ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 15: O αλγόριθμος SIMPLE



Σχετικά έγγραφα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 16: O αλγόριθμος SIMPLE (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 9: Συναγωγή και διάχυση (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 8: Ανάλυση ευστάθειας & Συναγωγή και διάχυση

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 6: Εξίσωση διάχυσης (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 7: Εξίσωση μη-μόνιμης διάχυσης (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 4: Εξίσωση διάχυσης

Διάλεξη 13: Σχήματα ανώτερης τάξης Οριακές συνθήκες για προβλήματα συναγωγήςδιάχυσης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 1: Εξισώσεις διατήρησης

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 12: Σχήματα ανώτερης τάξης

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Αναγνώριση Προτύπων Ι

Μέθοδοι πολυδιάστατης ελαχιστοποίησης

HMY 102 Ανάλυση Ηλεκτρικών Κυκλωμάτων

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 11

Διάλεξη 11: Ανώτερης τάξης σχήματα στη μόνιμη συναγωγή

Κεφάλαιο 0: Εισαγωγή

Κεφαλαιο 7: Η ΜΠΣ για ελλειπτικά προβλήματα με μη-ομαλές λύσεις

ΥΠΟΛΟΓΙΣΤΙΚΗ ΡΕΥΣΤΟΔΥΝΑΜΙΚΗ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ

ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ. Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής:

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΟΛΥΦΑΣΙΚΑ, ΠΟΛΥΣΥΣΤΑΤΙΚΑ & ΑΝΤΙΔΡΩΝΤΑ ΣΥΣΤΗΜΑΤΑ

Η μέθοδος Simplex. Χρήστος Γκόγκος. Χειμερινό Εξάμηνο ΤΕΙ Ηπείρου

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών

ΜΕΜ251 Αριθμητική Ανάλυση

p = p n, (2) website:

Μέθοδοι μονοδιάστατης ελαχιστοποίησης

Αριθμητική Λύση Μη Γραμμικών Εξισώσεων Η ΜΕΘΟ ΟΣ ΤΗΣ ΙΧΟΤΟΜΙΣΗΣ 01/25/05 ΜΜΕ 203 ΙΑΛ 2 1

Non Linear Equations (2)

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου

ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ

Διαφορική ανάλυση ροής

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

ΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ

Μέθοδοι μονοδιάστατης ελαχιστοποίησης

Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων.

ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ

Τα στάδια της υπολογιστικής προσομοίωσης επεξήγονται αναλυτικά παρακάτω

Περιοδικοί δεκαδικοί αριθμοί. Περίοδος περιοδικού δεκαδικού αριθμού. Γραφή των περιοδικών δεκαδικών αριθμών. Δεκαδική μορφή ρητού :

ΤΟΠΙΚΟ ΜΟΝΤΕΛΟ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ

1.2 Εξισώσεις 1 ου Βαθμού

IV.13 ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1 ης ΤΑΞΕΩΣ

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου

Πεπερασμένες Διαφορές.

Υδραυλικός Υπολογισμός Βροχωτών Δικτύων

HMY 102 Ανάλυση Ηλεκτρικών Κυκλωμάτων

Εργαστήριο Μηχανικής Ρευστών

Μέθοδος μέγιστης πιθανοφάνειας

Μάθημα Επιλογής 8 ου εξαμήνου

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης

Θέματα Μεταγλωττιστών

ΕΝΟΤΗΤΑ 4: Η ΤΡΙΒΗ ΣΤΑ ΡΕΥΣΤΑ ΘΕΜΑΤΑ ΠΡΟΣ ΕΠΙΛΥΣΗ ΘΕΜΑ Β. Ένα πραγματικό ρευστό ρέει σε οριζόντιο σωλήνα σταθερής κυλινδρικής διατομής.

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

Τμήμα Μηχανικών Πληροφορικής ΤΕ Πρόβλημα Μεταφοράς. Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα

Β. Βασιλειάδης. Επιχειρησιακή Έρευνα Διάλεξη 5 η -Αλγόριθμος Simplex

ΔΙΑΝΥΣΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

sin(30 o ) 4 cos(60o ) = 3200 Nm 2 /C (7)

ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Πανεπιστήμιο Ιωαννίνων Τμήμα Πληροφορικής Δομές Δεδομένων [ΠΛΥ302] Χειμερινό Εξάμηνο 2012

Ορμή και Δυνάμεις. Θεώρημα Ώθησης Ορμής

Μηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

Επαναληπτικές μέθοδοι

Μάθημα Επιλογής 8 ου εξαμήνου

ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

Μακροσκοπική ανάλυση ροής

A = x x 1 + 2x 2 + 4

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

Πανεπιστήμιο Ιωαννίνων Τμήμα Μηχανικών Η/Υ και Πληροφορικής Δομές Δεδομένων [ΠΛΥ302] Χειμερινό Εξάμηνο 2013

κατά το χειµερινό εξάµηνο του ακαδηµαϊκού έτους ΕΜ-351 του Τµήµατος Εφαρµοσµένων Μαθηµατικών της Σχολής Θετικών

3.7 Παραδείγματα Μεθόδου Simplex

Εργαστήριο Μηχανικής Ρευστών. Εργασία 2 η Κατανομή πίεσης σε συγκλίνοντα αποκλίνοντα αγωγό.

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΑΡΑΓΩΓΟΥ - ΠΑΡΑΓΩΓΟΣ ΚΑΙ ΣΥΝΕΧΕΙΑ [Κεφ. 2.1: Έννοια της Παραγώγου του σχολικού βιβλίου].

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ Α.Ε.Π.Π. Γ ΤΕΧΝΟΛΟΓΙΚΗΣ. Όνομα:.. Βαθμός: /100

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων

website:

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΒΙΟΪΑΤΡΙΚΗ

Δυναμική Μηχανών I. Μοντελοποίηση Ηλεκτρικών και Υδραυλικών Συστημάτων

Γραμμικός Προγραμματισμός Μέθοδος Simplex

s, όπου s η απόσταση και t ο χρόνος.

ΜΕΜ251 Αριθμητική Ανάλυση

Σχεδιασμός και ανάλυση δικτύων διανομής Υπολογισμός Παροχών Αγωγών

Διάλεξη 4: Τεχνικές επίλυσης μη-γραμμικών συστημάτων

Το μισό του μήκους του σωλήνα, αρκετά μεγάλη απώλεια ύψους.

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ με το EXCEL

Transcript:

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 15: O αλγόριθμος SIMPLE Χειμερινό εξάμηνο 2008

Προηγούμενη παρουσίαση... Εξετάσαμε τις θέσεις που αποθηκεύουμε την πίεση και την ταχύτητα» Προβλήματα που σχετίζονται με την θέση των μεταβλητών στο υπολογιστικό πλέγμα Είδαμε την τα μετατοπισμένα πλέγματα (staggered mesh) ως αρχική λύση για την επιλογή των μεταβλητών σε δομημένα πλέγματα

Οργάνωση παρουσίασης Θα εξετάσουμε λύσεις για την εισαγωγή της πίεσης στην εξίσωση της συνέχειας για ασυμπίεστες ροές Θα κάνουμε εισαγωγή στον αλγόριθμο SIMPLE

Κίνητρο Μπορούμε να χρησιμοποιήσουμε σειριακή ή άμεση μέθοδο Οι σειριακές μέθοδοι λύνουν τις εξισώσεις της συνέχειας και της ορμής σε σειρά:» Διακριτοποιούμε την συνέχεια στο υπολογιστικό πεδίο» Λύνουμε για τη συνέχεια» Διακριτοποιούμε την εξίσωση της u-ορμής στο πεδίο» Λύνουμε για την ταχύτητα u» Διακριτοποιούμε την εξίσωση της v-ορμής στο πεδίο» Λύνουμε για την ταχύτητα v» Επαναλαμβάνουμε έως την σύγκλιση

Κίνητρο (συνέχεια) Άμεσες μέθοδοι:» Διακριτοποιούμε τις εξισώσεις της ροής στο πεδίο» Δημιουργούμε ένα μεγάλο γραμμικό σύστημα»x είναι διάνυσμα με 4N αγνώστους 3D (3 ταχύτητες, μία πίεση, N κελιά) Οι άμεσες μέθοδοι είναι πολύ ακριβές ακόμη και σήμερα

Μέθοδοι που στηρίζονται στη πίεση Οι σειριακές μέθοδοι είναι προτιμότερες για ασυμπίεστα ρευστά» Μικρή ανάγκη μνήμης και αριθμού πράξεων Γιαασυμπίεσταρευστά, πώς μπορούμε να βρούμε την πίεση από την εξίσωση της συνέχειας;» Η πυκνότητα δεν συνδέεται με την πίεση για ασυμπίεστες ροές Οι μέθοδοι Pressure-based methods είναι τεχνικές για την εισαγωγή της πίεσης στην εξίσωση της συνέχειας

Άλλες μέθοδοι Μέθοδοι βασισμένες στη πυκνότητα» Δημοφιλής για συμπιεστές ροές» χρησιμοποιούν ως αγνώστους τα (u, v, w, ρ, E) Σχήματα Artificial compressibility/preconditioning» Εισαγωγή τεχνητής συμπιεστότητας για να μπορεί να γίνει χρήση μεθόδων βασισμένων στη πυκνότητα σε ασυμπίεστες ροές Θα εστιάσουμε στις μεθόδους που βασίζονται στη πίεση επειδή είναι οι δημοφιλέστερες για ασυμπίεστες ροές.

Δρόμος για την λύση Ηεπιλογήμεταξύτωνμεθόδωνpressure-based/ density-based και artificial compressibility είναι μόνο ένας δρόμος που μας οδηγεί στη λύση Όταν έχουμε σύγκληση, η λύση ικανοποιεί τις διακριτές εξισώσειςτηςσυνέχειαςκαιτηςορμής Η επιλογή της μεθόδου μπορεί να ελέγξει, όταν έχουμε την τελική λύση,» πόσο γρήγορα / οικονομικά μπορούμε να την έχουμε» πόσο μνήμη / χώρο στο δίσκο χρειαζόμαστε

Μετατοπισμένο πλέγμα Η επιλογή του μετατοπισμένου πλέγματος είναι επιλογή σχετικά με την ποιότητα της τελικής λύσης Άσχετα με το δρόμο που θα ακολουθήσουμε για την λύση, θα έχουμε την ίδια λύση (αν τελικά βρούμε λύση) Αν δεν χρησιμοποιήσουμε το μετατοπισμένο πλέγμα θα έχουμε δομές σκακιέρας Άρα το μετατοπισμένο πλέγμα είναι μια ιδιότητα της διακριτοποίησης και καθορίζει την ποιότητα / ακρίβεια της λύσης Η επιλογή σχημάτων βασισμένων στην πίεση δεν επηρεάζει την ακρίβεια.

Αλγόριθμος SIMPLE Semi-Implicit Method for Pressure-Linked Equations Προτάθηκε από τον Patankar και Spalding (1972) Η ιδέα είναι να αρχίσουμε με την διακριτή εξίσωση της συνέχειας Να αντικαταστήσουμε σε αυτή τις διακριτές εξισώσεις για τη u και v ορμή» Οι διακριτές εξισώσεις ορμής έχουν όρους διαφοράς πίεσης Άρα μπορεί να βρεθεί μια εξίσωση για τις διακριτές πιέσεις» Ο αλγόριθμος SIMPLE στην ουσία λύνει για μια σχετική ποσότητα που ονομάζεται διόρθωση πίεσης

Αποθήκευση μεταβλητών: Μετατοπισμένο πλέγμα

Αλγόριθμος SIMPLE Χρησιμοποιώντας μεθόδους ίδιες με αυτές της διακριτοποίησης της ποσότητας φ (scalar), μπορούμε να έχουμε: Όπου, u* και v* είναι λύσεις από την διακριτή εξίσωση της ορμής άν χρησιμοποιήσουμε ένα υποθετικό πεδίο πίεσης p* Επειδή το p* είναι μόνο υποθετικό, το υπολογισμένο πεδίο ταχυτήτων δεν ικανοποιεί την διακριτή εξίσωση συνέχειας

Αλγόριθμος SIMPLE (συνέχεια) Προτείνουμε διορθώσεις στις ταχύτητες και την πίεση ώστε οι διορθωμένες ταχύτητες να ικανοποιούν την εξίσωση συνέχειας: Ας υποθέσουμε ότι οι διορθωμένες τιμές είναι : Διορθώσεις ταχύτητας Διορθώσεις πίεσης

Αλγόριθμος SIMPLE (συνέχεια) Επίσης προϋποθέτει ότι οι διορθωμένες ταχύτητες και πιέσεις ικανοποιούν την εξίσωση της ορμής: Αφαιρώντας τις ποσότητες με το αστέρι από τις παραπάνω έχουμε:

Εξίσωση διορθωμένης πίεσης Κάνουμε την προσέγγιση: Τα διώχνουμε και

Εξίσωση διορθωμένης πίεσης (συνέχεια) Ορίζουμε: έτσι έχουμε και

Ρυθμοί ροής στις πλευρές Αντίστοιχα έχουμε ρυθμούς ροής και διορθώσεις:

Εξίσωση διόρθωσης πίεσης Οι ποσότητες με το αστέρι δεν ικανοποιούν την διακριτή εξίσωση της συνέχειας: Όμως οι διορθωμένες ταχύτητες την ικανοποιούν

Εξίσωση διόρθωσης πίεσης (συνέχεια) Αντικαθιστούμε από τις διορθώσεις των ρυθμών ροής: Συλλέγουμε όρους στη διόρθωση πίεσης p για να φτιάξουμε μια εξίσωση διόρθωσης πίεσης

Ο όρος της κλίσης πίεσης (συνέχεια) Το κριτήριο Scarborough ικανοποιείτε στην ισότητα Οόροςb είναι η ποσότητα στην οποία οι ταχύτητες με το αστέρι δεν ικανοποιούν την συνέχεια

Συζήτηση Η πηγή στην εξίσωση του p είναι η ποσότητα κατά την οποία οι ταχύτητες * δεν ικανοποιούν την διακριτή εξίσωση της συνέχειας Αν η υπόθεση που έχουμε κάνει για τη πίεση p* είναι σωστή, u* καιv* θα ικανοποιούν την συνέχεια και η πηγή στη p θα είναι μηδέν Σε αυτό το όριο, p = είναι μια σταθερά ή μηδέν που ικανοποιεί την εξίσωση διόρθωσης της πίεσης Αν p = σταθερό, οι διορθώσεις της πίεσης είναι μηδέν

Συζήτηση (συνέχεια) Αν η διόρθωση της ταχύτητας είναι μηδέν, το πεδίο ταχυτήτων δεν αλλάζει και μπορούμε να θεωρήσουμε ότι έχει συγκλίνει Τι γίνεται σχετικά με την πίεση;» Το πεδίο της πίεσης θα αλλάζει κατά μια σταθερά σε κάθε μία επανάληψη» Ωστόσο, σε ασυμπίεστες ροές, μόνο το είναι σχετικό καιόχιητιμήτουp» Μόνο κλίσεις και διαφορές του p είναι σχετικές» Προσθέτοντας μια σταθερά δεν αλλάζει τις διαφορές της πίεσης» Άρα και η πίεση μπορεί να θεωρηθεί ότι έχει συγκλίνει

Επίλογος Στη παρούσα διάλεξη είδαμε:» Πως ξεκινώντας από την εξίσωση της ορμής μπορούμε να δημιουργήσουμε μια εξίσωση για διορθώσεις ταχύτητας με όρους της διόρθωσης πίεσης» Δημιουργήσαμε μια εξίσωση για την διόρθωση της πίεσης