UNIFIED FRACTIONAL INTEGRAL FORMULAE FOR THE GENERALIZED MITTAG-LEFFLER FUNCTIONS

Σχετικά έγγραφα
On Generating Relations of Some Triple. Hypergeometric Functions

A Note on Saigo s Fractional Integral Inequalities

α ]0,1[ of Trigonometric Fourier Series and its Conjugate

On Quasi - f -Power Increasing Sequences

Generalized fractional calculus of the multiindex Bessel function

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

The Estimates of the Upper Bounds of Hausdorff Dimensions for the Global Attractor for a Class of Nonlinear

OSCILLATION CRITERIA FOR SECOND ORDER HALF-LINEAR DIFFERENTIAL EQUATIONS WITH DAMPING TERM

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

Intrinsic Geometry of the NLS Equation and Heat System in 3-Dimensional Minkowski Space

1. For each of the following power series, find the interval of convergence and the radius of convergence:

On Inclusion Relation of Absolute Summability

A summation formula ramified with hypergeometric function and involving recurrence relation

Random Attractors for Stochastic Reaction-Diffusion Equations with Distribution Derivatives on Unbounded Domains

Χρονοσειρές - Μάθημα 4

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

8. The Normalized Least-Squares Estimator with Exponential Forgetting

FRACTIONAL INTEGRATION OF THE PRODUCT OF BESSEL FUNCTIONS OF THE FIRST KIND. Abstract


Homomorphism of Intuitionistic Fuzzy Groups

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =

Gradient Estimates for a Nonlinear Parabolic Equation with Diffusion on Complete Noncompact Manifolds

Degenerate Perturbation Theory

Fourier Series. Fourier Series

Homework for 1/27 Due 2/5

4.6 Autoregressive Moving Average Model ARMA(1,1)

Riesz ( ) Vol. 47 No u( x, t) 5 x u ( x, t) + b. 5 x u ( x, t), 5 x = R D DASSL. , Riesz. , Riemann2Liouville ( R2L ) = a

A study on generalized absolute summability factors for a triangular matrix

Το Λήμμα του Fejér και Εφαρμογές

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

Ψηφιακή Επεξεργασία Εικόνας

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form:

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

( y) Partial Differential Equations

Positive solutions for a multi-point eigenvalue. problem involving the one dimensional

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

The k-α-exponential Function

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

The Neutrix Product of the Distributions r. x λ

Homework 4.1 Solutions Math 5110/6830

Inverse trigonometric functions & General Solution of Trigonometric Equations

IIT JEE (2013) (Trigonomtery 1) Solutions

Example Sheet 3 Solutions

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

Finite Field Problems: Solutions

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

C.S. 430 Assignment 6, Sample Solutions

Statistical Inference I Locally most powerful tests

Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations

Damage Constitutive Model of Mudstone Creep Based on the Theory of Fractional Calculus

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.

Uniform Convergence of Fourier Series Michael Taylor

arxiv: v1 [math.ap] 5 Apr 2018

Matrices and Determinants

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media

On Strong Product of Two Fuzzy Graphs

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Lecture 12 Modulation and Sampling

Bounding Nonsplitting Enumeration Degrees

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Estimators when the Correlation Coefficient. is Negative

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

Generating Set of the Complete Semigroups of Binary Relations

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

Bessel function for complex variable

Notations. Primary definition. Traditional name. Traditional notation. Mathematica StandardForm notation. Generalized hypergeometric function

Congruence Classes of Invertible Matrices of Order 3 over F 2

2 Composition. Invertible Mappings

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

EN40: Dynamics and Vibrations

Homework 8 Model Solution Section

derivation of the Laplacian from rectangular to spherical coordinates

Homework 3 Solutions

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

On the k-bessel Functions

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Analysis of optimal harvesting of a prey-predator fishery model with the limited sources of prey and presence of toxicity

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

Oscillation criteria for two-dimensional system of non-linear ordinary differential equations

Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Section 8.3 Trigonometric Equations

Every set of first-order formulas is equivalent to an independent set

Commutative Monoids in Intuitionistic Fuzzy Sets

M a t h e m a t i c a B a l k a n i c a. On Some Generalizations of Classical Integral Transforms. Nina Virchenko

Pro duction Technology and Technical Efficiency in ( k, y) Sp ace

ESTIMATES FOR WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS

Relations Among Certain Generalized Hyper-Geometric Functions Suggested by N-fractional Calculus

T he Op tim al L PM Po rtfo lio M odel of H arlow s and Its So lving M ethod

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Transcript:

Joural o Sciece ad Ars Year 14 No 227 117-124 2014 OGNAL PAPE UNFED FACTONAL NTEGAL FOMULAE FO THE GENEALZED MTTAG-LEFFLE FUNCTONS DAYA LAL SUTHA 1 SUNL DUTT PUOHT 2 Mauscri received: 07042014; Acceed aer: 19052014; Published olie: 30062014 Absrac The racioal calculus oeraors has gaied oiceable imorace ad oulariy due o is esablished alicaios i describig/modelig ad solvig various iegral euaios ordiary diereial euaios ad arial diereial euaios i may ields o sciece ad egieerig The Miag-Leler ucios are imora secial ucios ha rovides soluios o umber o roblems ormulaed i erms o racioal order diereial iegral ad dierece euaios; hereore i has recely become a subec o ieres or may auhors i he ield o racioal calculus ad is alicaios The aim o his aer is o evaluae wo uiied racioal iegrals ivolvig he roduc o geeralied Miag-Leler ucio ad Aell ucio F 3 These iegrals are urher alied i rovig wo heorems o Marichev-Saigo-Maeda racioal iegral oeraors The resuls are eressed i erms o geeralied Wrigh ucio ad hyergeomeric ucios F Furher we oi ou also heir relevace Keywords: Marichev-Saigo-Maeda racioal iegral oeraors geeralied Miag- Leler ucio geeralied Wrigh ucio geeralied hyergeomeric series 1 NTODUCTON The racioal calculus oeraors ivolvig various secial ucios have oud sigiica imorace ad alicaios i modelig o releva sysems i various ields sciece ad egieerig such as urbulece ad luid dyamics sochasic dyamical sysem lasma hysics ad corolled hermouclear usio oliear corol heory image rocessig oliear biological sysems asrohysics ad i uaum mechaics Thereore a remarkably large umber o auhors have sudied i deh he roeries alicaios ad diere eesios o various oeraors o racioal calculus For deailed accou o racioal calculus oeraors alog wih heir roeries ad alicaios oe may reer o he research moograhs by Miller ad oss [4] Samko e al [14] ad Kiryakova [2] 1 Poorima Uiversiy School o Basic ad Alied Sciece 303905 Jaiur dia E-mail: dlsuhar@yahoocoi 2 MP Uiversiy Agri Tech College o Techology ad Egieerig Dearme o Basic-Scieces Mahemaics 313001 Udaiur dia E-mail: suil_a_urohi@yahoocom SSN: 1844 9581 Mahemaics Secio

118 Uiied racioal iegral ormulae or Daya Lal Suha Suil Du Purohi 1903 Gosa Miag-Leler [5] iroduced he ucio E deied by: 1 E 1 C 0 ; e > 0 11 A urher wo-ide geeraliaio o his ucio was give by Wima [17] as: 1 E C 0 12 where e > 0 ad e > 0 By meas o he series rereseaio a geeraliaio o Miag-Leler ucio 12 is iroduced by Prabhakar [7] as: E 13! 0 1 where C e > 0 Furher i is a eire ucio o order [e ] [7] Sice he Miag-Leler ucio rovides soluios o cerai roblems ormulaed i erms o racioal order diereial iegral ad dierece euaios hereore a umber o useul geeraliaio o he his ucio has bee iroduced ad sudied may auhors ecely Salim ad Fara [13] has iroduced ad sudied a ew geeraliaio o he Miag- Leler ucio by meas o he ower series: E 14 0 where C; > 0 such ha The geeralied Wrigh hyergeomeric ucio ψ or C comle a b C ad 0; i 12 ; 12 is deied as below: i i i a i i 1 i1 ψ ψ b 1 k 0 b k k! k ai ik 15 1 Wrigh [18] iroduced he geeralied Wrigh ucio 15 ad roved several heorems o he asymoic easio o ψ [18-20] or all values o he argume uder he codiio: 1 > 1 i i1 wwwosaro Mahemaics Secio

Uiied racioal iegral ormulae or Daya Lal Suha Suil Du Purohi 119 The geeralied hyergeomeric ucio or comle a b C b 0 1 i 12 ; 12 is give by he ower series [1]: i ad F a a ; b b ; 1 1 r a1 r a r 16 b b r! r 0 1 r r where or covergece we have < 1 i 1 ad or ay i The ucio 16 is a secial case o he geeralied Wrigh ucio 15 or 1 1 1: b a 1 1 i 1 F a1 a; b1 b; ψ b 1 17 1 ai i1 A useul geeraliaio o he hyergeomeric racioal iegrals icludig he Saigo oeraors [10-11] has bee iroduced by Marichev [3] see deails i Samko e al [14] ad laer eeded ad sudied by Saigo ad Maeda [12] i erm o ay comle order wih Aell ucio F 3 i he kerel as ollows: Le C ad >0 he he geeralied racioal calculus oeraors he Marichev-Saigo-Maeda oeraors ivolvig he Aell ucio or Hor's F 3 -ucio are deied by he ollowig euaios: 1 0 F 0 3 ; ;1 1 d >0 18 1 0 F3 ; ;1 1 d >0 19 For he deiiio o he Aell ucio F 3 he ieresed reader may reer o he moograh by Srivasava ad Karlso [16] see [1 6] Followig Saigo e al [10 15] he image ormulas or a ower ucio uder oeraors 18 ad 19 are give by: 0 1 1 110 where > ma{ 0 } ad >0 1 1 1 1 1 1 1 1 0 111 wher < 1 mi{ } ad >0 The symbol occurrig i 110 ad 111 is give by: a b c d e a b c d e SSN: 1844 9581 Mahemaics Secio

120 Uiied racioal iegral ormulae or Daya Lal Suha Suil Du Purohi The comuaios o racioal iegrals ad racioal derivaives o secial ucios o oe ad more variables are imora rom he oi o view o he useuless o hese resuls i he evaluaio o geeralied iegrals ad he soluio o diereial ad iegral euaios or eamle see [8]-[9] Moivaed by hese aveues o alicaios here we esablish wo image ormulas or he geeralied Miag-Leler ucio 14 ivolvig le ad righ sided oeraors o Saigo-Meada racioal iegral oeraors [12] i erm o he geeralied Wrigh ucio [18] 2 MAN ESULTS his secio we esablish image ormulas or he geeralied Miag-Leler ucio ivolvig le ad righ sided oeraors o Saigo-Meada racioal iegral oeraors 18 ad 19 i erm o he geeralied Wrigh ucio These ormulas are give by he ollowig heorems: Theorem 21 Le C ad > 0 > 0 be such ha >0 > 1 > ma 0 he here hold he ormula: [ ] 1 E 0 c [ ] 1 1 1 4ψ 4 c 21 Proo: O usig 14 ad wriig he ucio i he series orm he le had side o 21 leads o 1 c 1 E [ c ] 0 0 0 22 Now uo usig he image ormula 110 which is valid uder he codiios saed wih Theorem 21 we ge 1 E [ c ] 0 1 0 1 c! 23 erreig he righ-had side o he above euaio i view o he deiiio 15 we arrive a he resul 21 wwwosaro Mahemaics Secio

Uiied racioal iegral ormulae or Daya Lal Suha Suil Du Purohi SSN: 1844 9581 Mahemaics Secio 121 Theorem 22 Le C ad 0 > such ha [ ] < 1 1 > > 0 mi he he ollowig ormula holds rue: ] [ 0 c E 1 1 5 5 ψ c 24 Proo: By usig 14 he le had side o 24 ca be wrie as: ] [ 0 0 0 c c E 25 which o usig he image ormula 111 arrive a ] [ 0 c E 0! 1 c r 26 erreig he righ-had side o he above euaio i view o he deiiio 15 we arrive a he resul 24 3 SPECAL CASES his secio we cosider some secial cases o he mai resuls derived i he recedig secio we se 0 i he oeraors 18 ad 19 he we have he ollowig kow ideiies: 0 0 0 31 0 0 0 32 where he hyergeomeric oeraors aeared i he righ had side are due o Saigo[10] deied as: / ;1 ; 1 2 1 0 0 d F 33

122 Uiied racioal iegral ormulae or Daya Lal Suha Suil Du Purohi 1 1 2F ; ;1 / 0 1 d 34 Thereore i we se 0 ad relace by i 21 ad 22 we ge he ollowig resuls ivolvig he le ad righ had sided Saigo ye iegral oeraors: Corollary 31 Le C ad > 0 >0 >0 he here hold he ormula: 1 E [ c ] 1 0 1 1 3ψ 3 c 35 Corollary 32 Le C ad > 0 > ma[ ] he he ollowig ormula hold: E [ c ] 0 1 1 4ψ 4 c 36 Furher i we ollow resuls o Corollaries 31 ad 32 whe we arrive a he ollowig resuls ivolvig le ad righ sided iema-liouville racioal iegraio oeraor Corollary 33 C ad > 0 >0 >0 he we have 1 E [ c ] 0 1 1 1 2ψ 2 c 37 emark 1 we se 1 i euaio 37 we ge he kow resul give by Saea ad Saigo [15] Corollary 34 Le C ad > 0 > ma[ ] he W E 0 c [ ] 3 3 1 1 ψ c 38 emark 2 we se 1 i euaio 38 we ge he kow resul give by Saea ad Saigo [15] wwwosaro Mahemaics Secio

Uiied racioal iegral ormulae or Daya Lal Suha Suil Du Purohi 123 Fially i we ollow Corollaries 31 ad 32 i resecive case 0 he we arrive a he ollowig corollary cocerig le ad righ sided Erdélyi-Kober racioal iegraio oeraors Corollary 35 Le C ad > 0 >0 >0 he here hold he ormula: 1 E E [ c ] 0 1 1 1 3ψ 3 c 39 Corollary 36 Le C ad > 0 > ma[ ] he here hold he ormula 1 1 K0 E [ c ] 4ψ 4 c 310 EFEENCES [1] Erdélyi A Magus W Oberheiger F Tricomi FG Higher Trascedeal Fucios Vol1 McGraw-Hill New York 1953 [2] Kiryakova V Geeralied Fracioal Calculus ad Alicaios Vol 301 Logma Scieiic & Techical Esse UK 1994 [3] Marichev O v AN BSS Ser Fi-Ma Nauk 1 128 1974 [4] Miller KS oss B A roducio o he Fracioal Calculus ad Fracioal Diereial Euaios Wiley-er-Sciece Joh Wiley & Sos New York USA 1993 [5] Miag-Leer GM C Acad Sci Paris 137 554 1903 [6] Prudikov AP Brychkov YuA Marichev O egrals ad Series Secial Fucios Vol 1-5 Gordo & Breach New York 1992 [7] Prabhakar T Yokohama Mah J 19 7 1971 [8] Purohi SD Kalla SL Suhar DL SCENTA Series A: Mahemaical Scieces 21 87 2011 [9] Purohi SD Suhar DL Kalla SL Le Maemaiche 671 21 2012 [10] Saigo M Mah e Kyushu Uiv 11 135 1978 [11] Saigo MA Mah Jaoica 244 377 1979 [12] Saigo M Maeda N More geeraliaio o racioal calculus : Trasorm Meods ad Secial Fucios Soia 386 1998 [13] Salim TO Fara AW Joural o Fracioal Calculus ad Alicaios 35 1 2012 [14] Samko S Kilbas A Marichev O Fracioal egrals ad Derivaives Theory ad Alicaios Gordo & Breach Sci Publ New York 1993 [15] Saea K Saigo M J Frac Calc 19 89 2001 [16] Srivasava HM Karlso PW Mulile Gaussio Hyergeomeric Series Ellis Horwood Limied New York 1985 SSN: 1844 9581 Mahemaics Secio

124 Uiied racioal iegral ormulae or Daya Lal Suha Suil Du Purohi [17] Wima A Aca Mah 29 191 1905 [18] Wrigh EM J Lodo Mah Soc 10 286 1935 [19] Wrigh EM Philos Tras oy Soc Lodo A 238 423 1940 [20] Wrigh EM Proc Lodo Mah Soc 462 389 1940 wwwosaro Mahemaics Secio