ΜΕΜ251 Αριθμητική Ανάλυση

Σχετικά έγγραφα
ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση

Ομογενή Συστήματα Ορισμός Ενα σύστημα λέγεται ομογενές αν όλοι οι σταθεροί όροι του (δηλαδή οι όροι του δεξιού μέλους του συστήματος) είναι μηδέν.

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Τμήμα Μηχανικών Οικονομίας και Διοίκησης Εφαρμοσμένη Θεωρία Πινάκων. Quiz 2. Σύντομες Λύσεις

1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό

Εφαρμοσμένα Μαθηματικά ΙΙ

3. Γραμμικά Συστήματα

Εφαρμοσμένα Μαθηματικά ΙΙ

Παναγιώτης Ψαρράκος Αν. Καθηγητής

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις

ΜΕΜ251 Αριθμητική Ανάλυση

Παναγιώτης Ψαρράκος Αν. Καθηγητής

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα.

1 ιαδικασία διαγωνιοποίησης

Εφαρμοσμένα Μαθηματικά ΙΙ

Linear Equations Direct Methods

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0.

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n

A, και εξετάστε αν είναι διαγωνίσιμη.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Β. ΔΟΥΓΑΛΗΣ Δ. ΝΟΥΤΣΟΣ Α. ΧΑΤΖΗΔΗΜΟΣ

Παναγιώτης Ψαρράκος Αν. Καθηγητής

2x 1 + x 2 x 3 + x 4 = 1. 3x 1 x 2 x 3 +2x 4 = 3 x 1 +2x 2 +6x 3 x 4 = 4

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις

0 + a = a + 0 = a, a k, a + ( a) = ( a) + a = 0, 1 a = a 1 = a, a k, a a 1 = a 1 a = 1,

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Ιδιάζουσες τιμές πίνακα. y έχουμε αντίστοιχα τις σχέσεις : Αυτές οι παρατηρήσεις συμβάλλουν στην παραγοντοποίηση ενός πίνακα

Εφαρμοσμένα Μαθηματικά ΙΙ

Je rhma John L mma Dvoretzky-Rogers

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 1

Το φασματικό Θεώρημα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ

2 3x 5x x

Επίλυση Γραµµικών Συστηµάτων

Μία απεικόνιση από ένα διανυσματικό χώρο V στον εαυτό του, L : V V την ονομάζουμε γραμμικό τελεστή στο V (ή ενδομορφισμό του V ). Ορισμός. L : V V γρα

Παναγιώτης Ψαρράκος Αν. Καθηγητής

Παναγιώτης Ψαρράκος Αν. Καθηγητής

5.9 ΘΕΤΙΚΑ ΟΡΙΣΜΕΝΟΙ ΠΙΝΑΚΕΣ ΚΑΙ ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ

βαθμού 1 με A 2. Υπολογίστε τα χαρακτηριστικά και ελάχιστα πολυώνυμα των

Αριθμητική Ανάλυση 4.5 Ιδιοτιμές και ιδιοδιανύσματα πινάκων. Γ. Παπαευαγγέλου, ΕΔΙΠ, ΤΑΤΜ/ΑΠΘ

h(x, y) = card ({ 1 i n : x i y i

Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη

Στοχαστικά Σήματα και Τηλεπικοινωνιές

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι)

ΚΕΦΑΛΑΙΟ 2: ΟΡΙΖΟΥΣΕΣ

Ασκήσεις4 48. P AP τριγωνικό. Αφού δείξτε ότι ο A δεν είναι διαγωνίσιμος, βρείτε αντιστρέψιμο A 1 3 1

Ασκήσεις6 Διαγωνοποίηση Ερμιτιανών Πινάκων

Το φασματικό Θεώρημα

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).

Κεφ. 2: Επίλυση συστημάτων εξισώσεων. 2.1 Επίλυση εξισώσεων

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου

1 Μέθοδοι ελαχιστοποίησης

Επίλυση ενός τριδιαγώνιου γραµµικού συστήµατος Ax = d µε τη µέθοδο απαλοιφής του Gauss (µέθοδος του Thomas)

Μεταθέσεις και πίνακες μεταθέσεων

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 6 / ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ Γραμμικές απεικονίσεις, Αλλαγή βάσης, Ιδιοτιμές, Ιδιοδιανύσματα

Εφαρμοσμένα Μαθηματικά ΙΙ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 3

Παναγιώτης Ψαρράκος Αν. Καθηγητής

Γραμμική Άλγεβρα Ι,

ΚΕΦ.6:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ. ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΣ 121: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟΥ 3

Η ΚΑΝΟΝΙΚΗ ΜΟΡΦΗ JORDAN

Επιστηµονικός Υπολογισµός Ι

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου

Γραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Ασκήσεις1 Πολυώνυμα. x x c. με το. b. Να βρεθούν όλες οι τιμές των a, Να βρεθεί ο μκδ και το εκπ τους

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

Αριθμητική Ανάλυση και Εφαρμογές

Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων

Διαγωνοποίηση μητρών. Στοιχεία Γραμμικής Άλγεβρας

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Μήτρες Ειδικές μήτρες. Στοιχεία Γραμμικής Άλγεβρας

Εάν A = τότε ορίζουμε την ορίζουσα του πίνακα ως τον αριθμό. det( A) = = ( 2)4 3 1 = 8 3 = 11. τότε η ορίζουσά του πίνακα ισούται με

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 17 Οκτωβρίου 2011

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα

Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων

Πρόβλημα δύο σημείων. Κεφάλαιο Διακριτοποίηση

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι

A = c d. [a b] = [a 0] + [0 b].

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 1 ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ / Γραμμική Άλγεβρα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ

8.1 Διαγωνοποίηση πίνακα

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4

Κεφάλαιο 6 Ιδιοτιμές και Ιδιοδιανύσματα

Ακρότατα πραγματικών συναρτήσεων

Transcript:

ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 07, 2 Μαρτίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών

Περιεχόμενα 1. Συμμετρικοί και θετικά ορισμένοι πίνακες. Η ανάλυση Cholesky 2. Νόρμες διανυσμάτων και πινάκων 1

Συμμετρικοί και θετικά ορισμένοι πίνακες. Η ανάλυση Cholesky

Θετικά ορισμένοι πίνακες Ορισμός. Ένας συμμετρικός πίνακας A R n n λέγεται θετικά ορισμένος αν x T Ax > 0 για κάθε μη μηδενικό διάνυσμα x R n. Παράδειγμα. O πίνακας 4 1 0 A = 1 4 1 0 1 4 είναι θετικά ορισμένος γιατί για 0 x R 3 έχουμε x T Ax = 3x 2 1 + (x 1 + x 2 ) 2 + 2x 2 2 + (x 2 + x 3 ) 2 + 3x 2 3 0, και η ισότητα να ισχύει μόνο αν x 1 = x 2 = x 3 = 0. 2

Θετικά ορισμένοι πίνακες Ένας θετικά ορισμένος πίνακας είναι αντιστρέψιμος. Πράγματι, αν υπάρχει x 0 τέτοιο ώστε Ax = 0, τότε x T Ax = 0, άτοπο. Για x = e k, έχουμε 0 < x T Ax = a kk, δηλαδή τα διαγώνια στοιχεία είναι θετικά. Οι κύριοι υποπίνακες ενός θετικά ορισμένου πίνακα είναι θετικά ορισμένοι πίνακες, επομένως αντιστρέψιμοι. Πράγματι, αν γράψουμε ( ) α v T A = v για κάποιο α R και πίνακα A, έχουμε για x = (1, 0,..., 0) T και 0 < x T Ax = A ( ) ( α v T 1 0 v A ) ( ) 1 0 = α, 3

Θετικά ορισμένοι πίνακες αν για y 0 θέσουμε x T = (0, y T ), τότε ) 0 < x T Ax = (0 ( ) ( ) y T α v T 0 = y T A y, v y άρα α > 0 και ο πίνακας A είναι θετικά ορισμένος. Αν για κάποιο αντιστρέψιμο πίνακα A υπάρχει κάτω τριγωνικός πίνακα G τέτοιος ώστε A = GG T τότε ο A είναι θετικά ορισμένος. Πράγματι, έστω x 0. Επειδή ο πίνακας G είναι αντιστρέψιμος, έχουμε ότι y = G T x 0. Τότε, x T Ax = x T GG T x = (G T x) T (G T x) = y T y = y 2 i > 0. Θα δείξουμε ότι ισχύει και το αντίστροφο, δηλαδή αν ο A είναι συμμετρικός και θετικά ορισμένος τότε υπάρχει κάτω τριγωνικός πίνακας G τέτοιος ώστε A = GG T. Αυτή είναι η ανάλυση Cholesky του πίνακα A. A 4

Η ανάλυση Cholesky Θεώρημα. Έστω A συμμετρικός και θετικά ορισμένος πίνακας. Τότε, υπάρχει μοναδικός κάτω τριγωνικός πίνακας G με θετικά διαγώνια στοιχεία τέτοιος ώστε A = GG T. Απόδειξη. Για έναν 1 1 θετικά ορισμένο πίνακα (a 11 > 0) το θεώρημα ισχύει με g 11 = a 11. Υποθέτουμε ότι το θεώρημα ισχύει για (n 1) (n 1) πίνακες. Χωρίζουμε τον n n πίνακα A ως ( ) d u T A =, u H όπου d = a 11 > 0, u R n 1 και H R (n 1) (n 1). 5

Η ανάλυση Cholesky Μπορούμε να γράψουμε ( ) ( d 0 A = u d I n 1 1 0 0 H ) ( d u T d 0 I n 1 με H = H 1 d uut. Αυτός ο πίνακας είναι συμμετρικός και θετικά ορισμένος γιατί αν 0 x R n 1 έχουμε με ( ) 1 y = d xt u R n, x ) ότι ( x T Hx = x T H 1 ) ( d uut x = y T d u u T H ) y = y T Ay > 0. 6

Η ανάλυση Cholesky Από την επαγωγική υπόθεση, ο H γράφεται στη μορφή H = G H G T H για κάποιον κάτω τριγωνικό πίνακα G H με θετικά διαγώνια στοιχεία. Μπορούμε τότε να γράψουμε ( ) ( d 0 1 0 A = u d I n 1 0 G H ( ) ( ) d 0 d u T = u d G H ) ( 1 0 0 G T H d 0 G T H ) ( d u T d 0 I n 1 ) οπότε με G = ( ) d 0 u d G H έχουμε A = GG T, και αυτό ολοκληρώνει την επαγωγική απόδειξη. 7

Η ανάλυση Cholesky Για τη μοναδικότητα του G, υποθέτουμε ότι υπάρχει κάτω τριγωνικός πίνακας H με θετικά διαγώνια στοιχεία τέτοιος ώστε A = GG T = HH T. Τότε G 1 H = G T (H T ) 1. Το αριστερό μέλος είναι κάτω τριγωνικός πίνακας ενώ το δεξί άνω τριγωνικός πίνακας. Πρέπει λοιπόν G 1 H = G T (H T ) 1 = D, όπου D διαγώνιος πίνακας. Έχουμε τότε H = GD, δηλαδή, d ii = h ii /g ii και G T = DH T, δηλαδή, d ii = g ii /h ii. Άρα, g 2 ii = h2 ii και, συνεπώς, g ii = h ii. Αλλά τότε D = I n, και επομένως G 1 H = I n, δηλαή H = G. 8

Η ανάλυση Cholesky Αλγόριθμος της ανάλυσης Cholesky: for i = 1 to n for j = 1 to i 1 ( g ij = a ij ) j 1 k=1 g ikg jk /g jj g ii = ( a ii ) 1/2 i 1 k=1 g2 ik Εύκολα βλέπουμε ότι απαιτούνται i 1 j + (i 1) = n3 + 3n 2 4n 6 i=1 πράξεις και n εξαγωγές τετραγωνικών ριζών. 9

Νόρμες διανυσμάτων και πινάκων

Νόρμες διανυσμάτων Υπενθυμίζουμε: Μια απεικόνιση : X R, όπου X γραμμικός χώρος στο K = R ή στο K = C λέγεται νόρμα αν ισχύουν x X x = 0 x = 0 λ K x X λx = λ x x, y X Εύκολα βλέπουμε ότι x X x 0 x, y X x + y x + y x y x y 10

Νόρμες διανυσμάτων Παραδείγματα (R n, 1 ) με x 1 = n i=1 x i (R n, ) με x = max 1 i n x i (R n, 2 ) με x 2 = ( n i=1 x i 2) 1/2 Υπενθυμίζουμε τη σχέση του εσωτερικού γινομένου (x, y) 2 = n i=1 x iy i με τη νόρμα 2 : x 2 = (x, x) 2 και την ανισότητα Cauchy-Schwarz x, y R n (x, y) 2 x 2 y 2 11

Νόρμες πινάκων Ορισμός. Έστω μια νόρμα στον R n. Μια απεικόνιση : R n n Ax R A = sup 0 x R n x λέγεται φυσική νόρμα πινάκων παραγόμενη από τη νόρμα του R n. Από τον ορισμό προκύπτει η πολύ σημαντική ανισότητα x R n Ax A x Θα προσδιορίσουμε τώρα τις νόρμες πινάκων που παράγονται από τις νόρμες, 1 και 2 του R n. 12

Νόρμες πινάκων 1. Θεωρούμε στον R n τη νόρμα. Θα δείξουμε ότι για A R n n έχουμε A = max a ij 1 i n Πράγματι, για x R n έχουμε, Ax = max a ij x j 1 i n max 1 i n a ij x j max a ij x, 1 i n συνεπώς A max 1 i n a ij 13

Νόρμες πινάκων Ακόμα, αν ο δείκτης k είναι τέτοιος ώστε a kj = max 1 i n a ij, τότε για το y R n που ορίζεται ως a kj a y j = kj, αν a kj 0, 0, διαφορετικά, έχουμε προφανώς y = 1 και Ay = max a ij y j 1 i n a kj y j = a kj = max a ij y 1 i n 14

Νόρμες πινάκων 2. Θεωρούμε στον R n τη νόρμα 1. Μπορούμε να δείξουμε ότι για A R n n έχουμε A 1 = max a ij 1 j n 3. Θεωρούμε τώρα στον R n τη νόρμα 2. Ορίζουμε τη φασματική ακτίνα ρ(a) ενός πίνακα A ως το μέγιστο των απολύτων τιμών των ιδιοτιμών του πίνακα A. Μπορούμε να δείξουμε ότι για A R n n έχουμε A 2 = [ ρ(a T A) ] 1/2 i=1 15

Ερωτήσεις; 15