ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 07, 2 Μαρτίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών
Περιεχόμενα 1. Συμμετρικοί και θετικά ορισμένοι πίνακες. Η ανάλυση Cholesky 2. Νόρμες διανυσμάτων και πινάκων 1
Συμμετρικοί και θετικά ορισμένοι πίνακες. Η ανάλυση Cholesky
Θετικά ορισμένοι πίνακες Ορισμός. Ένας συμμετρικός πίνακας A R n n λέγεται θετικά ορισμένος αν x T Ax > 0 για κάθε μη μηδενικό διάνυσμα x R n. Παράδειγμα. O πίνακας 4 1 0 A = 1 4 1 0 1 4 είναι θετικά ορισμένος γιατί για 0 x R 3 έχουμε x T Ax = 3x 2 1 + (x 1 + x 2 ) 2 + 2x 2 2 + (x 2 + x 3 ) 2 + 3x 2 3 0, και η ισότητα να ισχύει μόνο αν x 1 = x 2 = x 3 = 0. 2
Θετικά ορισμένοι πίνακες Ένας θετικά ορισμένος πίνακας είναι αντιστρέψιμος. Πράγματι, αν υπάρχει x 0 τέτοιο ώστε Ax = 0, τότε x T Ax = 0, άτοπο. Για x = e k, έχουμε 0 < x T Ax = a kk, δηλαδή τα διαγώνια στοιχεία είναι θετικά. Οι κύριοι υποπίνακες ενός θετικά ορισμένου πίνακα είναι θετικά ορισμένοι πίνακες, επομένως αντιστρέψιμοι. Πράγματι, αν γράψουμε ( ) α v T A = v για κάποιο α R και πίνακα A, έχουμε για x = (1, 0,..., 0) T και 0 < x T Ax = A ( ) ( α v T 1 0 v A ) ( ) 1 0 = α, 3
Θετικά ορισμένοι πίνακες αν για y 0 θέσουμε x T = (0, y T ), τότε ) 0 < x T Ax = (0 ( ) ( ) y T α v T 0 = y T A y, v y άρα α > 0 και ο πίνακας A είναι θετικά ορισμένος. Αν για κάποιο αντιστρέψιμο πίνακα A υπάρχει κάτω τριγωνικός πίνακα G τέτοιος ώστε A = GG T τότε ο A είναι θετικά ορισμένος. Πράγματι, έστω x 0. Επειδή ο πίνακας G είναι αντιστρέψιμος, έχουμε ότι y = G T x 0. Τότε, x T Ax = x T GG T x = (G T x) T (G T x) = y T y = y 2 i > 0. Θα δείξουμε ότι ισχύει και το αντίστροφο, δηλαδή αν ο A είναι συμμετρικός και θετικά ορισμένος τότε υπάρχει κάτω τριγωνικός πίνακας G τέτοιος ώστε A = GG T. Αυτή είναι η ανάλυση Cholesky του πίνακα A. A 4
Η ανάλυση Cholesky Θεώρημα. Έστω A συμμετρικός και θετικά ορισμένος πίνακας. Τότε, υπάρχει μοναδικός κάτω τριγωνικός πίνακας G με θετικά διαγώνια στοιχεία τέτοιος ώστε A = GG T. Απόδειξη. Για έναν 1 1 θετικά ορισμένο πίνακα (a 11 > 0) το θεώρημα ισχύει με g 11 = a 11. Υποθέτουμε ότι το θεώρημα ισχύει για (n 1) (n 1) πίνακες. Χωρίζουμε τον n n πίνακα A ως ( ) d u T A =, u H όπου d = a 11 > 0, u R n 1 και H R (n 1) (n 1). 5
Η ανάλυση Cholesky Μπορούμε να γράψουμε ( ) ( d 0 A = u d I n 1 1 0 0 H ) ( d u T d 0 I n 1 με H = H 1 d uut. Αυτός ο πίνακας είναι συμμετρικός και θετικά ορισμένος γιατί αν 0 x R n 1 έχουμε με ( ) 1 y = d xt u R n, x ) ότι ( x T Hx = x T H 1 ) ( d uut x = y T d u u T H ) y = y T Ay > 0. 6
Η ανάλυση Cholesky Από την επαγωγική υπόθεση, ο H γράφεται στη μορφή H = G H G T H για κάποιον κάτω τριγωνικό πίνακα G H με θετικά διαγώνια στοιχεία. Μπορούμε τότε να γράψουμε ( ) ( d 0 1 0 A = u d I n 1 0 G H ( ) ( ) d 0 d u T = u d G H ) ( 1 0 0 G T H d 0 G T H ) ( d u T d 0 I n 1 ) οπότε με G = ( ) d 0 u d G H έχουμε A = GG T, και αυτό ολοκληρώνει την επαγωγική απόδειξη. 7
Η ανάλυση Cholesky Για τη μοναδικότητα του G, υποθέτουμε ότι υπάρχει κάτω τριγωνικός πίνακας H με θετικά διαγώνια στοιχεία τέτοιος ώστε A = GG T = HH T. Τότε G 1 H = G T (H T ) 1. Το αριστερό μέλος είναι κάτω τριγωνικός πίνακας ενώ το δεξί άνω τριγωνικός πίνακας. Πρέπει λοιπόν G 1 H = G T (H T ) 1 = D, όπου D διαγώνιος πίνακας. Έχουμε τότε H = GD, δηλαδή, d ii = h ii /g ii και G T = DH T, δηλαδή, d ii = g ii /h ii. Άρα, g 2 ii = h2 ii και, συνεπώς, g ii = h ii. Αλλά τότε D = I n, και επομένως G 1 H = I n, δηλαή H = G. 8
Η ανάλυση Cholesky Αλγόριθμος της ανάλυσης Cholesky: for i = 1 to n for j = 1 to i 1 ( g ij = a ij ) j 1 k=1 g ikg jk /g jj g ii = ( a ii ) 1/2 i 1 k=1 g2 ik Εύκολα βλέπουμε ότι απαιτούνται i 1 j + (i 1) = n3 + 3n 2 4n 6 i=1 πράξεις και n εξαγωγές τετραγωνικών ριζών. 9
Νόρμες διανυσμάτων και πινάκων
Νόρμες διανυσμάτων Υπενθυμίζουμε: Μια απεικόνιση : X R, όπου X γραμμικός χώρος στο K = R ή στο K = C λέγεται νόρμα αν ισχύουν x X x = 0 x = 0 λ K x X λx = λ x x, y X Εύκολα βλέπουμε ότι x X x 0 x, y X x + y x + y x y x y 10
Νόρμες διανυσμάτων Παραδείγματα (R n, 1 ) με x 1 = n i=1 x i (R n, ) με x = max 1 i n x i (R n, 2 ) με x 2 = ( n i=1 x i 2) 1/2 Υπενθυμίζουμε τη σχέση του εσωτερικού γινομένου (x, y) 2 = n i=1 x iy i με τη νόρμα 2 : x 2 = (x, x) 2 και την ανισότητα Cauchy-Schwarz x, y R n (x, y) 2 x 2 y 2 11
Νόρμες πινάκων Ορισμός. Έστω μια νόρμα στον R n. Μια απεικόνιση : R n n Ax R A = sup 0 x R n x λέγεται φυσική νόρμα πινάκων παραγόμενη από τη νόρμα του R n. Από τον ορισμό προκύπτει η πολύ σημαντική ανισότητα x R n Ax A x Θα προσδιορίσουμε τώρα τις νόρμες πινάκων που παράγονται από τις νόρμες, 1 και 2 του R n. 12
Νόρμες πινάκων 1. Θεωρούμε στον R n τη νόρμα. Θα δείξουμε ότι για A R n n έχουμε A = max a ij 1 i n Πράγματι, για x R n έχουμε, Ax = max a ij x j 1 i n max 1 i n a ij x j max a ij x, 1 i n συνεπώς A max 1 i n a ij 13
Νόρμες πινάκων Ακόμα, αν ο δείκτης k είναι τέτοιος ώστε a kj = max 1 i n a ij, τότε για το y R n που ορίζεται ως a kj a y j = kj, αν a kj 0, 0, διαφορετικά, έχουμε προφανώς y = 1 και Ay = max a ij y j 1 i n a kj y j = a kj = max a ij y 1 i n 14
Νόρμες πινάκων 2. Θεωρούμε στον R n τη νόρμα 1. Μπορούμε να δείξουμε ότι για A R n n έχουμε A 1 = max a ij 1 j n 3. Θεωρούμε τώρα στον R n τη νόρμα 2. Ορίζουμε τη φασματική ακτίνα ρ(a) ενός πίνακα A ως το μέγιστο των απολύτων τιμών των ιδιοτιμών του πίνακα A. Μπορούμε να δείξουμε ότι για A R n n έχουμε A 2 = [ ρ(a T A) ] 1/2 i=1 15
Ερωτήσεις; 15