analysis


ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής

6.641, Electromagnetic Fields, Forces, and Motion Prof. Markus Zahn Lecture 7: Polarization and Conduction

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ. Εµβαδά., x 1 x f

(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x

Note: Please use the actual date you accessed this material in your citation.

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant

Note: Please use the actual date you accessed this material in your citation.

MÉTHODES ET EXERCICES


z k z + n N f(z n ) + K z n = z n 1 2N

Α Δ Ι. Παρασκευή 13 Δεκεμβρίου 2013

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

ΤΥΧΑΙΑ ΔΙΑΝΥΣΜΑΤΑ F(x) 1, x n. 2. Η F είναι μη φθίνουσα και δεξιά συνεχής ως προς κάθε μεταβλητή. 3.

Déformation et quantification par groupoïde des variétés toriques

Differentiation exercise show differential equation

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΚΥΚΛΟΙ ΚΑΤΕΡΓΑΣΙΑΣ. κατά τον άξονα Ζ.

SPECIAL FUNCTIONS and POLYNOMIALS

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του όγδοου φυλλαδίου ασκήσεων.

Gradient Descent for Optimization Problems With Sparse Solutions

Τύπος TAYLOR. f : [a, b] R f (n 1) (x) συνεχής x [a, b] f (n) (x) x (a, b) ξ μεταξύ x και x 0. (x x 0 ) k k! f(x) = f (k) (x 0 ) + R n (x)

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Παράγωγος Συνάρτησης. Ορισμός Παραγώγου σε ένα σημείο. ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) = lim.

f a o gy s m a l nalg d co h n to h e y o m ia lalg e br coh the oogy lagebr



X x C(t) description lagrangienne ( X , t t t X x description eulérienne X x 1 1 v x t


2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim

Ν Κ Π 6Μ Θ 5 ϑ Μ % # =8 Α Α Φ ; ; 7 9 ; ; Ρ5 > ; Σ 1Τ Ιϑ. Υ Ι ς Ω Ι ϑτ 5 ϑ :Β > 0 1Φ ς1 : : Ξ Ρ ; 5 1 ΤΙ ϑ ΒΦΓ 0 1Φ ς1 : ΒΓ Υ Ι : Δ Φ Θ 5 ϑ Μ & Δ 6 6

HMY 799 1: Αναγνώριση. συστημάτων. Διαλέξεις 6 7. Συνάφεια (συνέχεια) Μη παραμετρική αναγνώριση γραμμικών

x3 + 1 (sin x)/x d dx (f(g(x))) = f ( g(x)) g (x). d dx (sin(x3 )) = cos(x 3 ) (3x 2 ). 3x 2 cos(x 3 )dx = sin(x 3 ) + C. d e (t2 +1) = e (t2 +1)

ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:

HMY 799 1: Αναγνώριση Συστημάτων

Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ

Α θ ή ν α, 7 Α π ρ ι λ ί ο υ

Μαθηµατικός Λογισµός ΙΙ

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Homework 8 Model Solution Section

m i N 1 F i = j i F ij + F x

ΠΑΡΟΡΑΜΑΤΑ ΕΚΔΟΣΗ 12 ΜΑΡΤΙΟΥ 2018

1 Γραμμικές συναρτήσεις

c(x 1)dx = 1 xf X (x)dx = (x 2 x)dx = 2 3 x3 x 2 x 2 2 (x 1)dx x 2 f X (x)dx = (x 3 x 2 )dx = 2 4 x4 2 3 x3

< = ) Τ 1 <Ο 6? <? Ν Α <? 6 ϑ<? ϑ = = Χ? 7 Π Ν Α = Ε = = = ;Χ? Ν !!! ) Τ 1. Ο = 6 Μ 6 < 6 Κ = Δ Χ ; ϑ = 6 = Σ Ν < Α <;< Δ Π 6 Χ6 Ο = ;= Χ Α

Chapter 5, 6 Multiple Random Variables ENCS Probability and Stochastic Processes

Note: Please use the actual date you accessed this material in your citation.

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

D Alembert s Solution to the Wave Equation

Ó³ Ÿ , º 7(163).. 755Ä764 ˆ ˆŠ ˆ ˆŠ Š ˆ .. ± Î,. ˆ. ³. ƒ ˆ, Œμ ±

(a) = lim. f y (a, b) = lim. (b) = lim. f y (x, y) = lim. g g(a + h) g(a) h g(b + h) g(b)

ΜΑΘΗΜΑΤΙΚΑ κατεύθυνσης Γ ΛΥΚΕΙΟΥ

Dark matter from Dark Energy-Baryonic Matter Couplings

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ., x 1

On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University)


Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Solutions to Exercise Sheet 5


Constitutive Relations in Chiral Media

y T - yy z x T + yy T + yz T + yx T + xy T + zy T - xz T - zx T - zz T - xx T + xx T + zx T + xz T + zz T - zy T - xy T - yx T - yz

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

!"#! $%&'$% %(' ') '#*#(& ( #'##+,-'!$%(' & ('##$%(' &#' & ('##$%('. )!#)! ##%' " (&! #!$"/001

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen

Α Ρ Η Θ Μ Ο : ΠΡΑΞΗ ΣΡΟΠΟΠΟΙΗΗ ΠΡΑΞΗ ΚΑΣΑΘΕΗ ΟΡΩΝ

Αρµονική Ανάλυση. Ενότητα: Μετασχηµατισµός Fourier. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

P(Ο Χρήστος κερδίζει) = 1 P(Ο Χρήστος χάνει) = 1 P(X > Y ) = 1 2. P(Ο Χρήστος νικά σε 7 από τους 10 αγώνες) = 7

Basic Formulas. 8. sin(x) = cos(x π 2 ) 9. sin 2 (x) =1 cos 2 (x) 10. sin(2x) = 2 sin(x)cos(x) 11. cos(2x) =2cos 2 (x) tan(x) = 1 cos(2x)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2008 ΕΥΤΕΡΟ ΜΕΡΟΣ :

u = 0 u = ϕ t + Π) = 0 t + Π = C(t) C(t) C(t) = K K C(t) ϕ = ϕ 1 + C(t) dt Kt 2 ϕ = 0

Discretization of Generalized Convection-Diffusion

d 1 d 1

Coupled Fluid Flow and Elastoplastic Damage Analysis of Acid. Stimulated Chalk Reservoirs

# % % % % % # % % & %

Veliine u mehanici. Rad, snaga i energija. Dinamika. Meunarodni sustav mjere (SI) 1. Skalari. 2. Vektori - poetak. 12. dio. 1. Skalari. 2.


Transcript:

6.64, Continuum Electromechnics, Fll 4 Prof. Mrus Zhn Lecture 8: Electrohydrodynmic nd Ferrohydrodynmic Instilities I. Mgnetic Field Norml Instility Courtesy of MIT Press. Used with permission. A. Equilirium ( ξ= ) = H = H ; 1 Poe Pod + H H = ρ gx + Pod x > Po ( x) = ρ gx + Poe x <. Perturtions: ( t yy zz) j e ω H = H i + h = + x, H H ix h 1 coth h c xc sinh Ψ = h 1 d xd coth Ψ sinh 1 coth h e xe sinh Ψ = h 1 f xf coth Ψ sinh 6.64, Continuum Electromechnics Lecture 8 Prof. Mrus Zhn Pge 1 of 13

C. oundry Conditions v = v = xc xf Ψ = Ψ = c f v xd,e = + vyd,e + vzd,e vxd = vxe = jωξ t y ix iy iz y z n = i i i y 1 + + y x y z e i = ij j γ i pn T n nn n = + y i = x n = n = 1 i x P + P' = Txx nx + Txy ny + Txz ξ ξ nz + γ + y 1 perturtion perturtion Hh Hh x y x z Equilirium ( ξ= ) second order P = Txx P 1 od Poe = H H Perturtions 1 P P H h H h ' d ξ ' e ξ = ' d ξ ' e ξ γ ξ dp P P P P g P od ( ξ ) = ( ξ ) + = ξ + = ρ ξ + ' ' ' ' d od d d d x= dp P P P P g P oe ( ξ ) = ( ξ ) + = ξ + = ρ ξ + ' ' ' ' e oe e e e x= 6.64, Continuum Electromechnics Lecture 8 Prof. Mrus Zhn Pge of 13

1 coth c p v c jωρ sinh x = p 1 d d coth v sinh x 1 coth e p v e jωρ sinh x = p 1 f f coth v sinh x jωρ d ω ρ p = coth v = coth ξ d x jωρ e ω ρ Pe = coth v = coth ξ x h h xd xe d = coth Ψ e = coth Ψ ni = = i i i i ( ) i + ( h h ) i + ( h h ) i y x y z x xd xe x yd ye y + ( hzd hze) iz = = h = h xd xe n h = = ix iy iz ( H H ) ix + ( hxd hxe ) ix + ( hyd hye ) iy + ( hzd hze ) iz y = i h h i h h + H H i H H i y z yd ye y zd ze z y d ( e) hyd hye = H H + jy Ψ Ψ = jy H H ξ y d ( e) hzd hze = H H + jz Ψ Ψ = jz H H ξ ( H H ) Ψ Ψ = + ξ d e 6.64, Continuum Electromechnics Lecture 8 Prof. Mrus Zhn Pge 3 of 13

coth Ψ = coth Ψ coth Ψ d = Ψ coth d coth Ψe 1 = ( H H ) ξ coth H H ξ coth Ψ e = coth + Ψ d = + coth + e coth H H ξ coth coth e D. Dispersion Eqution ωρ ωρ ρgξ coth ξ+ρ gξ coth ξ H coth H H coth ξ H coth H H ξ coth = γ ξ coth + coth ω ( ) ( ) ( ρ coth + ρ coth ) = ( ρ ρ ) g + γ coth+ coth H H cothcoth H, H H H 1 1 ( ) = = = = ω ( ρ coth + ρ coth ) = g( ρ ρ ) + γ + tnh tnh E. Short Wvelength Limit ( 1, 1) tnh tnh 1 ( ) g f ω ( ρ + ρ ) = ( ρ ρ ) + γ = + 6.64, Continuum Electromechnics Lecture 8 Prof. Mrus Zhn Pge 4 of 13

Incipience of Instility f = df d ( ) = = γc + c ( ) = γ + 1 g( ρ ρ ) + γ = γ + + γ ( ) = 4g ( ρ ρ) γ + 1 = 4g( ρ ρ ) γ = γ c g ( ρ ρ ) γ Courtesy of MIT Press. Used with permission. 6.64, Continuum Electromechnics Lecture 8 Prof. Mrus Zhn Pge 5 of 13

Courtesy of MIT Press. Used with permission. II. Electric Field Norml Instility A. Polriztion Forces Courtesy of MIT Press. Used with permission. ε ε D ω D ε ε ( ρ coth + ρ coth ) = g ( ρ ρ ) + γ + εε ε ε tnh tnh 6.64, Continuum Electromechnics Lecture 8 Prof. Mrus Zhn Pge 6 of 13

. Perfectly conducting lower fluid ( ε ) Courtesy of MIT Press. Used with permission. V coth coth g coth ω ( ρ + ρ ) = ( ρ ρ ) + γ ε Courtesy of MIT Press. Used with permission. 6.64, Continuum Electromechnics Lecture 8 Prof. Mrus Zhn Pge 7 of 13

III. Tngentil Grdient Fields Courtesy of MIT Press. Used with permission. 6.64, Continuum Electromechnics Lecture 8 Prof. Mrus Zhn Pge 8 of 13

A. Equilirium V V x V E= i i 1 + ;r R x;e = θ θ r θ r R θ R y i E x y 1 + R lim P x =ρ gx + P Po Po + Txx = o o P x =ρ gx + P o o T 1 εe 1 ε E xx = y = T = 1 ( ε ε ) E = P P xx o o. Perturtions 1 α e coth x α sinh Φ = β 1 coth β e Φ x sinh lim e e x x = Φ = Φ 1 coth α α p j sinh v ωρ x = β 1 p coth v β sinh x v α v β = = j ωξ x x P jωρ ω ρ = vx = ξ P jωρ ω ρ = vx = ξ 6.64, Continuum Electromechnics Lecture 8 Prof. Mrus Zhn Pge 9 of 13

C. oundry Conditions n = i i i y x y z n E = i i i x y z ( ex ex ) i + x ( ey ey ) i + y ( ez ez ) i = z y z ( y y ) ( z z ) i e e i e e = y e y = ey jy Φ = j y Φ Φ =Φ Φ e z = ez jz Φ = jz Φ ni εe = i i i i E ( ε ε ) i + ( ε e ε e ) i + ( ε e ε e ) i y + ( εez εez) i = z x y z y x x x y y y ε e ε e + j ξe ε ε = x x y Φ ε + ε + j E ε ε ξ = y ξ jy E ( ε ε) Φ= ( ε + ε ) ξ ξ pn = T n + γ + n y i ij j i i = x, nx = 1 p = T + T n + T n γ ξ xx xy y xz z Txx = 1 ε Ex Ey E 1 1 z Ey ey Ey Eey = ε + = ε + Txy = ε Ey ex T = ε e e xz x z 6.64, Continuum Electromechnics Lecture 8 Prof. Mrus Zhn Pge 1 of 13

T xy n second order y T xz n third order z 1 d ( ξ ) = ε ε T E ξ E e = xx y y x de = E ξ ε ε Eey de T =εe xx ξ ε Ee de =εe ξ j Φ ε E y T =( ε ε ) E ξ j E Φ ( ε ε ) xx de y y dp = ξ + = ρ ρ ξ p p P P g T de P P g ρ ρ ξ = ε ε E ξ jy ΦE ( ε ε) γ ξ ω ( ρ + ρ) ξ g( ρ ρ) ξ = de ( ε ε) E ξ γ ξ j E ( ε ε ) ( j E ) ( ε ε ) ξ y y ( ε + ε ) ω de E ε ( ) g( ) ( ) E + ε ρ + ρ = ρ ρ + γ + ε ε + ε ε E R y Uniform tngentil field lwys stilizes. Grdient field stilizes, if higher permittivity fluid is in stronger electric field. System stle even if hevier fluid ove if de ( ε ε ) E > g( ρ ρ ) 6.64, Continuum Electromechnics Lecture 8 Prof. Mrus Zhn Pge 11 of 13

Courtesy of MIT Press. Used with permission. 6.64, Continuum Electromechnics Lecture 8 Prof. Mrus Zhn Pge 1 of 13

Courtesy of MIT Press. Used with permission. 6.64, Continuum Electromechnics Lecture 8 Prof. Mrus Zhn Pge 13 of 13