arxiv: v3 [math.pr] 24 Nov 2017

Σχετικά έγγραφα
Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Homework for 1/27 Due 2/5

On Generating Relations of Some Triple. Hypergeometric Functions

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Solutions: Homework 3

The Heisenberg Uncertainty Principle

1. For each of the following power series, find the interval of convergence and the radius of convergence:


Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Solve the difference equation

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

Uniform Estimates for Distributions of the Sum of i.i.d. Random Variables with Fat Tail in the Threshold Case

A study on generalized absolute summability factors for a triangular matrix

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

Supplement to A theoretical framework for Bayesian nonparametric regression: random series and rates of contraction

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

Higher Order Properties of Bootstrap and Jackknife Bias Corrected Maximum Likelihood Estimators

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

p n r

α β

LAD Estimation for Time Series Models With Finite and Infinite Variance

On Inclusion Relation of Absolute Summability

Probability theory STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN15/MASM23 TABLE OF FORMULÆ. Basic probability theory

Lecture 3: Asymptotic Normality of M-estimators

Digital Signal Processing: A Computer-Based Approach

Proof of Lemmas Lemma 1 Consider ξ nt = r

The Equivalence Theorem in Optimal Design

Adaptive Covariance Estimation with model selection

SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Econometrica, Vol. 81, No. 3, May 2013, )

Three Classical Tests; Wald, LM(Score), and LR tests

Research Article Finite-Step Relaxed Hybrid Steepest-Descent Methods for Variational Inequalities

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

1. Introduction. Main Result. 1. It is well known from Donsker and Varadhan [1], the LDP for occupation measures. I(ξ k A) (1.

Bessel function for complex variable

Degenerate Perturbation Theory

Diane Hu LDA for Audio Music April 12, 2010

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction

Supplementary Materials: Trading Computation for Communication: Distributed Stochastic Dual Coordinate Ascent

true value θ. Fisher information is meaningful for families of distribution which are regular: W (x) f(x θ)dx

Ψηφιακή Επεξεργασία Εικόνας

Data Dependence of New Iterative Schemes

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators

Supplemental Material to Comparison of inferential methods in partially identified models in terms of error in coverage probability

IIT JEE (2013) (Trigonomtery 1) Solutions

B.A. (PROGRAMME) 1 YEAR

Uniform Convergence of Fourier Series Michael Taylor

1. Matrix Algebra and Linear Economic Models

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

Tired Waiting in Queues? Then get in line now to learn more about Queuing!

Dimension-free PAC-Bayesian bounds for matrices, vectors, and linear least squares regression.

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

Every set of first-order formulas is equivalent to an independent set

Inertial Navigation Mechanization and Error Equations

Presentation of complex number in Cartesian and polar coordinate system

4.6 Autoregressive Moving Average Model ARMA(1,1)

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Math221: HW# 1 solutions

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Steady-state Analysis of the GI/M/1 Queue with Multiple Vacations and Set-up Time

A note on a conjecture of Calderón

ECE Notes 21 Bessel Function Examples. Fall 2017 David R. Jackson. Notes are from D. R. Wilton, Dept. of ECE

Other Test Constructions: Likelihood Ratio & Bayes Tests

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

HermiteHGeneral. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

Αναγνώριση Προτύπων. Non Parametric

DERIVATION OF MILES EQUATION Revision D

Gauss Radau formulae for Jacobi and Laguerre weight functions

Homework 4.1 Solutions Math 5110/6830

ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1

Problem Set 3: Solutions

Large Deviations for Stochastic Systems with Memory

Partial Differential Equations in Biology The boundary element method. March 26, 2013

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

The Neutrix Product of the Distributions r. x λ

Section 8.3 Trigonometric Equations

HARDY AND RELLICH INEQUALITIES WITH REMAINDERS

Statistical Inference I Locally most powerful tests

derivation of the Laplacian from rectangular to spherical coordinates

B.A. (PROGRAMME) 1 YEAR

Concrete Mathematics Exercises from 30 September 2016

Example Sheet 3 Solutions

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

ST5224: Advanced Statistical Theory II

Certain Sequences Involving Product of k-bessel Function

Homework 3 Solutions

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.

Reminders: linear functions

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Solutions to Exercise Sheet 5

ESTIMATES FOR WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS

Transcript:

Time-depedet weak rate of covergece for fuctios of geeralized bouded variatio Atti Luoto arxiv:169.5768v3 [mat.p] 4 Nov 17 Abstract Let W deote te Browia motio. For ay expoetially bouded Borel fuctio g te fuctio u defied by ut,x = E[gx+σW T t ] is te stocastic solutio of te backward eat equatio wit termial coditiog. Let u t,x deote te accordig approximatio produced by a simple symmetric radom walk wit steps±σ T/ wereσ >. Tis paper is cocered wit te rate of covergece of u t,x tout,x, ad te beavior of te erroru t,x ut,x astteds tot. Te termial coditio g is assumed to ave bouded variatio o compact itervals, or to be locally Hölder cotiuous. Key words: approximatio usig simple radom walk, weak rate of covergece, fiite differece approximatio of te eat equatio. Matematics Subject Classificatio 1: Primary: 41A5, 65M15; Secodary: 35K5, 6G5. Cotets 1 Itroductio Te settig ad te mai result 1 4 3 Te adjustmet error 7 4 5 Te local error Te global error 9 1 6 Momet estimates for te stoppig timej 4 A Appedix 35 1 Itroductio Te objective of tis paper is to study te rate of covergece of a fiite-differece approximatio sceme for te backward eat equatio wit a irregular termial coditio. Covergece rates of fiite-differece scemes for parabolic boudary value problems ave bee studied durig te past decades see e.g. [3], [6], [8], [1] ad [13] wit varyig assumptios o te regularity of te iitial/termial coditio, te domai of te solutio, properties of te possible boudary data etc. Naturally, several teciques ave bee proposed i order to study te covergece. Our approac is probabilistic: Te solutio of te PDE is represeted i terms of Browia motio, ad te approximatio sceme is realized usig a appropriately scaled sequece of simple symmetric radom walks i te same probability space, i te spirit of Dosker s teorem. Tis metod produces error bouds wic are ot uiform over te time-ets uder cosideratio, ad ece te time-depedece of te error is of particular iterest ere. To explai our settig i more detail, fix a fiite time orizo T >, a costat σ >, ad cosider te backward eat equatio σ u+ t xu =, t,x [,T, ut,x = gx, x. 1.1 Uiversity of Jyvaskyla, Departmet of Matematics ad Statistics, P.O.Box 35, FI-414 Uiversity of Jyvaskyla. atti.k.luoto@studet.jyu.com 1

Te termial coditio g : is assumed to belog to te class GBV exp cosistig of expoetially bouded fuctios tat ave bouded variatio o compact itervals see Defiitio.3 for te precise descriptio of GBV exp. Te stocastic solutio of te problem 1.1 is give by ut,x := E[gσW T σw t = x] = E[gx+σW T t ], t,x [,T], 1. were W t t deotes te stadard Browia motio. To approximate te solutio 1., we proceed as follows. Give a eve iteger N, a level z, ad time ad space step sizes δ ad, defie T := { t k := kδ k,k Z}, S z := { z +m m Z }. Te fiite-differece sceme we will cosider is give by te followig system of equatios defied o grids G z := T S z [,T], u t k,x u t k 1,x t k t k 1 + σ u T, = g. u t k,x+ u t k,x+u t k,x =, 1.3 Lettig δ := T ad := σ T, system 1.3 ca be rewritte i a equivalet form as { u t k 1,x = 1 [ 4 u t k,x++u t k,x+u t k,x ], u T, = g. 1.4 Tis sceme is explicit: Give te set of termial values { gx x S z }, te solutio u of 1.4 is uiquely determied by a backward recursio. We exted te fuctio u i cotiuous time by lettig u t,x := u t k,x for t [t k,t k+1, k <, 1.5 ad cosider te error ε t,x o t,x [,T S z, wic is give by ε t,x := u t,x ut,x. 1.6 Te mai result of tis paper, Teorem.4 A states tat for some costat C > depedig oly o g, ε t,x Cψx 1 T t {t/ T } + Cψx T t k 1 [t k,t k+1 t, t,x [,T Sz, 1.7 were ψx = ψ x, g, σ, T > depeds o te properties of g ad will be give explicitly later. Iequality 1.7 suggests tat te covergece is ot uiform it,x. However, if we cosider uiform covergece o ay compact subset of[,t, te rate is at least 1/, ad it will be sow i Subsectio 4.4 tat tis rate is also sarp. Already i 1953, Jucosa & Youg [6] cosidered a fiite differece approximatio of te forward eat equatio o a semi-ifiite strip [, [,1], were te iitial coditio was assumed to ave bouded variatio. Usig Fourier metods, tey proved i [6, Teorem 7.1] tat te error is O 1/ uiformly o [t, [,1] for ay fixed t >, but did ot study te blow-up of te error as t. Notice tat te rigtad side of 1.7 udergoes a blow-up ast T. Te order of te sigularity is eve worse for time istats t ot belogig to te lattice T due to te possible discotiuities of g. O te oter ad, oe observes tat te order remais ucaged if te termial coditio g is Hölder cotiuous. Ideed, suppose tat g belogs to te class Cexp,α see Defiitio.1, wic cosists of expoetially bouded, locally α-hölder cotiuous fuctios. By Teorem.4 B, tere exists a costat C > depedig oly o g suc tat ε t,x Cψx 1 α T t [t k α k,t k+1 t, t,x [,T Sz, 1.8

were te fuctio ψx = ψ x, g, σ, T > plays a similar role as i 1.7. ecetly, Dog & Krylov 5 [3] cosidered te covergece of a fiite-differece sceme for a very geeral parabolic PDE. By specializig teir result [3, Teorem.1] to te settig of tis paper, te error is see to coverge uiformly i t,x wit rate 1/4 for a bouded ad Lipscitz cotiuous termial coditio, i cotrast to te time-depedet rate 1/ implied by 1.8. I fact, a aalogous uiform rate α/4 ca be sow for te class Cexp,α i our settig; te proof is sketced i emark.6. I tis paper, te mai results are derived usig te followig probabilistic approac. Let ξ i i=1,,... be a sequece of i.i.d. ademacer radom variables, ad defie were W t t [,T] is te radom walk give by u t,x := E [ g x+σw T t], t,x [,T], 1.9 Wt T := t T/ i=1 ξ i, t [,T] 1.1 deotes te ceilig fuctio. Te key observatio is tat te fuctiou i 1.9, we restricted togz, is te uique solutio of 1.4 for everyz ; 1.5 also olds for tisu by defiitio. Moreover, sice te radom walkwt t [,T] iflueces te value ofu oly troug its distributio, we may cosider a special settig were te radom variables ξ 1,ξ,... are cose i a suitable way. Defiig tese variables as te values of te Browia motio W t t sampled at certai stoppig times see Subsectio.1 eables us to apply teciques from stocastic aalysis for te estimatio of te error 1.6. Te above procedure was used i J. B. Wals [1] 3 cf. ogers & Stapleto 1997 [11] i relatio to a problem arisig i matematical fiace. More precisely, te weak rate of covergece of Europea optio prices give by te biomial tree sceme Cox-oss-ubistei model to prices implied by te Black-Scoles model is aalyzed cf. Hesto & Zou [5]. A detailed error expasio is preseted i [1, Teorem 4.3] for termial coditios belogig to a certai class of piecewise C fuctios. Usig similar ideas, we complemet tis result by cosiderig more irregular fuctios ad takig ito accout te time-depedece. It is argued i [1, Sectios 7 ad 1] tat te rate remais uaffected if te geometric Browia motio is replaced wit a Browia motio, ad te biomial tree is replaced wit a radom walk. It seems plausible tat also our time-depedet results i te Browia settig ca be trasferred ito te geometric settig wit essetially te same upper bouds. It sould be metioed ere tat te proof of 1.7 uses te geeral represetatio.7 for fuctios of geeralized bouded variatio, wic allows us to estimate te error 1.6 i a explicit maer. Tis type of fuctio classes of geeralized bouded variatio were studied first i Avikaie 9 [1]. Te paper is orgaized as follows. I Sectio we itroduce te otatio, recall te costructio of a simple radom walk usig first ittig times of te Browia motio, ad formulate te mai result Teorem.4. Usig te sequece of stoppig times, we split te error 1.6 ito tree parts, wic we refer to as te adjustmet error, te local error, ad te global error. Te adjustmet error is a cosequece of te fact tat te approximatio u t,x is costat i t o itervals of legt T, wile t ut,x is cotiuous. Te remaiig two parts of te error appear because te costructio of te simple radom walk uses te Browia motio sampled at a stoppig time wic ca be larger of smaller ta T t, ad for ut,x we usew T t. Te local error is iflueced by te smootess properties of te termial coditio g, wile for te global error oly itegrability properties of g are eeded. I Sectio 3, estimates for te adjustmet error are computed. Sectio 4 treats te local error ad follows i may places te ideas ad te maciery of J. B. Wals [1]. We also apply some results of [4] related to te first exit times of Browia bridges i order to derive explicit upper bouds. I Sectio 5, te global error is treated for expoetially bouded Borel fuctios, ad our approac is similar to tat of [1]. Sectio 6 cotais a collectio of momet estimates ad tail beaviors of radom times appearig i te descriptio of te local ad te global error. Agai, it was possible to adjust metods from [1] to our settig. 3

Te settig ad te mai result.1 Notatio related to te radom walk Cosider a stadard Browia motio W t t o a stocastic basis Ω,F,P,F t t, were F t t stads for te atural filtratio of W t t. We also let X t t := σw t t, were σ > is a give costat. Byτ, we deote te first exit time of te process X t t from te ope iterval,, τ, := if{t : X t = } = if{t : W t = /σ}, >. Te radom variable τ, is af t t -stoppig time ad its momet-geeratig fuctio is give by E [ { e λτ ], = cos λ /σ 1, λ, cos λ/σ 1, λ, π σ 8. It follows tat te exit time τ, as fiite momets of all orders, ad for every K N tere exists a costat C K > suc tat.1 E [ τ K,] = CK /σ K.. I particular, C 1 = 1 ad C = 5/3. For relatios.1 ad., see [1, Propositio 11.1]. I order to represet te error 1.6, we costruct a radom walk o te probability spaceω,f,p,f t t. Followig [1], we defie τ := ad τ k = τ k := if { t τ k 1 : } Xt X τk 1 =.3 recursively for k = 1,,.... Te τ k is a P-a.s. fiite F t t -stoppig time for all k, ad te process X τk k=,1,... is a symmetric simple radom walk o Z := {m : m Z}. For every iteger k 1, we also let τ k := τ k τ k 1 ad X τk := X τk X τk 1. Te strog Markov property of X t t implies tat τ k, X τk k=1,,... is a i.i.d. process suc tat, for eac k 1, we ave P X τk =± = 1/, τ k, X τk d = τ,,x τ,, ad τ k, X τk is idepedet of F τk 1 +. Moreover, as sow i [11, Propositio 1], te icremets X τ1 ad τ 1 are idepedet. Cosequetly, te processes τ k k=1,,... ad X τk k=1,,... are idepedet see also [1, Propositio 11.1] ad [7, Propositio.4]. We deduce, i particular, tat for alln 1 te radom variablex τn is distributed as N k=1 ξ k, were ξ k k=1,,... is a i.i.d. sequece of ademacer radom variables. Terefore, for WT t defied i 1.1, we ave te equality i law d X τn = σw T t provided tat,n = σ T T t, T/. Note tat i tis case te sequece of stoppig times τ k k=,1,....3 depeds ovia =. Te error 1.6 will be split ito tree parts, were eac of tese parts will take ito accout differet properties of te give fuctio g. For tis purpose, let us itroduce some more otatio. For give N ad t [,T, we let := T T t, were := {,4,...,}..4 T/ 4

By defiitio, is te smallest multiple of T T t T greater ta or equal tot t. It is clear tat ad T t as. Te coectio betwee lattice poits t k = kt T ad te time istat,t] is explaied by t [t k,t k+1 if ad oly if = T t k, k 1..5. Te fuctio classes uder cosideratio Te error 1.6 will be estimated for fuctios g belogig to te fuctio class C,α exp or GBV exp defied below. More iformatio regardig tese classes is provided i Subsectios 4.5 ad A.1, respectively. Defiitio.1 Te class C,α exp. Deote by C,α exp te class of all fuctios g : for wic tere exist costats A,β suc tat for all >, gx gy sup x,y [,], x y x y α Ae β..6 Te fuctio classgbv exp geeralizes fuctios of bouded variatio wic are bouded by allowig expoetial growt. For more iformatio, see [1]. Before itroducig te class GBV exp, we recall Defiitio. [1, Defiitio 3.]. Deote bymte class of all set fuctios µ : {G B : G is bouded} tat ca be writte as a differece of two measures µ 1,µ : B [, ] suc tat µ 1 K,µ K < for all compact sets K B. Defiitio.3 Te class GBV exp. Deote by GBV exp te class of fuctios g : wic ca be represeted as gx = c+µ[,x µ[x,+ α i 1 {xi }x, x,.7 were c is a costat, µ M, ad J = α i,x i i=1,,... is a coutable set suc tat x i x j weever i j. I additio, we require tat for some costat β,.3 Te mai result e β x d µ x+ Te followig teorem is te mai result of tis paper. i=1 α i e β xi <..8 Teorem.4. Let N, ad let u ad u be te fuctios itroduced i 1. ad 1.9. i=1 A Suppose tat g GBV exp is a fuctio give by.7 ad tat β is as i.8. Te, for all t,x [,T, i u t,x ut,x ii u t k,x ut k,x C β,σ,t T t e β x, t t k, k <, C β,σ,t T t k eβ x, k <, were C β,σ,t := CT Te 5β σ T ad C > is a costat depedig oly o g. 5

B Suppose tat te fuctio g C,α exp ad tat β is as i.6. Te, for all t,x [,T, iii u t,x ut,x C β,σ,t e β+1 x, t [t α T t k,t k+1, k <, k α were C β,σ,t := 1+T+σCe 4β+1 σ T ad C > is a costat depedig oly og. emark.5. Properties of te error bouds i A ad B were already discussed i Sectio 1. Here we oly poit out tat i geeral tese error bouds grow expoetially as fuctios of x. A uiform boud w.r.t. x ca be sow uder additioal assumptios: For g GBV exp, it is sufficiet tat g satisfies te coditio.8 witβ =. For g C,α exp, it suffices to assume tat g is bouded ad satisfies.6 wit β =. Proof of Teorem.4. Followig [1], we defie a auxiliary radom variable J o Ω,F,P,F t t by J ω := if{m N : τ m ω > },.9 were we assume tat te step size related to τ k k=,1,... is = σ T. By defiitio, J is te idex of te first eve stoppig time τ,τ,... exceedig te value. It olds tat J is a stoppig time w.r.t. F τk k=,1,.... Moreover, τ J is a stoppig time w.r.t. F t t, ad bot J ad τ J are P-a.s. fiite. Te error ε t,x give by 1.6 is te decomposed as follows: were ε t,x = ε glob t,x+ε loc t,x+ε adj t,x,.1 ε glob t,x := E[gx+X τ gx+x τj ], te global error.11 ε loc t,x := E[gx+X τj gx+x ], te local error.1 ε adj t,x := E[gx+X gx+x T t ]. te adjustmet error.13 Assume tat k < is te iteger for wic t [t k,t k+1 olds. A: By emark A.1i, tere exists a costat A = Aβ suc tat gx Ae β x for all x. Hece, by Propositios 3.3 ad 5.3 ad Corollary 4.14, tere exists a costat C > suc tat ε t,x Ce β x +5β σ T T T t 1 {t t k } + T T t k + We te get te claim i bot of te cases t t k,t k+1 ad t = t k : It olds tat T T t k. T T t k T T t T T t k ad T T t k T T t, sice T t k T for all itegers k <. B: Give a costat δ >, by assumptio, we ca derive te expoetial boud gx A x α e β x + g Ce β+δ x, x, for some costat C >. For simplicity, let us coose δ = 1. Cosequetly, by Propositios 3.3 ad 5.3 put b = β +δ, ad Corollary 4.18, we fid aoter costat C > suc tat ε t,x Ce β+1 x +4β+1 σ T σ α T α/ T α/ + T t k. 6

Te claim follows, sice T γ T t T γ k T/ 1 for all γ [,1], ad tus σ α T α/ α/ + T T t k σα T α/ α/ + T T t k α/ Tα/ +σ α T α 1+T+σ α/ T t k α/ α/ T t k α/. emark.6. For g C,α exp, tere exists a costat C = CA,σ,T > suc tat for all x, sup u t,x ut,x C e t [,T α 4β x +8β σ T,.14 4 were A,β are as i.6. Hece, we get te uiform rate α/4 istead of te time-depedet rate α/ implied by Teorem.4 B. Note tat for g Cexp,α, te time-depedece of te error boud i Teorem.4 B is caused solely by te global error, ad it remais uclear weter te associated upper boud 5.9 ca be improved usig te additioal iformatio about te regularity of g. For te proof of.14, otice first tat by te Hölder cotiuity ad by Hölder s iequality, were p := α u t,x ut,x Aσ α Ee qβ x+σw 1/q T t +qβ x+σw τ pα 1/p EW T t W τ, p ad q := p 1. To proceed, apply Lemma 5.1i ad te fact tat for some CT >, E WT t W τ = E T t τ CT 1/, wic follows from Itô s isometry ad a sligt geeralizatio of [1, Propositio 11.1iv]. 3 Te adjustmet error I tis sectio we derive a upper boud for te adjustmet error.13 for expoetially bouded Borel fuctios ad for fuctios belogig to te class C,α exp,α,1]. Defiitio 3.1 Te class B exp. A fuctio g : is said to be expoetially bouded, if tere exist costats A,b suc tat gx Ae b x for all x. 3.1 Te class of all Borel fuctios wit te above property will be deoted byb exp. emark 3.. By defiitio, GBV exp B exp see emark A.1 ad C,α exp B exp see Subsectio 4.5. Propositio 3.3. Let N. i Let g B exp ad let A,b be as i 3.1. Te, for all t,x [,T, ε adj t,x 8AT T t eb x +b σ T 1 {t t k <k< }. ii Let g C,α exp ad let A,β be as i.6. Te, for all t,x [,T, ε adj t,x Aσ α T α/ α/ e β x +4β σ T 1 {t t k <k< }. 7

Proof. i: Deote by p t te desity of X t = σw t for t >, ad cosider te fuctio ut,x = E[gx +X T t ] = gx +yp T t ydy, t < T. Sice g B exp, we ca use differetiatio uder te itegral sig to sow tat t ut,x = gx +y t p T tydy = gx +yp T t y 1 T t y σ dy. 3. T t Fix N ad suppose tat t k = kt is te lattice poit suc tat t [t k,t k+1. If t = t k,.5 implies tat = T t, ad tus ε adj t,x = by.13. For t t k,t k+1, by te mea value teorem ad 3., tere exists someη t k,t suc tat ut k,x ut,x t t k T t C T η T T t sup C r, 3.3 r T t,t t k were C r := gx +yp r y 1 y σ r dy, r >. Let Z be a stadard ormal radom variable. Sice g B exp, it olds for all r,t] tat [ [ C r Ae b x E e b Xr ] +Ae b x E e b Xr ] X r σ r [ ] Ae b x E e bσ rz +E [Z ] e bσ rz = Ae b x e 1 b σ r +e 1 b σ r [ Z ] E +bσ r A+b σ Te b x + 1 b σ T 8Ae b x +b σ T. 3.4 Sice adj ε t,x = ut k,x ut,x, 3.3 ad 3.4 imply te claim. ii: Let k < be suc tat t t k,t k+1 olds; te case t = t k follows from.5 ad.13. Hölder s iequality implies tat ε adj t,x Egx +X T t k gx +X T t AE [e β x + X T t + X T t k ] XT t X k T t α [ ] A E e qβ x + X T t + X T t 1/q k EXT t k X T t pα 1/p, 3.5 for somep,q 1, wit 1 p + 1 q = 1. Te coice p = α,q = α ad te fact t t k T yield E XT t k X T t pα 1/p σ E WT t k W T t α/ σ α α/ T α/ α/. 3.6 Moreover, for a stadard ormal radom variable Z, Hölder s iequality implies tat [ ] [ E e qβ x + X T t + X T t k e qβ x E e qβσ T t Z ] 1/ k E [e ] qβσ 1/ T t Z Te claim te follows by 3.5, 3.6, ad 3.7. e qβ x +q β σ T. 3.7 8

4 Te local error 4.1 Notatio ad defiitios Suppose tat,,,t]. Te aim of tis sectio is to derive a upper boud for te absolute value of te error ε loc, g := E[gX τ J gx ] 4.1 as a fuctio of,, were te fuctio g belogs togbv exp orc,α exp. Te radom variable J is give by J = J, = if{m : τ m > }. 4. Afterwards, upper bouds for te error 4.1 are derived i te dyamical settig, were te step size ad te level will deped o. Observe tatj agrees witj defied i.9 for, = σ T, T T t T/. Let us start by itroducig te followig otatio: Z o := {k+1 : k Z}, Z e := {k : k Z} o refers to odd ad e refers to eve ; te Z = Z o Z e. I additio, we will abbreviate d o x := distx,z o, d e x := distx,z e = d o x, x. 4.3 As i [1], we project fuctios oto piecewise liear fuctios i order to compute te coditioal expectatio E[gX τj F ]. Defiitio 4.1. Defie operators Π o ad Π e actig o fuctios u : by Π e ux := ux if x Z e ad x Π e ux liear i [k,k+] k Z, Π o ux := ux if x Z o ad x Π o ux liear i [k 1,k+1] k Z. Te key igrediet i te estimatio of te error ε loc, g is te followig result, proposed i [1, Sectio 9]. For te coveiece of te reader, a sketc of te proof is give below. ecall Defiitio 3.1 for te class B exp ad deote byn := {,1,,...} te set of o-egative itegers. Propositio 4.. Let,,, T] ad defie a radom variable L = L, := sup{m N : τ m < } 4.4 τ L is equal to te largest of te stoppig times τ,τ 1,... less ta. Te, give a fuctio g B exp, ε loc, g = E[ Π e gx gx ] +E [ Π o Π e gx Π e gx PL eve X ]. 4.5 Proof. If g B exp, te also Π e g B exp ad Π o Π e g B exp. Te expectatios o te rigt-ad side of 4.5 tus exist ad are fiite. Usig te Markov property of te process X t t, it ca be sow tat E [ gx τj F ] = Πe gx P-a.s. o{l odd}, E [ gx τj F ] = Πo Π e gx P-a.s. o {L eve}, see [1, Sectio 9]. Cosequetly, sice1 {L odd} +1 {L eve} = 1P-a.s., E[gX τj ] = E [ E [ gx τj F ] 1{L odd} ] +E [ E [ gxτj F ] 1{L eve} ] = E [ Π e gx P L odd X ] +E [ Πo Π e gx P L eve X ] = E[Π e gx ]+E[Π o Π e gx Π e gx PL eve X ]. 9

4. Evaluatio of te coditioal probability PL eve X I tis subsectio we derive a represetatio for te fuctio y PL eve X = y 4.6 based o first exit time probabilities of a Browia bridge. Tis represetatio 4.13 togeter wit te estimate proved i Propositio 4.7 are eeded for Propositios 4.11, 4.15 ad Lemma 6.4 below. Defiitio 4.3 Browia bridge. Let x,y ad l >. A Gaussia process B x,l,y t t [,l] wit mea ad covariace fuctios give by E[B x,l,y t ] = x+ t l y x, t l, CovBs x,l,y,b x,l,y t = s 1 t l, s t l, is called a geeralized Browia bridge from x toy of legt l. emark 4.4. By comparig mea ad covariace fuctios, it is easy to verify tat a Browia bridge t [,l] is equal i law wit te trasformed processes below: B x,l,y t B y,l,x l t t [,l] time reversal 4.7 x+b,l,y x t t [,l] traslatio 4.8 B x,l, y t [,l] reflectio aroud te x-axis. 4.9 A cotiuous versio of te Browia bridge B x,,y t t [,] ca be tougt as a radom fuctio o te caoical space C[,],BC[,],P x,,y, were P x,,y deotes te associated probability measure. I te followig propositio we give differet caracterizatios for te fuctio 4.6 i terms of ittig times. For all c,a < b, ad ω C[,], let H c ω := if{t [,] : ω t = c}, Ĥ c ω := sup{t [,] : ω t = c}, H a,b ω := if{t [,] : ω t / a,b}, Ĥ a,b ω := sup{t [,] : ω t / a,b}. Propositio 4.5. Let,,,T]. Suppose tat B y/σ,, t t [,] is a Browia bridge o a probability space Ω, F, P, ad defie Te, for all k Z, qy = qy,, := y/σ,, PB t t [,] its Z /σ e before ittig Z /σ o, y. 4.1 i qy = PL eve X = y, y / Z, 4.11 { Py/σ,, H ii qy = k/σ < H k+1/σ, y k,k+1, 4.1 P y/σ,, H k/σ < H k 1/σ, y k 1,k, d o y + σ [ iii qy = E P B ],,,y/σ y k,k+1 H k+1 y/σ,y k/σ d o y σ [ 4.13 E P B ],,,y/σ y k 1,k. H k y/σ,y k 1/σ Here H a,b = if{t [,] : B,,y/σ t Ω, F, P cosidered i Sectio. emark 4.6. It is clear by 4.9 tat te fuctio q is symmetric. / a,b}, ad P refers to te probability measure o te space Proof of Propositio 4.5. Itemii is clear. To sowi, observe tat ifx ω k,k+1 adlω is eve, te pat t X t ω does it k at τ L ω ad afterwards, i.e. o [τ L ω,, it does ot it ay 1

oter m m k ad ece stays iside k 1,k+1. Terefore, te last etry of tis pat ito k,k+1 occurs via k, ad tus PL eve,x k,k+1 = P σωĥk,k+1ω = k, σω k,k+1 = P ωĥk/σ,k+1/σω = k σ, ω k σ, k+1 σ = P Ĥk/σ > Ĥk+1/σ, were P deotes te Wieer measure o C[,],BC[,]. Tus, for y k,k+1, PL eve X = y = P,,y/σ Ĥk/σ > Ĥk+1/σ = P y/σ,, H k/σ < H k+1/σ = qy, were we used 4.7, 4.1, ad te fact tat P X = y = P,,y/σ o C[,],BC[,] see e.g. [9, Capter 1, Exercise 3.16]. Te case y k 1, k is similar. Foriii, assume y k 1, k; te case y k,k+1 is similar. It is clear tat weever z / a,b, a < < b, ad H a,b = if{t [,] : B,,z t / a,b}, [ ] B,,z = ap H,,z H a < H b +b 1 P,,z H a < H b, a,b implyig tat E P I additio, from 4.1 we deduce tat P,,z H a < H b = b b a 1 [ b a E P B ].,,z 4.14 H a,b qy = P y/σ,, H k/σ < H k 1/σ = P,, y/σ H k y/σ < H k 1 y/σ = P,,y/σ H y k/σ < H y k 1/σ 4.15 by 4.8 ad 4.9. Substitutez = y y k σ,a = σ, adb = y k 1 σ. Tez / a,b,a < < b,b a = σ, ad ece by 4.14, 4.15, ad d o y = y k 1, qy = d o σ [ ] E P B,,y/σ. H y k/σ,y k 1/σ Te probability for te Browia motiow t +y/σ t to it te setz /σ e before ittig te setz /σ o is equal to d o y/ cf. 4.1. As poited out i [1, Sectio 9], te piecewise liear fuctio y d o y/ ca be used to approximate te fuctioy qy for small >. A estimate related to tis approximatio is derived i te propositio below. We deote by p = p, te desity of te radom variable X. Propositio 4.7. Suppose tat,,, T] ad defie :, y = y,, := qy d o y/, 4.16 were q = q,, was itroduced i 4.1. Te is symmetric, ad it olds tat i ii y pydy 51 1σ + σ, 4.17 y pydy 9 1σ + σ. 4.18 11

I additio, give a costat β, it olds uiformly i m Z tat iii m+1 m 1 e β y y pydy C 4. β,, σ, 4.19 were C 4. β,, := e β [ 1 1 + 4 σ e β σ 14 1 + 36 1 + 16 1 βσ σ + 7 1 σ ]. 4. emark 4.8. Later, i te settig of Assumptio 4.1, we ca boud te coefficiet C 4. β,, from above by a less complicated expressio: Sice σ = 1 1, C 4. β,, e βσ T/ e β σ T 131 1 + 1 1 βσ T. 4.1 Te proof of Propositio 4.7 uses certai results of [4] related to te first ittig times of Browia bridges, amely [4, Lemma 3.1, Lemma 3. i, ad Teorem.6 i]. For te coveiece of te reader, we collect tose results i te lemma below usig te otatio of tis subsectio. Lemma 4.9. Let,,, ad suppose tat a < < b ad y / a,b. Te were [ E P B,,y ] E,,y [H a,b ] H a,b { 4b a +y/, y b, E,,y [H a,b ] 4 a b+ y /, y a, E,,y [H, ] = γ t x,y := 1 πt e x y /t y + a b+3, 4. 4.3 γ t,y F/ t dt, y /,, 4.4 γ,y πt ad Fx := m= 1 m e m x. 4.5 Proof of Propositio 4.7. ecall te fuctios q, d o,d e, ad, give by 4.1, 4.3, ad 4.16, respectively. Te fuctio is symmetric as a liear combiatio of te symmetric fuctios q ad d o. To sow i, we use 4.13 ad 4. to obtai y ++3σ E y,,y/σ [H k+1 y/σ,y k/σ ], y k,k+1, y ++3σ E,,y/σ [H k y/σ,y k 1/σ ], y k 1,k. I additio, 4.3 implies tat for y,, 4.6 y E,,y/σ [H y/σ,y/σ ] 4 σ + y y σ σ y+yy σ σ. 4.7 Cosequetly, by 4.6 witk = ad 4.7, y pydy σ y ++3σ E,,y/σ [H y/σ,y/σ ]pydy [ y pydy + +3σ ] pydy 1

σ y σ pydy + 4 +6σ σ π σ + +3σ σ 51 1σ + σ sice π +3 51 1. Tis proves item i. ii: By extedig te exit itervals, we get for all k Z tat pydy { E,,y/σ [H E,,y/σ [H /σ,/σ ] k+1 y/σ,y k/σ ], y k,k+1, E,,y/σ [H k y/σ,y k 1/σ ], y k 1,k. 4.8 I terms of te fuctios γ ad F defied i 4.5, we let σ C, σ, y / σ := γ σ u,y γ σ,y recall 4.4. Hece, by 4.6 ad 4.8, y pydy σ F1/ u πu = σ E,,y/σ[H /σ,/σ ], 4.9 y ++3σ C, σ, y σ pydy. 4.3 Usig te kowledge tat u F1/ u πu is a p.d.f. o, see [4, Propositio.8], a stadard computatio yields C, σ, y σ 1 σ y, ad tus y σ 1 σ y pydy σ I additio, by 4.9 ad by te fact tat p = γ σ,, C, σ, y σ pydy = σ / 1 uγ 1,udu 1 σ + e 1/. 4.31 π γ σ u,y F1/ u dudy 1 πu σ / sice te fuctio u F1/ u πu itegrates to oe over te iterval,. Cosequetly, F1/ u du 1 πu σ +3σ C, σ, y σ pydy σ + 3 σ. 4.3 Te claim te follows by applyig 4.31 ad 4.3 to te rigt-ad side of 4.3 ad by observig tat 1 + e 1/ π + 3 9 1. To sow iii, fix β. By symmetry, it is sufficiet to prove te claim for m. If m =, item i implies tat e β y y pydy e β y pydy C 1 β,, σ, were C 1 β,, := eβ 1 1 + 4 σ. Suppose te m 1. Proceedig as i te proof of item ii, we may boud te left-ad side of 4.19 from above by 13

m+1 σ m 1 σ m+1 m 1 [ e βy 1 σ y py y e βy y σ 1 pydy + + +3σ ] dy σ + 3 σ Moreover, iequalities A.9 ad A.1 below imply tat m+1 m 1 e βy 1 σ y pydy. 4.33 m+1 m 1 e βy 1 y pydy σ 1+βσ e β σ π σ 4.34 ad m+1 m 1 e βy 1 σ pydy eβ σ / y π 1+ σ σ. 4.35 Fially, estimates 4.33, 4.34, ad 4.35 yield m+1 m 1 e β y y pydy 41+βσ σ e β σ + 1 π σ eβ σ C β,, σ, were we may coose [ 41+βσ π π σ +3 σ σ + 1 π σ +3 [ C β,, := σ 14 36 eβ 1 + 1 + 16βσ 1 Sice C 4. β,, = C 1 β,, C β,,, te proof is completed. π σ σ eβ + e β σ π ] σ +1 σ + 7 1 σ ]. 4.3 Te local error forg GBV exp Te estimatio of te local error for te class GBV exp relies o te followig observatio: Ifg GBV exp is give by.7 ad if g x := gx + for some x, te g x x = c+ [, 1 y x, xdµy, 1,y x ]xdµy+ α i 1 {xi x }x. 4.36 Usig te represetatio 4.36 ad liearity, te estimatio of te error ε loc, gx essetially reduces to te estimatio of itegrals, were te itegrads cosist of idicator fuctios or teir liear approximatios give by te operators Π e ad Π o itroduced i Defiitio 4.1. Te followig propositio eables us to itercage te order of itegratio or summatio wit te applicatio of tese operators. ecall tat p = p, deotes te desity of X ad q = q,, is te fuctio defied i 4.1. i=1 14

Propositio 4.1. Suppose tat,,,t] ad tat g GBV exp admits te represetatio.7. Te, for all x, i Π e g x x = c+ Π e 1 y x, xdµy Π e 1,y x ]xdµy + [,, α i Π e 1 {xi x }x, x, i N:x i x Z e ii Π o Π e g x x = c+ Π o Π e 1 y x, xdµy Π o Π e 1,y x ]xdµy + [,, α i Π o Π e 1 {xi x }x, x. i N:x i x Z e Idea of te proof. Itemsi ii follow by usig te represetatio 4.36, liearity of te operatios f Π e f,f Π o f, ad f fd µ, ad relatio A.11. Propositio 4.11. Let,,,T]. Suppose tat g GBV exp admits te represetatio.7 ad tat β is as i.8. Te, for all x, E[gx +X τj gx +X ] [ ] σ e 3β+β x 7 e β σ T/ + 3C4. β,, π e β y d µ y+ α i e β x i, 4.37 were te coefficiet C 4. β,, > is give by 4.. i N:x i x Z e Proof. For give x, we apply 4.5 for te fuctio gx +. By Propositio 4.1 ad by te relatio PL eve X = x = qx Leb-a.e., we may decompose te expectatio o te left-ad side of 4.37 i te followig way: E[gx +X τj gx +X ] [ = Πe 1 y x, x 1 y x, x ] dµypxdx [, + + + +, [,, + [ Πe 1,y x ]x 1,y x ]x ] dµypxdx [ Πo Π e 1 y x, x Π e 1 y x, x ] dµyqxpxdx i N:x i x Z e i N:x i x Z e [ Πo Π e 1,y x ]x Π e 1,y x ]x ] dµyqxpxdx α i Π e 1 {xi x }xpxdx =: E 1 +E +E 3 +E 4 +E 5 +E 6. α i [ Πo Π e 1 {xi x }x Π e 1 {xi x }x ] qxpxdx 15

We will derive upper estimates for te quatities E i,1 i 6, i te followig steps. Step 1: E 1 ade. Suppose tat y x [k,k+ for some k Z. Te Π e 1 y x, x 1 y x, x 1 [k,k+ x, ad sice for eac x [k,k+ it olds tat y + x + x, we ave e β y Πe 1 y x, x 1 y x, x pxdx e β+β x e β x Πe 1 y x, x 1 y x, x pxdx e β+β x k+ k e β x pxdx π e β+β x +β σ T/ σ by A.9. Cosequetly, by Fubii s teorem, E 1 e β y e β y Πe 1 y x, x 1 y x, x pxdx d µ y [, σ e β+β x +β σ T/ π [, I fact, it also olds tat E σ e β+β x +β σ T/ π e β y d µ y. 4.38, e β y d µ y 4.39 sice Πe 1,y x ]x 1,y x ]x = Πe 1 y x, x 1 y x, x for all x, wic is a direct cosequece of te relatio Π e 1,r] = 1 Π e 1 r,, r. 4.4 Step : E 3 ad E 4. Suppose y x [k,k+ for some k Z. Te y 3 + x + x olds for all x [k 1,k+3, ad by A.1 we may estimate e β y Πo Π e 1 y x, x Π e 1 y x, x qxpxdx e 3β+β x e β x Πo Π e 1 y x, x Π e 1 y x, x qxpxdx e 3β+β x 1 4 e3β+β x k+3 k 1 k+3 k 1 e β x d ox 4 qxpxdx e β x [ do x ] + x pxdx, were te defiitio 4.16 of was used. By proceedig as i Step 1, we obtai k+3 k 1 e β x d ox 4eβσT/ pxdx π σ. 16

I additio, by 4.19 of Propositio 4.7, it olds tat k+3 k 1 e β x x pxdx C 4. β,, σ, were C 4. β,, > is give by 4.. Hece, by Fubii s teorem, E 3 e β y e β y Πo Π e 1 y x, x Π e 1 y x, x qxpxdx d µ y [, e 3β+β x σ + C4. β,, π 4 eβ σ T/ [, e β y d µ y. 4.41 Moreover, by 4.4 ad by te liearity of Π o, we obtai Πo Π e 1,y x ]x Π e 1,y x ]x = Πo Π e 1 y x, x Π e 1 y x, x, x, ad oe readily sees tat E 4 e 3β+β x σ + C4. β,, π 4 eβ σ T/, e β y d µ y. 4.4 Step 3: E 5. By A.13, Π e 1 {ξ} if ξ / Z e, ad Π e1 {ξ} 1 [ξ,ξ+] if ξ Z e. I additio, sice x i + x + x weever x x i x, E 5 i N:x i x Z e i N:x i x Z e i N:x i x Z e α i Π e 1 {xi x }xpxdx α i e β x i α i e β x i σ 4 e β+β x +β σ T/ π e β x i px1 [xi x,x i x +]xdx xi x + x i x i N:x i x Z e e β x i pxdx were A.9 was used for te last iequality. Step 4: E 6. If ξ Z e, relatios A.11, A.16, ad te liearity of Π o imply tat Π o Π e 1 {ξ} x Π e 1 {ξ} x = 1 Π o ξ x x ξ 4 + 1 4 = d ox 4 1 Π o ξ+ x x ξ+ 1 [ξ 3,ξ x 1 [ξ,ξ+ x+1 [ξ+,ξ+3 x α i e β x i, 4.43 Π o ξ x x ξ, x. I additio, we ave Π o Π e 1 {ξ} Π e 1 {ξ} for ξ / Z e by A.11. Terefore, sice 17

x i 3+ x + x weever x x i x 3, we get E 6 α i Π o Π e 1 {xi x }x Π e 1 {xi x }x qxpxdx i N:x i x Z e i N:x i x Z e i N:x i x Z e α i e β x i xi x +3 α i e β x i +3β+β x x i x 3 xi x +3 e β x i d ox qxpxdx x i x 3 e β x [ do x by te defiitio 4.16 of. I additio, for x i x Z e, relatio A.9 implies tat xi x +3 x i x 3 e β x d ox pxdx σ 6e β σ T/ π ad by usig te estimate 4.19 of Propositio 4.7, we obtai xi x +3 x i x 3 e β x x pxdx 3 sup m Z were C 4. β,, > is give by 4.. Cosequetly, E 6 σ m+1 m 1 3eβ σ T/ + 3C4. β,, π ] + x pxdx e β x x pxdx σ 3C4. β,,, e 3β+β x i N:x i x Z e α i e β x i. 4.44 It remais to observe tat te sum te rigt-ad sides of 4.38, 4.39, 4.41, 4.4, 4.43, ad 4.44 are bouded from above by te rigt-ad side of 4.37. I order to distiguis betwee te geeral settig, ad te specific -depedet settig,, we will refer to te assumptio below. Assumptio 4.1. For give t [,T ad N, we substitute, =,, were T = σ, = T T t ad = T/ as i.4. For otatioal coveiece, we will drop te subscript from. emark 4.13. Te special coice, =, i Assumptio 4.1 affects te objects below used trougout tis text: τ k = if { t > τ k 1 : X t X τk 1 = }, X τk k=,1,..., F τk k=,1,..., J = J = if{m N : τ m > }, L = L = sup{m N : τ m < }, Z e = {k : k Z}, Z o = {k+1 : k Z}, Z = Z o Z e, d o x = distx,z o, d ex = distx,z e, ad px = PX dx/dx. Tis coice also affects te fuctios q = q,, ad =,, defied i 4.5 ad 4.16, respectively. I particular, Propositio 4.5 implies tat qx = PL eve X = x, x / Z. For te mai result of tis subsectio, recall tat ε loc t,x = E[gx +X τj gx +X ]. 18

Corollary 4.14. Let N. Suppose tat te fuctio g GBV exp admits te represetatio.7 ad tat β is as i.8. Te, uder Assumptio 4.1, tere exists a costat C > suc tat for all t,x [,T, ε loc t,x C T T t k eβ x +5β σ T, t [t k,t k+1, k <. Proof. Let γ = βσ T. Propositio 4.11 ad te relatio σ 1/ = 1/ ε loc t,x C γ e β x e β y d µ y+ i N:x i x Z e imply tat α i e β x i, were te coefficiet C γ > implied by 4.37 ca be estimated usig 4.1 as follows: [ ] 7 C γ = e 3β e β σ T/ + 3C4. β,, π [ e 3γ/ 8 8 1 eγ /+3γ/ 46e γ +4γ. / 1 eγ + 3 e γ/ e γ 131 1 + 1 ] 1 γ +e 4γ/ e γ +3γ/ 393 + 9 5 eγ Sice T = T t k for t [t k,t k+1 by.5, we obtai te desired result. 4.4 O te sarpess of te rate for te classgbv exp Te followig lemma idicates tat te rate 1/ for te class GBV exp is sarp. Propositio 4.15. Uder Assumptio 4.1, tere exists a fuctio g GBV exp suc tat < limif 1/ ε, limsup 1/ ε, <. 4.45 Proof. For simplicity, let T = σ = 1 ad g := 1 [,. Te = 1/, g GBV exp, ad te locatio of te jump of g belogs to te set Z e for all N. Observe tat te εadj, = by Propositio 3.3 ad ε glob, C 1 by Propositio 5.3 below, were C > is some costat. Cosequetly, it suffices to sow tat 4.45 is valid for te local error ε loc,; recall.1. Te expressio 1/ ε loc, is bouded from above by Corollary 4.14. For te lower boud, we ote tat by Defiitio 4.1, Π e 1 [, x = 1 x+ 1[, x, Π o Π e 1 [, x = 1 x+3 4 1[ 3, x, x. Cosequetly, for, = 1/,1, Propositio 4. ad relatio 4.11 yield ε loc, = E[ Π e 1 [, W 1 1 [, W 1 ] +E [ Π o Π e 1 [, W 1 Π e 1 [, W 1 qw 1 ] x+ [ ] x+3 x+ = pxdx+ 4 1 [,x+1 [, x qxpxdx = p 3 x+ 1 qxpxdx+ x+ 1 qxdx 3 x+3 4 qxpxdx+ x 4 qxpxdx by te symmetry of te fuctios p > ad q [, 1]. Moreover, relatios 4.6 wit k =, 4.7, ad 19

te symmetry of imply tat for x,, 1 qx = 1 d ox x d ex Hece, tere exist costats C 1,C > ot depedig o suc tat ε loc, p x x 6+. x+ x dx 6+ x+ [ p dx C 1 C + ] p. Te relatio = 1/ te implies tat limif 1/ ε loc, C 1 p >. emark 4.16. I [1, Propositio 9.8] it is stated tat te rate for te local error is i.e. 1/ istead of i.e. 1 weever te termial coditio g as a discotiuity at a o-lattice poit x / Z. By cotrast, Propositio 4.11 implies tat oly te jumps tat occur at eve lattice poits cotribute to te error. Tis discrepacy is a result of te coice of differet step fuctios: I [1], oly step fuctios of te te type 1 [a, :=1 a, + 1 1 {a} are cosidered. 4.5 Te local error forg C,α exp A fuctio g : is called locally α-hölder cotiuous write g C,α loc, if for eac compact K gx gy sup x,y K, x y x y α <. Te class Cexp,α see Defiitio.1 cosists of all locally α-hölder cotiuous fuctios wit expoetially bouded Hölder costats i te sese of.6. I fact, Cexp,α C,α loc B exp,α,1], ad tis iclusio is strict at least for α = 1: Te fuctio fx = sie x 1 belogs toc,1 loc B exp, wereas f / Cexp,,1 sice f / B exp. ecall tat p = p, deotes te desity of X ad tat ε loc, g = E[gX τ J gx ]. Propositio 4.17. Let,,,T]. Suppose tat g C,α exp ad tat A,β are as i.6. Te, for g x = gx +, werex, it olds tat E[gx +X τj gx +X ] 3+α α Ae β+β x +β σ /. Proof. Te property g Cexp,α implies tat bot g ad g x belog tob exp, ad ε loc, gx E Π e g x X g x X +E Π o Π e g x X Π e g x X 4.46 olds by Propositio 4.. Moreover, weever x [k,k+] for some k Z, Π e g x x g x x k+ x g x k g x x + x k g x k+ g x x α α Ae β x +β+β x sice g C,α exp ad k k+ + x. Sice E [ e β X ] e β σ /, E Π e g x X fx α α Ae β x +β k= k+ k e β x pxdx 1+α α Ae β x +β+β σ /. 4.47

To estimate te remaiig expectatio o te rigt-ad side of 4.46, observe tat if y, z [m,m+] for somem Z, te it olds tat Π e g x y Π e g x z = z y gx m z y gx m+ Terefore, for x [k,k+] wit k Z, by 4.48 it olds tat Π o Π e g x x Π e g x x α α Ae β x + m m+. 4.48 = k+1 x Π e g x k 1 Π e g x x + x k 1 Π e g x k+1 Π e g x x k+1 x Ae β x [ e β k k +e β k k+ ] α α + x k 1 Ae β x + k k+ α α α+1 α Ae β x + k k+. Usig te symmetry i k of tis upper boud, we obtai E Π o Π e g x X Π e g x X k+ α+ α A e β x + k k+ pxdx k= k α+ α Ae β x +β k= k+ k e βx pxdx α+ α Ae β x +β+β σ /. 4.49 Te claim follows by applyig te estimates 4.47 ad 4.49 to 4.46. Corollary 4.18. Let N. Suppose tat g C,α exp ad tat β is as i.6. Te, uder Assumptio 4.1, tere exist a costat C > suc tat for all t,x [,T, ε loc t,x Cσ α T α/ α/ e β x +β σ T. Proof. Sice = σ T σ T 4.17 implies te result. ad εloc t,x = ε loc, g x by Assumptio 4.1 ad.1, Propositio 5 Te global error Our aim is to derive a upper boud for te global error ε glob t,x = E[gx +X τ gx +X τj ] defied i.11, wereg is a expoetially bouded Borel fuctio adx τk k=,1,... is te radom walk cosidered i Subsectio.1. For tis purpose, we eed a collectio of estimates related to te beavior of te radom walk X τk ad te stoppig time J. A part of tese are give i tis sectio, wile te more ivolved oes are treated later i Sectio 6. 1

Note: Te Assumptio 4.1 is take as a stadig assumptio trougout Sectio 5. ecall te defiitios of ad give i.4. ecall also tat J ω = if{m N : τ m ω > } as was defied i.9. A result similar to te lemma below was proved i [1, Corollary 11.4]. Lemma 5.1. For ay b, it olds tat i E [ e b Xτ ] e b σ T/, 5.1 ii E [ e b Xτ J ] e bσ T+b σ T/. 5. Proof. i: SiceX τ = k=1 X τ k, were X τk k=1,,... is a sequece of i.i.d. radom variables wit P X τk = ± = 1/ for = σ T see Subsectio.1, E [ e b Xτ ] E [ ] e bxτ = E [ ] e b Xτ 1 = cosb e b / e b σ T/ by te iequality cosx e x /, x. ii: Firstly, observe tat by te defiitio of J we ave X τj X. Secodly, sice for a stadard ormal Z radom variable it olds tat E [ e u Z ] e u / u, E [ e b Xτ J ] E [ e b Xτ J X +b X ] e b E[e bσ Z ] e bσ T+b σ T/. I Propositio 5., we preset more upper bouds wic are used to estimate te global error. Propositio 5.. i Suppose tat p, g B exp, ad tat b is as i 3.1. Te tere exists a costat C p > suc tat for all x, [ Xτ sup E pgx σ +X τ ] C p e b x +b σ T. 5.3,t N [,T Moreover, for every p > tere exists a costat C p > suc tat ii iii sup,t N [,T sup,t N [,T p P X τ / > 3/5 Cp, 5.4 p P J > 3/5 Cp. 5.5 Proof. i: Observe tat S := X τ = σ 1 σ k=1 d 1 X τk = were ξ i i=1,,... is a i.i.d. ademacer sequece see Subsectio.1. Hece, k=1 E [ e ts ] = cos t e t / = e t /, t. Cosequetly, by te symmetricity of S ad Markov s iequality, P S > t = P e ts > e t e t E [ e ts ] e t /, t >, ξ i,

ad tus, uiformly i,t, for p >, E S p = p t p 1 P S > tdt p t p 1 e t / dt := C p <. 5.6 Hölder s iequality, 5.6, ad 5.1 te imply tat [ E S p gx +X τ ] Ae b x E S p1 E [ e b Xτ ]1 A C 1 p e b x +b σ T. Tis proves 5.3 for p >, ad te case p = ca be see from te last lie as well. ii: Sice = σ, by Markov s iequality ad 5.6 we obtai P X τ / > 3/5 = P S > 1/1 E S q q/1 C q q/1 5.7 for all q >. Coose q 1p ad multiply bot sides of 5.7 by p to obtai 5.4. iii: For every K >, Markov s iequality ad Propositio 6.11 below imply tat P J > 3/5 E J K 3K/5 C K K/1 5.8 for some costat C K >. For givep >, it remais to coose K 1p ad multiply bot sides of 5.8 by p. For te mai result of tis sectio, recall tat ε glob t,x = E[gx +X τ gx +X τj ]. Te proof of te mai result of tis sectio follows closely te proof of [1, Teorem 8.1]. Propositio 5.3. Let N. Suppose tat g B exp ad tat b is as i 3.1. Te tere exists a costat C > suc tat for all t,x [,T, ε glob t,x CT T t k eb x +3b σ T, t [t k,t k+1, k <. 5.9 Proof. Defie a set Γ := { Xτ / J 3/5 } 5.1 ad decompose te error ε glob t,x ito te sum of expectatios E 1 ad E, were E 1 := E[gx +X τ gx +X τj ;Γ ], E := E[gx +X τ gx +X τj ;Γ ]. 5.11 Usig te estimates of Lemma 5.1 ad Propositio 5., it ca be sow tat E C 3/ e b x +b σ T+bσ T 5.1 for some costat C > ; tis is doe i Lemma A.3 i. Estimatio of E 1 requires more subtlety. Deote te probability mass fuctios of X τ +k / ad J by P +kx := PX τ +k = x ad PJ x := PJ = x, x Z. 5.13 By Lemma A.3ii, tere exists a costat C 1 > suc tat E 1 k= k gx +xp J kp x 3k +4kx x= 8 + 3k x 4 3 k x 4 8 4 + C 1 3/ e b x +b σ T. 5.14 3

Next, we use relatio A.4 i order to rewrite te double sum o te rigt-ad side of 5.14 as E 3 := k= = 1 { 1 E [ gx +X τ k gx +xp J kp x x= 3k +4kx 8 ]E[J ] 3 [ ] 8 E gx +X τ E J + 3k x 4 3 k x 4 8 4 1 E[ X τ gx σ +X τ ] E[J ]+ 3 4 E[ X τ gx σ +X τ ] E J 1 [ 8 E Xτ ] } 4gx σ +X τ E J = 1 [ ] {E 1 gx +X τ E[J ] 3 8 E J +E [ X τ gx σ +X τ ] 3 4 E J 1 E[J ] ] 1 8 E [ Xτ σ 4gx +X τ E J }. 5.15 By Propositio 6.5, tere exist costats c 1,c > suc tat E[J ] 4 3 c 1 E [ J ] c, ad tus 3 1 E[J ] 3 8 E J 5 c 1 +c, 1 3 4 E J 1 E[J ]+ 1 c 1 +c. 6 ad 1 8 E J 1 c 1 ad Cosequetly, by 5.15 ad 5.3, tere exist costats C, C 3 > suc tat E 3 5 [ ] E + 1 [ E Xτ gx gx +X τ σ +X 1 6 τ ] + 1 1 E [ Xτ σ 4gx +X τ ] + C e b x +b σ T 3/ C 3 e b x +b σ T + C e b x +bσt 3/. 5.16 1 To complete te proof, it remais to observe tat 3/ 1 1, to combie 5.11, 5.1, 5.14, ad 5.16, ad to recall tat T = T t k for t [t k,t k+1. 6 Momet estimates for te stoppig time J I tis sectio we preset momet estimates for te radom variable J = if{m N : τ m > } itroduced i.9, wic are used for te estimatio of te global error i Sectio 5. 6.1 Estimates for te first ad te secod momet ofj Te purpose of tis subsectio is to provide estimates for te first ad te secod momet of te radom variable J. We begi by derivig a estimate for te expectatio E[τ J ] ad te use martigale 4

teciques to obtai estimates for E[J ] ad for EJ. Te results of tis subsectio are closely related to [1, Propositio 11.]. ecall te radom times J = if{m N : τ m > } ad L = sup{m N : τ m < } defied for eac,,,t] i 4. ad 4.4. ecall also te fuctios q,d o,d e, ad, defied i 4.1, 4.3, ad 4.16, respectively. Propositio 6.1. Suppose tat,,,t]. Te i E[τ J F ] = σ d ox P-a.s. o{l odd}, ii E[τ J F ] = σ d e X P-a.s. o {L eve}, iii E[Jτ J ] E[τ 1 ]E[J] [,], iv E[τ J X = x] = σ d o x 1 qx +σ d e xqx Leb-a.e. o. Proof. Items i, ii, ad iv are proved i [1, p. 348 ad p. 356]. For te coveiece of te reader, we give te geeral idea for te proof of tese statemets. i ii : For all k Z, let A k+1 := {X τl = k+1} ad B k = {X τl = k}. Te Markov property of X t t implies tat P-a.s o A k+1, E[τ J F ] = σ k X k+ X = σ d e X +d o X = σ d o X. A similar observatio applies toii by first writig τ J = τ J τ J 1 +τ J 1 o B k, sice P-a.s. o B k, τ J 1 = if{t : X t / k 1,k+1}, ad τ J = if { t τ J 1 : Xt X τj 1 = }. iii : Sice J isf -measurable, E[Jτ J ] = E[JE[τ J F ]]. Byi ad ii, E[τ J F ]1 {L odd} = σ d o X 1 {L odd} P-a.s., ad E[τ J F ]1 {L eve} = σ d ox 1 {L eve} +σ d o X 1 {L eve} P-a.s., were we used te equality d ex = d o x,x. Cosequetly, σ E[Jτ J ] = E [ J d o X ] +E[Jd o X 1 {L eve} ] E [ J d ox /+d o X ]. Sice d o [,], E[τ 1 ] = /σ, ad J, te lower boud is clear. For te upper boud, it suffices to furter observe tat x /+x for x [,]. iv : By te tower property of te coditioal expectatio ad items i ad ii, P-a.s, ] X E[τ J X ] = E [E[τ J F ]1 {L odd} +E[τ J F ]1 {L eve} = σ d o X PL odd X +σ d e X PL eve X. Moreover, qx = PL odd X = x = 1 PL eve X = x o \Z by 4.11, ad te claim follows. Lemma 6.. Suppose tat Assumptio 4.1 olds. Te for all,t N [,T, E[ ] τ J 4 T 3 67 T. 6.1 5

Proof. For eac,,,t], defie I 1, := σ px d o x 1 qxdx, 6. I, := σ px d ex qxdx. 6.3 Te, by Propositio 6.1iv, it olds for Leb-a.e. x tat E[τ J ] = E[τ J X = x]pxdx = I 1, +I,. By Lemma 6.4 below ad by te fact tat σ = T ad σ = 1 1, te left-ad side of 6.1 is bouded from above by I 1, 5 1σ + I, 11 1σ 48+ 14 3 π σ 3 + 184 σ 4 67 T. Te estimate below will be used i te proof of Lemma 6.4. Lemma 6.3. Let,,,T] ad deote byp = p, te desity of X = σw. Te m= Proof. By te symmetry of te Gaussia desity p, it olds tat S := m= I additio, sice p is decreasig o[,, 3 pxdx = m=1 wic togeter wit 6.5 implies tat pm+1 1 6 π σ. 6.4 pm+1 = 4p + m+3 m+1 pxdx 4p pxdx pm+1. 6.5 m=1 pm+1 m=1 pxdx S 3 3 pxdx, pxdx 4p. 6.6 For eac β >, te mea value teorem implies tat for a costat ξ = ξ, σ,, β β, β we ave ad 6.4 te follows by 6.6. β πσ pxdx = β β β e x σ dx = βe ξ σ, Lemma 6.4. Let,,,T]. Te, for I 1 ad I defied i 6. 6.3, it olds tat i ii I 1, 5 1 I, 11 1 σ σ 16+ 9 3 π σ 3 + 64 σ 4, 3+ 19 3 π σ 3 + 14 σ 4. 6

Proof. i: Sice1 qx = 1 d o x x for x by te defiitio of, ad sice Dx := d ox 1 d o x, x, is symmetric, periodic wit period, ad symmetric aroud o [, ], we may decompose te itegral I 1 = I 1, ito I 1 = S 1 +S +S 3, were S 1 := σ S := σ S 3 := σ pm+1 m= m+ m= m m+ m= m A stadard calculatio yields Dxdx = 5 3 /6, ad tus S 1 = 5 1 σ m= Dxdx, px pm+1 Dxdx, px d ox xdx. pm+1 = 5 1σ + 5 1σ m= pm+1 1. 6.7 Hece, by applyig te estimate 6.4 to te rigt-ad side of 6.7, we obtai S 1 5 1σ 5 3 π σ 3. 6.8 I order to estimate S, otice tat for eac iteger k, k+1 k Dxdx = Dxdx = 1 d ox By te symmetricity ad te mootoicity properties ofp, we tus obtai S σ m= m+1 m 1 d ox px pm+1 Dxdx σ pm pm+1 3 σ m= m+1 m= m x σ pxdx Dxdx dx 3. π 3 σ 3. 6.9 A similar computatio yields te lower boud π 3 σ 3 for S, ad cosequetly, S π 3 σ 3. 6.1 It remais to estimate S 3. Usig te iequality d ox ad estimates 4.17 ad 4.18 of Propositio 4.7, we ave 7

S 3 = 1 σ m= m+ m px d o x xdx σ x pxdx 163 σ 3 + 64 σ 4. 6.11 Te claim te follows by applyig 6.8, 6.1, ad 6.11 to te rigt-ad side of te estimate below, I 1, 5 1 S1 σ 5 + S 1σ + S 3. ii: Te proof is similar to te proof of item i, ad tus we omit most of te details. We write qx = 1 d o x+ x, let ad decompose I = S 4 +S 5 +S 6, were S 4 := σ S 5 := σ S 6 := σ Hx := d e x 1 d o x, x, pm+1 m= m+ m= m m+ m= m Hxdx, px pm+1hxdx, px d ex xdx. Te fact tat Hxdx = 11 6 3 ad iequality 6.4 yield te estimate S 4 11 1σ 11 3 π σ 3. 6.1 By te properties of H, for eac iteger k, it olds tat k+1 k Hxdx = Hxdx = ad by proceedig as i 6.9 witd replaced by H, it is easy to verify tat Fially, sice d ex, by 6.11 we obtai d ox do x dx 3, S 5 4 π 3 σ 3. 6.13 S 6 S 3 33 σ 3 + 14 σ 4. 6.14 Te triagle iequality togeter wit 6.1, 6.13, ad 6.14 te implies ii. Propositio 6.5. Suppose tat Assumptio 4.1 olds. Te tere exists a costat C > suc tat for all,t N [,T, i E[J ] 4 3 67, ii E J 3 C. 8

Proof. i: Defie a process M k k=,1,... by settig M k := τ k ke[τ 1 ] for k. Sice τ k = k j=1 τ j is a sum of k i.i.d. radom variables τ j distributed as τ 1, te process M k k=,1,... is a F τk k=,1,... - martigale. I additio, sice J is a F τk k=,1,... -stoppig time ad sice J N is a bouded stoppig time for all N N, te optioal stoppig teorem implies tat = E[M N ] = E [ E [ M N F τj N ]] = E[MJ N] = E[τ J N] E[J N]E[τ 1 ], i.e. E[J N] = E[τ J N]/E[τ 1 ]. Moreover, sice N τ J N is icreasig, were τ J is a itegrable upper boud by Lemma 6., te mootoe covergece teorem implies tat E[J ] = lim E[J E[τ J N] N] = lim = E[τ J ] <. 6.15 N N E[τ 1 ] E[τ 1 ] From E[τ 1 ] = = T σ see. we coclude tat E[τ 1 ] E[J ] 4 3 = E[τJ ] 4 T 3, ad te claim te follows by Lemma 6.. ii: Let ζ := + if{t : X t+ X = }. Te by te Markov property ad te scalig property of X t t, ζ d = if{t : Xt = } d = if { t : X t/4 = } d = 4τ1. Sice Pτ J ζ = 1 ad E[τ1 ] = 5 4 3 = 5 T σ 4 3 by., it also olds tat By te defiitio of te process M k k=,1,..., Eτ J Eζ = 16E[τ 1] = 8 3 E[M J ] = Eτ J J E[τ 1 ] = E[τ J ] E[J τ J ]E[τ 1 ]+E[J ]E[τ 1]. T. 6.16 Moreover, sice E[J ] <, Wald s secod idetity applies ad tus E[MJ ] = E[J ]Var[τ 1 ]. cosequece, sice Var[τ 1 ] = 3 E[τ 1] ad E[τ J ] = E[τ 1 ]E[J ] by 6.15, As a E[J ] = E[J ]Var[τ 1 ] E[τ 1 ] + E[J τ J ] E[τ J ] E[τ 1 ] E[τ 1 ] = 3 E[J ]+ E[J τ J ] E[τ 1 ] Eτ J E[τ 1 ] + E[J ] E[τ J ]/E[τ 1 ] E[τ 1 ] = 3 E[J ]+ E[J τ J ] E[τ 1 ] + E[τ 1 ] Eτ J E[τ 1 ] +. 6.17 Deote α := E[J τ J ], β := Eτ J E[τ 1 ]E[J ] E[τ 1 ] ad γ := E[J ] 4 3, 6.18 ad observe tat α [,4],β [,8/3], ad γ [, 67 ] by Propositio 6.1 iii, 6.16, ad item i, respectively. I additio, by 6.17, EJ = E[J ] E[J ]+ 9

= E[J ] 3 +α β + = + 4 3 3 +α +γ 3 +α β + = α + 4 3 3 +α +γ 3 +α β. I particular, usig te above upper bouds for α,β, ad γ, ad te fact tat, α E J 1 56 9 1 + 67 14 3 + + 8 3 C 1 6.19 for some costat C 1 >. Notice tat τ J P-almost surely by te defiitio of J. Terefore, by 6.15, it olds tat E[τ 1 ]E[J ] = E[τ J ], wic yields α 3 = E[J τ J ] 4 E[τ 1 ]E[J ] 3 = E[τ J ]+E[J τ J ] 4 E[τ 1 ]E[J ] 3 E[τ 1]E[J ] E[τ J ] 4 3 E[τ J ] +E J τ J. 6. By te relatio = T ad Lemma 6., E[τ J ] 4 3 E[τ J ] = E[τ J ] 4 T + 4 3 3 E[τ J ] E[τ J ] 4 T 3 + 4 3 E[τ J ] 67 T + 4 4 T 3 3 + 67 T = 67+ 16 1 + 68 1 C 6.1 9 3 for a costat C >. Moreover, by Hölder s iequality, 6.3, ad 6.16, E J τ J EJ Eτ J 1/ C3 T = C 3 6. for some costat C 3 >. Cosequetly, by 6.19, 6., 6.1, ad 6., it olds tat E J 3 = E J α + α 3 C, were C = C 1 +C +C 3 >. emark 6.6. I te proof of [1, Propositio 11.], a expressio for α i 6.18 is give based o te relatio E[J τ J ] = E[J ]E[τ J ]. 6.3 However, we were ot able to verify 6.3, ad tus ad to use a estimate for α istead. 3

6. Tail beavior ofτ adj Lemma 6.7. Uder Assumptio 4.1, suppose tat N ad a costat ξ > are suc tat ξ N. Te for every ρ, π 1 ξ it olds tat i P τ ξ ξ > ρ exp 3 ρ 3ρ ξh ξ, 6.4 ii P τ ξ ξ < ρ exp 3 ρ 3ρ ξ, 6.5 were ξ H H :,π/ is give by Hx := 1+ 6 x 4 x +logcosx. 6.6 emark 6.8. Te above estimates are o-trivial oly weever H is positive. Sice H+ = 1/, it olds tat Hx > for small eoug x. Notice tat te coditio ρ, π 1 ξ esures tat 3ρ ξ,π/, wic is te domai ofh. Proof of Lemma 6.7. Te proof uses ideas from te proof of [1, Propositio 11.3]. i: By Cebysev s iequality, for ay λ, ρ > it olds P + ρ := P e λ τ ξ ξ > ρ = P τ ξ ξ > e λ ρ [ e λ ρ E e λ ] τ ξ ξ = e λ ρ e λ ξ E[e λ τ 1 ] ξ 6.7 sice τ ξ ca be writte as a sum of ξ idepedet radom variables idetically distributed as τ 1 see Subsectio.1. I additio, sice σ = T ad = T, by.1 e λ ρ e λ ξ E[e λ ξ λ τ 1 ] ξ = e λ ρ λ e cos 6.8 provided tat λ, π 8T. Let ρ, π 1 ξ ad defie λ := 3ρ ξ ad κ := 3ρ ξ ; 6.9 te λ, π 8T. Substitute ρ,λ = ρ, λ ad use te relatio κ = λ i order to rewrite te rigt-ad side of 6.8 i terms of ρ,λ,κ,ξ: e λ ρ e λ cos ξ λ = e λρ 4λ e κ / ξ κ cosκ 4. 6.3 Hece, by 6.7, 6.8, 6.3, ad fially by 6.9, logp + ρ λρ 4λ ξ κ κ 4 +logcosκ = 3 ρ ξ 1+ 6 κ 4 κ +logcosκ so tat P + ρ exp 3 ρ ξhκ i terms of H defied i 6.6. ii: By Cebysev s iequality, for ay λ, ρ > it olds tat P ρ := P τ ξ ξ < ρ = P e λ τ ξ ξ > e λ ρ 31

e λ ρ e λ [ ξ E e λ ] ξ τ ξ = e λ ρ e λ cos λ, by.1. Proceed as ii wit te same substitutio ρ, λ = ρ,λ for ρ, π 1 ξ adλgive by 6.9 to get as te couterpart of 6.3, e λ ρ e λ ξ cos λ = e λρ e κ cos 3ρ ξ Similarly as i i, oe te sows tat P ρ exp Ĥx := 1 + 6 x x 4 +logcosx 3 ρ ξ 4λ ξ κ 4. Ĥ 3ρ ξ i terms of te fuctio o,π/. It remais to sow tat Ĥ H o,π/. Sice Ĥx Hx = 6x 4 x +logcosx logcosx it suffices to sow tat First, ϕ x = x+tax+tax. Secodly, ϕ x = + ϕx := x +logcosx logcosx. 6.31 1 cos x + 1 cos x = cos x+cos x cos xcos x cos xcos x > cosx cosx cos xcos x sice cosxcosx < 1 for x,π/. Hece, ϕ is icreasig o,π/, ad sice it also olds tat ϕ + = = ϕ+, 6.31 follows. We cotiue wit te tail estimate for J. Te result resembles iequality 4 i [1], but te timedepedet settig causes some cages. π Lemma 6.9. Uder Assumptio 4.1, suppose tat N, δ,, ad let H be as i 6.6. 1+π Te i PJ > 1+δ exp ii PJ < 1 δ exp 3 δ 3 δ 1+δ H 1 δ H 3δ 1+δ 3δ 1 δ > if 1+δ N, if 1 δ N. Proof. Fix N, δ, π 1+π, ad let ρ := δ. For i, let ξ := 1 + δ ad suppose tat 1+δ = ξ N. Te PJ > ξ = Pτ ξ < = P τ ξ ξ < ρ exp 3 ρ ξh 3ρ ξ by 6.5, sice te coice ofδ esures tat te pairξ,ρ satisfies te assumptios of Lemma 6.7. To sow ii, let ξ := 1 δ ad suppose tat 1 δ = ξ N. Te by 6.4, PJ < ξ = Pτ ξ > = P τ ξ ξ > ρ exp 3 ρ ξh sice te pair ξ,ρ satisfies te assumptios of Lemma 6.7 due to te coice of δ. 3ρ ξ 6.3 Momet estimates for te differece J For te coveiece of te reader, we recall see e.g. [, Teorem 14.1] a versio of te Azuma Hoeffdig iequality, wic will be applied below. 3