ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 9: Συναγωγή και διάχυση (συνέχεια)
|
|
- Κόρη Δάβης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 9: Συναγωγή και διάχυση (συνέχεια) Χειμερινό εξάμηνο 2008
2 Προηγούμενη παρουσίαση... Είδαμε την διακριτοποίηση της μόνιμης εξίσωσης αγωγής-συναγωγής σε διδιάστατα Καρτεσιανά πλέγματα Είδαμε ότι χρειάζονται οι τιμές της φ στη πλευρά του κελιού για να διακριτοποιήσουμε τον όρο συναγωγής Θα εμβαθύνουμε σε δύο σχήματα προσέγγισης» Σχήμα κεντρικών διαφορών (CDS)» Σχήμα ανάντη διαφορών (UDS) Είδαμε ήδη το σχήμα CDS
3 Οργάνωση παρουσίασης Ολοκλήρωση της συζήτησης για τα σχήματα UDS/CDS Ακρίβεια των σχημάτων UDS/CDS Κατανόηση της έννοιας της ψευτοδιάχυσης
4 CDS: Διακριτή εξίσωση Σημειώστε ότι υπάρχει δυνατότητα αρνητικών συντελεστών επιπλέον όρος ροής στο συντελεστή a p
5 CDS: Συζήτηση Έστω ότι V= u i+ v j με u > 0, v > 0. Όταν Fe > 2De,π.χ., εάν ο αριθμός Peclet είναι Pe e >2, a E < 0. Ομοίως, το a N γίνεται αρνητικό αν Fn > 2Dn ή ανpe n > 2 Για άλλους συνδυασμούς του διανύσματος της ταχύτητας, κάποιοι άλλοι συντελεστές μπορεί να γίνουν επίσης αρνητικοί Αυτό σημαίνει ότι αν η τιμή ενός γειτονικού κόμβου μεγαλώνει, η τιμήστο σημείο Ρ μπορεί να μικραίνει! Αυτό είναι αλήθεια ακόμη και όταν S=0 καιδενυπάρχεικάποιοςεπιπλέον όρος ροής μάζας Τι γίνεται σχετικά με το κριτήριο Scarborough;
6 CDS: Συζήτηση Το κριτήριο Scarborough δεν ικανοποιείται: Για όλα τα σημεία του πλέγματος Έστω και για ένα σημείο του πλέγματος Στην ουσία, ακόμη και η τιμή a P = 0 μπορεί να εμφανιστεί σε μια θέση όπου η διάχυση είναι μηδέν και η ροή ομοιόμορφη Άρα, είναι δύσκολο να χρησιμοποιήσουμε επαναληπτικές μεθόδους
7 CDS: Συζήτηση Σημειώστε τον επιπλέον όρο στο a P : Πρόκειται για την καθαρή ροή μάζας που τελικά βγαίνει από τον όγκο ελέγχου Αν το πεδίο ροής ικανοποιεί την εξίσωση της συνέχειας, τότε αυτός ο όρος θα είναι μηδέν. Αν όχι, μπορεί να προκαλέσει απώλεια την κυριαρχίας της διαγωνίου στο σύστημα μας Τελικά:» Η ύπαρξη αρνητικών συντελεστών μπορεί να δημιουργήσει χωρικές ανομοιομορφίες πρέπει να κρατάμε Pe<2» Το κριτήριο του Scarborough δεν ικανοποιείται δεν μπορούμε να χρησιμοποιήσουμε επαναληπτικούς επιλυτές
8 Τελικά Οι κεντρικές διαφορές (CDS)» Χρησιμοποιούν την υπόθεση του γραμμικού προφίλ μεταξύ των σημείων για να πάρουν την τιμή στην πλευρά του κελιού» Μπορεί να οδηγήσουν σε χωρικές αστάθειες (wiggles) σε περίπτωση που η συναγωγή είναι το κύριο φαινόμενο στη ροή» Μπορεί να προκύψουν συστήματα χωρίς κύρια διαγώνιο δυσκολία στη χρήση επαναληπτικών επιλυτών» Μπορεί να δειχθεί ότι είναι τάξης ακρίβειας O(Δx 2 )
9 Ανάντη διαφορές (UDS) Γράφουμε τις τιμές στις πλευρές ως εξής: Δηλαδή, ανάντη (Upwind) της διεύθυνσης της ροής
10 UDS: Διακριτή εξίσωση Όπου Ποια είναι τα πρόσημα των συντελεστών των γειτόνων; Δείτε τον επιπλέον όρο για τη ροή της μάζας στον συντελεστή a P
11 UDS: συζήτηση Σημειώστε ότι όλοι οι συντελεστές είναι θετικοί Επειδή για S=0 και όταν επιπλέον όροι ροής μάζας είναι μηδέν» Η λύση είναι κλεισμένη Το κριτήριο Scarborough ικανοποιείται στην ισότητα για S=0 και όταν δεν υπάρχει επιπλέον ροή μάζας Σημειώστε τον επιπλέον όρο ροής μάζας στο συντελεστή του a P : Μηδέν όταν το πεδίο ταχυτήτων ικανοποιεί την συνέχεια
12 Τελικά Το σχήμα ανάντη διαφορών (UDS)» Κάνει την υπόθεση γραμμικού προφίλ για τον όρο της διάχυσης, αλλά χρησιμοποιεί την απάνεμη τιμή της φ για τον υπολογισμό τουόρουσυναγωγής» Εφόσον ικανοποιείται η συνέχεια της μάζας, το σχήμα εγγυάται ότι η λύση είναι κλειστή (bounded) για οποιονδήποτε αριθμό Peclet του πλέγματος» Το κριτήριο Scarborough ικανοποιείται άρα μπορούν να χρησιμοποιηθούν επαναληπτικοί επιλυτές Μπορεί να φανεί ότι οι UDS έχουν τάξη ακρίβειας O(Δx) Δεν είναι πολύ ικανοποιητικό για πρακτική χρήση
13 UDS: Ακρίβεια Θεωρούμε ομοιόμορφο πλέγμα σε μία διάσταση ΑναπτύσσουμεσεσειράTaylor γύρωαπότοσημείοe Για το σχήμα UDS έχουμε:
14 Άρα η ακρίβεια είναι τάξης O(Δx 2 ) CDS: Ακρίβεια
15 Παράδειγμα Μόνιμη ροή κατά μήκους της διαγωνίου Συντελεστής διάχυσης Γ = 0 Ποια είναι η λύση;
16 Παράδειγμα (συνέχεια) Η λύση της φ κατά μήκος του κέντρου του πεδίου UDS: εισάγει διάχυση CDS: τιμές μεγαλύτερες από το κανονικό
17 Εξίσωση μοντέλο για το καθορισμό της ψευτοδιάχυσης Το κάθε σχήμα διακριτοποίησης αντιστοιχεί στη λύση μιας ισοδύναμης (effective) μερικής διαφορικής εξίσωσης Η δρούσα ΜΔΕ ονομάζεται Εξίσωση Μοντέλο Ας υποθέσουμε ότι θέλουμε να λύσουμε την εξίσωση της καθαρής συναγωγής Ας υποθέσουμε για απλούστευση ρ και u, v σταθερά Όταν εφαρμόζουμε το σχήμα UDS στην παραπάνω εξίσωση ποια είναι η ισοδύναμη εξίσωση που λύνουμε πραγματικά;
18 Εξίσωση μοντέλο (συνέχεια) Μόνο εξίσωση συναγωγής: Εφαρμόζουμε UDS: ΑναπτύσσουμεσεσειράTaylor:
19 Εξίσωση μοντέλο (συνέχεια) Αντικαθιστούμε τα αναπτύγματα Taylor στη διακριτή εξίσωση: Για Δx = Δy Τεχνητή ή ψεύτικη διάχυση
20 Εξίσωση μοντέλο (συνέχεια) Το σχήμα UDS είναι ικανό να λύσει την εξίσωση συναγωγής-διάχυσης με τον επιπλέον όρο ψεύτικης ή τεχνητής διάχυσης που δημιουργείται από τη διακριτοποίηση Σημειώστε ότι ο όρος της διάχυσης είναι τάξης O(Δx) και αυτό είναι και το σφάλμα αποκοπής του σχήματος UDS Η τεχνητή διάχυση μικραίνει όταν το πλέγμα γίνεται πιο μικρό Ανηφυσικήδιάχυσηείναιμεγάλη, η ψευτοδιάχυση είναι δυσκολότερο να παρατηρηθεί, αλλά για μεγάλους αριθμούς Pe, η αριθμητική διάχυση μπορεί να υπερισχύσει
21 CDS μοντέλο εξίσωσης Στην εξίσωση της καθαρής συναγωγής: Εφαρμόζουμε CDS: ΑναπτύσσουμεσεσειρέςTaylor: Κάνουμε τον ίδιο τύπο αναπτύγματος και για την διεύθυνση y
22 CDS μοντέλο εξίσωσης (συνέχεια) Αφαιρούμε: Κάνουμετοίδιοκαιγιατηνy διεύθυνση: Αντικαθιστούμε στην διακριτή εξίσωση: Όρος διάδοσης (dispersion)
23 CDS μοντέλο εξίσωσης (συνέχεια) Η εξίσωση μοντέλου για το σχήμα κεντρικών διαφορών (CDS) έχει ένα επιπλέον όρο τρίτης παραγώγου που εκφράζει διασπορά (dispersive term) Αυτός ο τύπος παραγώγου έχει την τάση να δημιουργεί χωρικές ανομοιομορφίες Σημειώστε ότι το λάθος αποκοπής για το σχήμα CDS είναι O(Δx 2 ) Έτσι, το σχήμα UDS εισάγει τη διάχυση και το σχήμα CDS τη διασπορά
24 Επίλογος Στη παρούσα διάλεξη Είδαμε τα σχήματα UDS και CDS Προσδιορίσαμε το λάθος αποκοπής των σχημάτων CDS και UDS Χρησιμοποιήσαμε την ιδέα της εξίσωσης μοντέλο για να εξηγήσουμε γιατί το σχήμα UDS εισάγει διάχυση και το σχήμα CDS διασπορά
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 8: Ανάλυση ευστάθειας & Συναγωγή και διάχυση
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 8: Ανάλυση ευστάθειας & Συναγωγή και διάχυση Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Ολοκληρώσαμε
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Ολοκληρώσαμε
Διάλεξη 11: Ανώτερης τάξης σχήματα στη μόνιμη συναγωγή
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 11: Ανώτερης τάξης σχήματα στη μόνιμη συναγωγή Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 7: Εξίσωση μη-μόνιμης διάχυσης (συνέχεια)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 7: Εξίσωση μη-μόνιμης διάχυσης (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Είδαμε
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 4: Εξίσωση διάχυσης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 4: Εξίσωση διάχυσης Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... 1. Εξετάσαμε τις μεθόδους των
Διάλεξη 13: Σχήματα ανώτερης τάξης Οριακές συνθήκες για προβλήματα συναγωγήςδιάχυσης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 13: Σχήματα ανώτερης τάξης Οριακές συνθήκες για προβλήματα συναγωγήςδιάχυσης Χειμερινό εξάμηνο 2008
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 16: O αλγόριθμος SIMPLE (συνέχεια)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 16: O αλγόριθμος SIMPLE (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε λύσεις
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη : Περιγραφή αριθμητικών μεθόδων Χειμερινό εξάμηνο 008 Προηγούμενη παρουσίαση... Γράψαμε τις εξισώσεις
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 15: O αλγόριθμος SIMPLE
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 15: O αλγόριθμος SIMPLE Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε τις θέσεις που
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 12: Σχήματα ανώτερης τάξης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 12: Σχήματα ανώτερης τάξης Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε μερικά σχήματα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 6: Εξίσωση διάχυσης (συνέχεια)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 6: Εξίσωση διάχυσης (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε την εξίσωση
Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών
Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών
ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ Σημειώσεις Μαθήματος. Διάλεξη 10: Ολοκλήρωση Συνήθων Διαφορικών Εξισώσεων: Προβλήματα Συνοριακών Τιμών Μίας Διάστασης (1D)
ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ Σημειώσεις Μαθήματος Διάλεξη : Ολοκλήρωση Συνήθων Διαφορικών Εξισώσεων: Προβλήματα Συνοριακών Τιμών Μίας Διάστασης D Γιάννης Δημακόπουλος & Γιάννης Τσαμόπουλος ΧΜ66 Εαρινό Εξάμηνο Πρόβλημα
Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών
Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών
ΥΠΟΛΟΓΙΣΤΙΚΗ Υ ΡΑΥΛΙΚΗ ΚΑΙ ΜΕΤΑΦΟΡΑ ΡΥΠΩΝ
ΥΠΟΛΟΓΙΣΤΙΚΗ Υ ΡΑΥΛΙΚΗ ΚΑΙ ΜΕΤΑΦΟΡΑ ΡΥΠΩΝ 1 ο ΘΕΜΑ (1,5 Μονάδες) Στην παράδοση είχε παρουσιαστεί η αριθµητική επίλυση της εξίσωσης «καθαρής συναγωγής» σε µία διάσταση, η µαθηµατική δοµή της οποίας είναι
Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων
Κεφάλαιο 6 Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών παραβολικών διαφορικών εξισώσεων 6.1 Εισαγωγή Η µέθοδος των πεπερασµένων όγκων είναι µία ευρέως διαδεδοµένη υπολογιστική µέθοδος επίλυσης
ΥΠΟΛΟΓΙΣΤΙΚΗ ΡΕΥΣΤΟΔΥΝΑΜΙΚΗ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ
ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΥΠΟΛΟΓΙΣΤΙΚΗ ΡΕΥΣΤΟΔΥΝΑΜΙΚΗ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ Εαρινό Εξάμηνο 2017 Διδάσκουσα: Δρ. Βλαχομήτρου Μαρία ΠΡΟΤΕΙΝΟΜΕΝΗ ΒΙΒΛΙΟΓΡΑΦΙΑ 1.
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss,
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss,
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss,
Επιμέλεια: Δρ Μ. Σπηλιώτης Κείμενα σχήματα Τσακίρης 2008 Και κατά τις παραδόσεις του Κ.Κ.Μπέλλου
Συλλογικά δίκτυα κλειστών αγωγών υπό πίεση Βελτιστοποίηση Επιμέλεια: Δρ Μ. Σπηλιώτης Κείμενα σχήματα Τσακίρης 2008 Και κατά τις παραδόσεις του Κ.Κ.Μπέλλου Γενικές αρχές Συλλογικό: Μόνιμοι αγωγοί με σκάμμα
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 5 η : Διδιάστατη και τριδιάστατη αγωγή θερμότητας Άδεια Χρήσης Το παρόν εκπαιδευτικό
Χειμερινό εξάμηνο
Μεταβατική Αγωγή Θερμότητας: Ανάλυση Ολοκληρωτικού Συστήματος Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής 1 Μεταβατική Αγωγή (ranen conducon Πολλά προβλήματα μεταφοράς θερμότητας εξαρτώνται από
Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης
Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης Εισαγωγή Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης: Δ18- Η δυναμική μετατόπιση u(t) είναι δυνατό να προσδιοριστεί με απ ευθείας αριθμητική ολοκλήρωση της εξίσωσης
ΘΕΡΜΙΚΗ ΑΓΩΓΙΜΟΤΗΤΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 www.pmoiras.weebly.om ΘΕΡΜΙΚΗ ΑΓΩΓΙΜΟΤΗΤΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα. Φαινόμενα μεταφοράς στα αέρια. Μηχανισμοί διάδοσης θερμότητας 3. Διάδοση θερμότητας
Υδραυλικός Υπολογισμός Βροχωτών Δικτύων
Υδραυλικός Υπολογισμός Βροχωτών Δικτύων Π. Σιδηρόπουλος Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων Τμήμα Πολιτικών Μηχανικών Π.Θ. E-mail: psidirop@uth.gr Συνολικό δίκτυο ύδρευσης Α. Ζαφειράκου,
Εκμετάλλευση και Προστασία των Υπόγειων Υδατικών Πόρων
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εκμετάλλευση και Προστασία των Υπόγειων Υδατικών Πόρων Ενότητα 8: Μοντέλα προσομοίωσης σε πορώδεις υδροορείς Αναπληρωτής Καθηγητής Νικόλαος
4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή
. Παραγώγιση Η διαδικασία της υπολογιστικής επίλυσης συνήθων και μερικών διαφορικών εξισώσεων προϋποθέτει την προσέγγιση της εξαρτημένης μεταβλητής και των παραγώγων της στους κόμβους του πλέγματος. Ειδικά,
Αριθμητική επίλυση του προβλήματος της Αγωγής Θερμότητας.
ΔΙΑΛΕΞΗ η : Αριθμητική επίλυση του προβλήματος της Αγωγής Θερμότητας Στόχος: Στο μάθημα αυτό θα ασχοληθούμε με την αριθμητική επίλυση του προβλήματος της Αγωγής Θερμότητας, ενώ αργότερα θα γενικεύσουμε
,, δηλαδή στο σημείο αυτό παρουσιάζει τη μέγιστη τιμή της αν α < 0 2α 4α και την ελάχιστη τιμή της αν α > 0. β Στο διάστημα,
Γενικής Παιδείας 1.4 Εφαρμογές των παραγώγων Το κριτήριο της πρώτης παραγώγου Στην Άλγεβρα της Α Λυκείου μελετήσαμε τη συνάρτηση f(x) = αx + βx + γ, α 0 και είδαμε ότι η γραφική της παράσταση είναι μία
4. ΑΝΟΜΟΙΟΜΟΡΦΗ ΡΟΗ ΒΑΘΜΙΑΙΑ ΜΕΤΑΒΑΛΛΟΜΕΝΗ ΡΟΗ
4. ΑΝΟΜΟΙΟΜΟΡΦΗ ΡΟΗ ΒΑΘΜΙΑΙΑ ΜΕΤΑΒΑΛΛΟΜΕΝΗ ΡΟΗ * Η μεταβολή των χαρακτηριστικών της ροής είναι ήπια * Η κατανομή της πίεσης στο βάθος ροής είναι υδροστατική * Οι κύριες απώλειες ενέργειας οφείλονται στις
Λύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου
Λύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου 203 4 ΘΕΜΑ Ο (4,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό (λειτουργικό) διάγραμμα ενός συστήματος ελέγχου κλειστού βρόχου. α. Να προσδιοριστεί
ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ
Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Κεφάλαιο 7 ο : Κρίσιμη
Κεφ. 7: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές
Κεφ 7: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές 71 Εισαγωγή πρότυπες εξισώσεις 7 Εξισώσεις πεπερασμένων διαφορών πέντε και εννέα σημείων 73 Οριακές συνθήκες μικτού τύπου και ακανόνιστα
ΜΕΜ251 Αριθμητική Ανάλυση
ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 03, 12 Φεβρουαρίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Επαναληπτικές μέθοδοι - Γενική θεωρία 2. Η μέθοδος του Newton
website:
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 31 Μαρτίου 2019 1 Δυνάμεις μάζας και επαφής Δυνάμεις μάζας ή δυνάμεις όγκου ονομάζονται οι δυνάμεις που είναι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 1: Εξισώσεις διατήρησης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 1: Εξισώσεις διατήρησης Χειμερινό εξάμηνο 2008 Οργάνωση παρουσίασης 1. Ιστορία της υπολογιστικής
L = T V = 1 2 (ṙ2 + r 2 φ2 + ż 2 ) U (3)
ΥΠΟΛΟΓΙΣΤΙΚΗ ΑΣΤΡΟΔΥΝΑΜΙΚΗ 3): Κινήσεις αστέρων σε αστρικά συστήματα Βασικές έννοιες Θεωρούμε αστρικό σύστημα π.χ. γαλαξία ή αστρικό σμήνος) αποτελούμενο από μεγάλο αριθμό αστέρων της τάξης των 10 8 10
4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή
4. Παραγώγιση Η διαδικασία της υπολογιστικής επίλυσης συνήθων και μερικών διαφορικών εξισώσεων προϋποθέτει την προσέγγιση της εξαρτημένης μεταβλητής και των παραγώγων της στους κόμβους του πλέγματος. Ειδικά,
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss,
ΜΑΘΗΜΑΤΙΚΩΝ ΔΑΣΟΛΟΓΙΑΣ
Ασκήσεις ΜΑΘΗΜΑΤΙΚΩΝ ΔΑΣΟΛΟΓΙΑΣ για Γενική Επανάληψη Πολυχρόνη Μωυσιάδη, Καθηγητή ΑΠΘ ΟΜΑΔΑ 1. Συναρτήσεις 1. Δείξτε ότι: και υπολογίστε την τιμή 2. 2. Να υπολογισθούν οι τιμές και 3. Υπολογίστε τις τιμές
Κεφάλαιο 0: Εισαγωγή
Κεφάλαιο : Εισαγωγή Διαφορικές εξισώσεις Οι Μερικές Διαφορικές Εξισώσεις (ΜΔΕ) αλλά και οι Συνήθεις Διαφορικές Εξισώσεις (ΣΔΕ) εμφανίζονται παντού στις επιστήμες από τη μηχανική μέχρι τη βιολογία Τις περισσότερες
Υπόγεια Υδραυλική και Υδρολογία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4: Αναλυτική επίλυση του μαθηματικού ομοιώματος: Σύμμορφη Απεικόνιση Καθηγητής Κωνσταντίνος Λ. Κατσιφαράκης Αναπληρωτής Καθηγητής
Υδραυλική των Υπόγειων Ροών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Αριθμητικά μοντέλα υπόγειων υδροορέων Καθηγητής Κωνσταντίνος Λ. Κατσιαράκης Αναπληρωτής Καθηγητής Νικόλαος Θεοδοσίου Καθηγητής
Δυναμική Μηχανών I. Διάλεξη 11. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ
Δυναμική Μηχανών I Διάλεξη 11 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα Γραμμικοποίηση Ευστάθεια Απόκριση Συστημάτων 1 Β.Ε. που περιγράφονται από ΣΔΕ 1 ης τάξης 2 Πρόβλημα/Ερώτημα
Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε
Κεφάλαιο Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε. Εισαγωγή Η µέθοδος των πεπερασµένων διαφορών είναι από τις παλαιότερες και πλέον συνηθισµένες και διαδεδοµένες υπολογιστικές τεχνικές
1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ
ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 73 8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ρισμός της συνέχειας Έστω οι συναρτήσεις g h παρακάτω σχήματα των οποίων οι γραφικές παραστάσεις δίνονται στα C h 6 l ( C l g( C g l l (a Παρατηρούμε ότι:
Λαμβάνονται υπόψη οι απώλειες. διατομή και θεώρηση
Δρ Μ.Σπηλιώτη λώ Λαμβάνονται υπόψη οι απώλειες ενέργειας Eνιαία ταχύτητα σε όλη τη διατομή και θεώρηση συντελεστή διόρθωσης κινητικής ενέργειας Αρχικά σε όγκο ελέγχου Σε διακλαδιζόμενους αγωγούς δεν συμπίπτουν
Επισκόπηση ητου θέματος και σχόλια. Δρ Μ. Σπηλιώτη Λέκτορα Κείμενα από Μπέλλος, 2008 και από τις σημειώσεις Χρυσάνθου, 2014
Υδραυλική ανοικτών αγωγών Επισκόπηση ητου θέματος και σχόλια Δρ Μ. Σπηλιώτη Λέκτορα Κείμενα από Μπέλλος, 2008 και από τις σημειώσεις Χρυσάνθου, 2014 Σκαρίφημα Σκελετοποίηση Διάταξη έργων: 3 περιοχές+υδροληψεία
Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6)
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Τυπικά Υδραυλικά Έργα Μέρος 2: ίκτυα διανοµής Άσκηση E0: Μαθηµατική διατύπωση µοντέλου επίλυσης απλού δικτύου διανοµής
Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών
Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι
IV.13 ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1 ης ΤΑΞΕΩΣ
IV.3 ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ης ΤΑΞΕΩΣ.Γενική λύση.χωριζόμενων μεταβλητών 3.Ρυθμοί 4.Γραμμικές 5.Γραμμική αυτόνομη 6.Bernoulli αυτόνομη 7.Aσυμπτωτικές ιδιότητες 8.Αυτόνομες 9.Σταθερές τιμές.διάγραμμα ροής.ασυμπτωτική
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Χωρητικότητα Εικόνα: Όλες οι παραπάνω συσκευές είναι πυκνωτές, οι οποίοι αποθηκεύουν ηλεκτρικό φορτίο και ενέργεια. Ο πυκνωτής είναι ένα είδος κυκλώματος που μπορούμε να συνδυάσουμε
21/11/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ Στέλιος Τζωρτζάκης Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ 1 3 4 Το δυναμικό του αρμονικού ταλαντωτή Η παραβολική προσέγγιση βρίσκει άμεση
ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ
ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ Η ανάλυση προβλημάτων δύο διαστάσεων με τη μέθοδο των Πεπερασμένων Στοιχείων περιλαμβάνει τα ίδια βήματα όπως και στα προβλήματα μιας διάστασης. Η ανάλυση γίνεται λίγο πιο πολύπλοκη
website:
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 3 Μαρτίου 2019 1 Τανυστής Παραμόρφωσης Συνοδεύον σύστημα ονομάζεται το σύστημα συντεταγμένων ξ i το οποίο μεταβάλλεται
dy/dx <1 (Δημητρίου, ί 1988) Υδροστατική διανομή πιέσεων, αμελητέες κατακόρυφες κινήσεις διατμητική τάση στερεού ορίου με βάση
dy/dx
ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ. Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής:
ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής: (,)(,)()() h 1 u x t u x t u t x (1) e Η διαφορά με τα
Αναγνώριση Προτύπων Ι
Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΝΟΤΗΤΑ 3: Η ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΕΝΕΡΓΕΙΑΣ ΚΑΙ Η ΕΞΙΣΩΣΗ BERNOULLI ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β
ΚΕΦΑΛΑΙΟ 3 Ο : ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ ΕΝΟΤΗΤΑ 3: Η ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΕΝΕΡΓΕΙΑΣ ΚΑΙ Η ΕΞΙΣΩΣΗ BERNOULLI ΛΥΜΕΝΑ ΘΕΜΑΤΑ Ερώτηση 1. ΘΕΜΑ Β Στο οριζόντιο σωλήνα του διπλανού σχήματος ρέει ιδανικό υγρό. Με τον οριζόντιο
Πρόβλημα 4.9.
Πρόβλημα 4.9. Να βρεθεί το δυναμικό V() παντού στο χώρο ενός θετικά φορτισμένου φύλλου απείρων διαστάσεων με επιφανειακή πυκνότητα φορτίου σ. Πάρτε τον άξονα κάθετα στο φύλλο και θεωρήστε ότι το φύλλο
Μακροσκοπική ανάλυση ροής
Μακροσκοπική ανάλυση ροής Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών Εισαγωγή Μακροσκοπική ανάλυση Όγκος ελέγχου και νόμοι της ρευστομηχανικής Θεώρημα μεταφοράς Εξίσωση συνέχειας Εξίσωση ορμής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΦΑΣΗ Β- CASE STUDIES ΕΦΑΡΜΟΓΗΣ ΕΜΠΟΡΙΚΟΥ ΛΟΓΙΣΜΙΚΟΥ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ
Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση
Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Υποδειγματικά Λυμένες Ασκήσεις Άλυτες Ασκήσεις ΛΑ Να βρείτε
Κεφάλαιο 7. Επίλυση υπερβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές
Κεφάλαιο 7 Επίλυση υπερβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές 7. Εξισώσεις κύματος ης ης τάξης Οι κλασσικές αντιπροσωπευτικές εξισώσεις της κατηγορίας των υπερβολικών εξισώσεων είναι οι
1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης
1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα
QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)
ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (22 Σεπτεµβρίου) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ 1ο ΘΕΜΑ 1. Αφού ορίσετε ακριβώς τι σηµαίνει πίσω ευσταθής υπολογισµός, να εξηγήσετε αν ο υ- πολογισµός του εσωτερικού γινοµένου δύο διανυσµάτων
p = p n, (2) website:
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Ιδανικά ρευστά Μαάιτα Τζαμάλ-Οδυσσέας 7 Απριλίου 2019 1 Καταστατικές εξισώσεις ιδανικού ρευστού Ιδανικό ρευστό είναι ένα υποθετικό
Μαγνητικό Πεδίο. μαγνητικό πεδίο. πηνίο (αγωγός. περιστραμμένος σε σπείρες), επάγει τάση στα άκρα του πηνίου (Μετασχηματιστής) (Κινητήρας)
Ένας ρευματοφόρος αγωγός παράγει γύρω του μαγνητικό πεδίο Ένα χρονικά μεταβαλλόμενο μαγνητικό πεδίο, του οποίου οι δυναμικές γραμμές διέρχονται μέσα από ένα πηνίο (αγωγός περιστραμμένος σε σπείρες), επάγει
Κεφάλαιο 12: Υδραυλική ανάλυση δικτύων διανομής
Κεφάλαιο 12: Υδραυλική ανάλυση δικτύων διανομής Εννοιολογική αναπαράσταση δίκτυων διανομής Σχηματοποίηση: δικτυακή απεικόνιση των συνιστωσών του φυσικού συστήματος ως συνιστώσες ενός εννοιολογικού μοντέλου
ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ
ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ [Κεφ..6: Συνέπειες του Θεωρήματος της Μέσης Τιμής πλην της Ενότητας Μονοτονία Συνάρτησης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ
Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο
Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Σύνοψη Στο κεφάλαιο αυτό παρουσιάζεται η ιδέα του συμπτωτικού πολυωνύμου, του πολυωνύμου, δηλαδή, που είναι του μικρότερου δυνατού βαθμού και που, για συγκεκριμένες,
Προτεινόμενες Ασκήσεις στις Εισαγωγικές Έννοιες
Προτεινόμενες Ασκήσεις στις Εισαγωγικές Έννοιες από το βιβλίο «Ανάλυση Ηλεκτρικών Κυκλωμάτων», Ν. Μάργαρη Πρόβλημα. 'Ενας ραδιοφωνικός δέκτης συνδέεται με την κεραία του μ' ένα καλώδιο μή-κους m. Ο δέκτης
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα ΦΥΣ102 1 Δύναμη είναι: Η αιτία που προκαλεί μεταβολή
Σχόλιο. Κατασκευή των τροχιών της δισδιάστατης γραμμικής δυναμικής.
ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ : ΕΞΕΛΙΞΗ ΣΤΟΥΣ ΧΩΡΟΥΣ ΚΑΤΑΣΤΑΣΕΩΝ 55 Σχόλιο. Κατασκευή των τροχιών της δισδιάστατης γραμμικής δυναμικής. Η δισδιάστατη γραμμική δυναμική ορίζεται στο ευκλείδειο επίπεδο από ένα σύστημα
Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών
Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών 7. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης) 7. Μέθοδος Euler 7.3
ΕΦΑΡΜΟΓΕΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΤΗ ΝΑΥΠΗΓΙΚΗ ΚΑΙ ΣΤΗ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ
ΕΦΑΡΜΟΓΕΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΤΗ ΝΑΥΠΗΓΙΚΗ ΚΑΙ ΣΤΗ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ Εισαγωγή στη μέθοδο των πεπερασμένων στοιχείων Α. Θεοδουλίδης Η Μεθοδος των Πεπερασμένων στοιχείων Η Μέθοδος των ΠΣ είναι μια
ΥΠΟΛΟΓΙΣΤΙΚΗ Υ ΡΑΥΛΙΚΗ
ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ.Π.Θ. ΥΠΟΛΟΓΙΣΤΙΚΗ Υ ΡΑΥΛΙΚΗ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 008-009 ΚΩΝΣΤΑΝΤΙΝΟΣ ΜΟΥΤΣΟΠΟΥΛΟΣ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ 1. ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΗΣ ΣΥΝΑΓΩΓΗΣ Αντικείµενο
ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΛΟΜΕΝΗ ΚΙΝΗΣΗ (Ε.Ο.Μ.Κ.) Με διάγραμμα :
Νόμος Νόμοι Πρότυπο ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΛΟΜΕΝΗ ΚΙΝΗΣΗ (Ε.Ο.Μ.Κ.) Πρότυπο ευθύγραμμης ομαλά μεταβαλλόμενης κίνησης (Ε.Ο.Μ.Κ) Όταν η επιτάχυνση ενός
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Ρεύμα και Αντίσταση Εικόνα: Οι γραμμές ρεύματος μεταφέρουν ενέργεια από την ηλεκτρική εταιρία στα σπίτια και τις επιχειρήσεις μας. Η ενέργεια μεταφέρεται σε πολύ υψηλές τάσεις, πιθανότατα
Φυλλάδιο 1 - Σημεία Προσοχής στις Παραγράφους 1.1, 1.2 και 1.3
Φυλλάδιο 1 - Σημεία Προσοχής στις Παραγράφους 1.1, 1.2 και 1.3 1. Σπάμε ένα Διάνυσμα Έστω ότι έχουμε ένα διάνυσμα. Τότε αυτό μπορούμε να το σπάσουμε σε δύο (ή περισσότερα), παρεμβάλλοντας ανάμεσα στα γράμματα
Θέματα και Απαντήσεις Προαγωγικών Εξετάσεων Β ΛΥΚΕΙΟΥ στα Μαθηματικά Θετικού Προσανατολισμού
ΘΕΜΑ ο Θέματα και Απαντήσεις Προαγωγικών Εξετάσεων Β ΛΥΚΕΙΟΥ στα Μαθηματικά Θετικού Προσανατολισμού (Α Να χαρακτηρίσετε με τις λέξεις ΣΩΣΤΟ ή ΛΑΘΟΣ τις παρακάτω πέντε προτάσεις μεταφέροντας τις απαντήσεις
Φόρτος εργασίας. 4 ( ώρες): Επίπ εδο μαθήματος: Ώρες διδασκαλίας: 7 διδασκαλίας εβδομαδιαίως:
Γενικές π ληροφορίες μαθήματος: Τίτλος Υπ ολογιστική μαθήματος: Υδραυλική με Εφαρμογές σε Υδραυλικά Έργα Πιστωτικές μονάδες: 5 Κωδικός μαθήματος: CE07_H05 Φόρτος εργασίας ( ώρες): Επίπ εδο μαθήματος: Προπτυχιακό
Υπόγεια ροή. Παρουσίαση 3 από 4: Ταχύτητα κίνησης υπόγειου νερού & ρύπου. (Tαχύτητα μεταγωγής)
Υπόγεια ροή Παρουσίαση 3 από : Ταχύτητα κίνησης υπόγειου νερού & ρύπου (Tαχύτητα μεταγωγής) Απλό μοντέλο εδαφικής στήλης: συμπαγής κύλινδρος επιφάνειας Α με πολλά κυλινδρικά ανοίγματα R=0.5cm R=1cm =100cm
Δυναμική Μηχανών I. Διάλεξη 21. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ
Δυναμική Μηχανών I Διάλεξη 21 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Ανακοινώσεις Εξέταση Μαθήματος: 1/4/2014, 12.00 Απαιτείται αποδεικτικό ταυτότητας (Α.Τ., Διαβατήριο, Διπλ. Οδ.) Απαγορεύεται
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α Ερώτηση θεωρίας Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c είναι μια πραγματική σταθερά, να δείξετε ότι: ( c f( )) = c f ( ),. Έστω F( )
2. Η μέθοδος του Euler
2. Η μέθοδος του Euler Ασκήσεις 2.5 Έστω a = t 0 < t 1 < < t N = b ένας διαμερισμός του [a, b]. Υποθέστε ότι ο διαμερισμός είναι ημιομοιόμορφος, ότι υπάρχει δηλαδή θετική σταθερά µ, ανεξάρτητη του N, τέτοια
Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους
Παράδειγμα 1 Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με _ + Σχήμα 1 στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Α) Γράψτε το σύστημα ευθέως κλάδου σε κανονική παρατηρήσιμη μορφή στο χώρο
Μαθηματικά Γ Γυμνασίου
Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται
ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ
Ενότητα 1 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ Ασκήσεις για λύση 3 3, < 1). Δίνεται η συνάρτηση f ( ). 6, Να βρείτε : i ) την παράγωγο της f, ii) τα κρίσιμα σημεία της f. ). Να μελετήσετε ως προς τη μονοτονία
ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).
ΜΑΣ 37: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ Να βρεθεί το πολυώνυμο Lagrage για τα σημεία (, ), (, ) και (4, ) Να βρεθεί το πολυώνυμο παρεμβολής Lagrage που προσεγγίζει τη συνάρτηση 3 f ( x) si x στους κόμβους
ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ ΑΚΑΔ. ΥΠΟΤΡΟΦΟΣ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Επίλυση ασκήσεων - Αλγόριθμοι αναζήτησης - Επαναληπτική κάθοδος ΕΠΙΛΥΣΗ ΑΣΚΗΣΕΩΝ ΠΡΑΞΗΣ Θα επιλυθούν
ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ
Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Κεφάλαιο 5 ο : Το οριακό
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ
1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..
ΔΙΔΑΣΚΩΝ: Λ. ΜΠΙΣΔΟΥΝΗΣ ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: 18/09/2013
ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: 8/09/0 ΘΕΜΑ ο ( μονάδες) Η έξοδος του αισθητήρα Α του παρακάτω σχήματος είναι γραμμικό σήμα τάσης που μεταβάλλεται κατά - 0 m κάθε δευτερόλεπτο
Μαθηματικά Γενικής Παιδείας Κεφάλαιο 1ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ
Μαθηματικά Γενικής Παιδείας Κεφάλαιο ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α Ερώτηση θεωρίας Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c είναι μια πραγματική σταθερά, να δείξετε ότι: ( c f) = c f, Έστω F = c f Έχουμε
Επίλυση παραβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές
Επίλυση παραβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ Δημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ 1 .1 ΤΟ ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ ΚΙΝΟΥΜΕΝΟΥ ΦΟΡΤΙΟΥ Ας θεωρούμε το μαγνητικό πεδίο ενός κινούμενου σημειακού φορτίου q. Ονομάζουμε τη θέση του φορτίου σημείο πηγής