Το φασματικό Θεώρημα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Το φασματικό Θεώρημα"

Transcript

1 Το φασματικό Θεώρημα 1 Το φάσμα ενός τελεστή Λήμμα 1.1 Έστω A B(H) φυσιολογικός τελεστής. Αν x H είναι ιδιοδιάνυσμα του A με ιδιοτιμή λ, τότε A x = λx. Έπεται ότι οι ιδιόχωροι ενός φυσιολογικού τελεστή (αν υπάρχουν) τον ανάγουν, και είναι κάθετοι μεταξύ τους. Απόδειξη. (α) Eπειδή ο A είναι φυσιολογικός, ο A λi είναι φυσιολογικός για κάθε λ C. Έχουμε λοιπόν (A λi)x = (A λi) x = (A λi)x για κάθε λ C. Άρα Ax = λx αν αι μόνον αν A x = λx. (β) Aν Ax = λx και Ay = µy, τότε A y = µy άρα λ x, y = λx, y = Ax, y = x, A y = x, µy = µ x, y. Συνεπώς, αν λ µ, τότε x y για κάθε x M λ και y M µ. (γ) Έχουμε ήδη παρατηρήσει ότι κάθε ιδιόχωρος M λ είναι αναλλοίωτος από τον A και από κάθε τελεστή που μετατίθεται με τον A, όπως ο A. Άλλωστε, το συμπέρασμα είναι άμεσο από τις σχέσεις Ax = λx και A x = λx, που ισχύουν για x M λ. Ορισμός 1.1 Το φάσμα ενός φραγμένου τελεστή A σ' έναν χώρο Baach είναι το σύνολο σ(a) = {λ C : ο A λi δεν έχει (φραγμ.) αντίστροφο }. Παρατήρηση. Αποδεικνύεται ότι το φάσμα σ(a) είναι συμπαγές και μη κενό υποσύνολο του C. Εδώ, θα το δείξουμε για αυτοσυζυγείς τελεστές (Πρόταση 1.4). Δεν είναι όμως αλήθεια το σημειακό φάσμα σ p (A) (δηλ. το σύνολο των ιδιοτιμών) είναι πάντα μη κενό. Δεν ισχύει δηλαδή ότι κάθε τελεστής, έστω και αυτοσυζυγής, έχει ιδιοτιμές. Παράδειγμα ο A B(L ([0, 1], λ)) με (Af)(s) = sf(s) για f L ([0, 1], λ). Επίσης δεν είναι αλήθεια ότι κάθε συμπαγής τελεστής έχει ιδιοτιμές. Παράδειγμα ο T B(l ) με T e = 1 e +1 για κάθε N. Θα δείξουμε όμως ότι κάθε συμπαγής και αυτοσυζυγής τελεστής έχει ιδιοτιμές (Πρόταση 1.5). Πρόταση 1. To σ(a) φράσσεται από A : Αν λ > A, o λi A είναι αντιστρέψιμος και ο αντίστροφός του είναι το -όριο της σειράς (λi A) 1 = 1 ( ) A. λ λ Απόδειξη. Aν θέσουμε T = A λ και τότε παρατηρούμε ότι S m = m =0 =0 T (I T )S m = S m (I T ) = I T m+1 επομένως, επειδή T m+1 T m+1 0 (αφού T < 1), lim m (I T )S m I = lim m S m (I T ) I = lim m T m+1 = 0. ( )

2 Από την άλλη μεριά, αν m > S m S = m k=+1 T k m k=+1 T k T +1 1 T. Eπειδή T < 1, έπεται ότι η ακολουθία {S m } είναι βασική στην τοπολογία της νόρμας του B(X), επομένως (πληρότητα!) συγκλίνει σε έναν S B(X). Από την ( ) έχουμε ότι (I T )S = S(I T ) = I, άρα S = (I T ) 1. Τελικά έχουμε (λi A) 1 = 1 λ (I T ) 1 = 1 λ S = 1 λ =0 ( ) A. λ Υπενθυμίζουμε ότι ένα λ C είναι ιδιοτιμή ενός τελεστήa (συμβ. λ σ p (A)) αν και μόνον αν υπάρχει x H \ {0} ώστε (A λi)x = 0. Ορισμός 1. Το λ είναι προσεγγιστική ιδιοτιμή του A (συμβ. λ σ a (A)) αν και μόνον αν υπάρχει ακολουθία (x ) X με x = 1 ώστε (A λi)x 0. Ισοδύναμα, αν υπάρχει δ > 0 ώστε (A λi)x δ x για κάθε x X. Πρόταση 1.3 Έστω A B(H) φυσιολογικός τελεστής. Τότε σ(a) = σ a (A). Δηλαδή, αν το λ δεν είναι προσεγγιστική ιδιοτιμή, τότε ο A λi έχει (φραγμ.) αντίστροφο. Απόδειξη. Έστω λ / σ a (A). Θα δείξω ότι ο τελεστής T := A λi έχει φραγμένο αντίστροφο. Ο T είναι 1-1, άρα ορίζεται η αντίστροφη απεικόνιση: S : T (H) H που είναι γραμμική. Είναι όμως και φραγμένη. Πράγματι: Αφού λ / σ a (A), ο T = A λi είναι ``κάτω φραγμένος'', δηλ. υπάρχει δ > 0 ώστε T x δ x για κάθε x H. Επομένως, για κάθε y = T x T (H) έχουμε Sy = S(T x) = x 1 δ T x = 1 δ y δηλαδή S 1 δ. Επομένως ο S επεκτείνεται σε φραγμένο τελεστή S : T (H) H που ικανοποιεί ST x = ST x = x για κάθε x H και T Sy = y για κάθε y T (H). Όμως, T (H) = H. Πράγματι, αν x T (H), τότε για κάθε z H έχουμε T x, z = x, T z = 0, άρα T x = 0. Επειδή ο T είναι φυσιολογικός, έχουμε T x = T x δ x, και συνεπώς x = 0. Τελικά λοιπόν ορίζεται φραγμένος τελεστής S : H H που ικανοποιεί ST x = ST x = x και T Sy = y για κάθε x, y H, δηλαδή S = T 1. Πρόταση 1.4 Έστω A = A B(H). Τότε (α) σ(a) R. (β) A = sup{ Ax, x : x = 1}. (γ) A = sup{ λ : λ σ(a)}. Ειδικότερα, το φάσμα ενός αυτοσυζυγούς τελεστή δεν είναι κενό. Απόδειξη. (α) Αν λ C\R, τότε, για κάθε x H\{0}, 0 < λ λ. x = (A λi)x, x (A λi)x, x = (A λi)x, x x, (A λi)x (A λi)x x οπότε λ λ (A λi)x x. Επομένως λ / σ a (A). Αλλά σ a (A) = σ(a) διότι ο A είναι φυσιολογικός, άρα λ / σ(a).

3 (β) Αν ϕ(x, y) = Ax, y και ˆϕ(x) = Ax, x, αρκεί να δείξουμε ότι ϕ(x, y) ˆϕ για κάθε x, y H με x 1 και y 1 (όπου ˆϕ = sup{ ˆϕx : x = 1}). Παρατηρούμε ότι από την υπόθεση έπεται ότι ˆϕ(x) R για κάθε x H. Eπομένως, επειδή έχουμε άρα 4ϕ(x, y) = ˆϕ(x + y) ˆϕ(x y) + i ˆϕ(x + iy) i ˆϕ(x iy), 4 Re ϕ(x, y) = ˆϕ(x + y) ˆϕ(x y) 4 Re ϕ(x, y) ˆϕ.( x + y + x y ) = ˆϕ.( x + y ) (*) από τον κανόνα του παραλληλογράμμου. Αν τώρα γράψουμε ϕ(x, y) = λ ϕ(x, y) όπου λ C (οπότε λ = 1), έχουμε ϕ(x, y) = λϕ(x, y) = ϕ(x, λy) άρα ϕ(x, λy) R, οπότε από την (*) έχουμε αφού x 1 και λy 1. ϕ(x, y) = ϕ(x, λy) ˆϕ x + λy ˆϕ, (γ) Από το (β), υπάρχει μια ακολουθία {x } με x = 1 για κάθε N ώστε Ax, x A. H ακολουθία πραγματικών (γιατί A = A ) αριθμών { Ax, x } είναι φραγμένη, επομένως έχει μια υπακολουθία { Ay, y } που συγκλίνει, έστω στο λ R, και προφανώς λ = A. Θα δείξουμε ότι το λ είναι προσεγγιστική ιδιοτιμή του A. Έχουμε 0 Ay λy = Ay, Ay Ay, λy λy, Ay + λy, λy = Ay λ Ay, y + λ y (γιατί A = A και λ = λ) A λ Ay, y + λ = λ(λ Ay, y ) 0 επομένως lim (A λi)y = 0. Παρατήρηση Μια διαφορετική απόδειξη του (γ), που αποφεύγει το (β), μπορεί κανείς να βρει στην "Εισαγωγή στη Θεωρία Τελεστών", Πρόταση Πρόταση 1.5 Aν A K(H) είναι φυσιολογικός, τότε κάθε λ σ(a) \ {0} είναι ιδιοτιμή. (Ισχύει για κάθε συμπαγή: δες αργότερα.) Απόδειξη. To λ είναι προσεγγιστική ιδιοτιμή του A. Συνεπώς υπάρχει ακολουθία {y } στην μοναδιαία σφαίρα του H ώστε Ay λy 0. Αλλά ο A είναι συμπαγής, επομένως η {y } έχει μια υπακολουθία {z } ώστε η {Az } να συγκλίνει, έστω στο z. Θα δείξουμε ότι Az = λz. Πράγματι, επειδή lim (Az λz ) = 0 και lim (Az z) = 0, έχουμε lim λz = z, άρα, αφού ο A είναι συνεχής, lim λaz = Az. Αλλά lim λaz = λ lim Az = λz, επομένως Az = λz. Τέλος, επειδή z = lim λz όπου λ 0 και z = 1 για κάθε, έπεται ότι z 0, άρα το z είναι ιδιοδιάνυσμα του A. Πόρισμα 1.6 Αν A K(H) και A = A, τότε υπάρχει λ σ p (A) με λ = A. Απόδειξη. Αφού ο A είναι αυτοσυζυγής, έχει μια προσεγγιστική ιδιοτιμή λ με λ = A. Αφού είναι συμπαγής, το λ είναι ιδιοτιμή. 3

4 Παράδειγμα 1.7 Αν A K(H), το 0 δεν είναι πάντα ιδιοτιμή: παράδειγμα ο D a e = 1 e στον l. (Παρατήρηση. Αν A K(H) και ο χώρος H είναι απειροδιάστατος, τότε 0 σ(a).) Πρόταση 1.8 Έστω A K(H). (i) Kάθε ιδιόχωρος του A που αντιστοιχεί σε μη μηδενική ιδιοτιμή έχει πεπερασμένη διάσταση. (ii) Aν {x } είναι άπειρη ορθοκανονική ακολουθία και υπάρχουν λ C ώστε Ax = λ x για κάθε N, τότε η {λ } είναι μηδενική ακολουθία. (iii) Aν ο A είναι φυσιολογικός, το σύνολο σ p (A) των ιδιοτιμών του ή είναι πεπερασμένο, ή αποτελεί μηδενική ακολουθία. Απόδειξη. (i) Aν λ σ p (A), τότε A(M λ ) M λ και A Mλ = λi Mλ. Eπομένως, αν λ 0, ο ταυτοτικός τελεστής στον χώρο Hilbert M λ είναι συμπαγής, άρα ο M λ έχει πεπερασμένη διάσταση. (ii) Eπειδή ο A είναι συμπαγής, έχουμε λ = Ax, x 0. (iii) Aν υποθέσουμε ότι το σ p (A) είναι άπειρο και δεν αποτελεί μηδενική ακολουθία, θα υπάρχει ένας θετικός αριθμός δ ώστε το σύνολο {λ σ p (A) : λ δ} να είναι άπειρο. Θα υπάρχει λοιπόν μια άπειρη ακολουθία {λ } διακεκριμένων ιδιοτιμών ώστε λ δ για κάθε. Aν x είναι ένα μοναδιαίο διάνυσμα ώστε Ax = λ x, η ακολουθία {x } είναι ορθοκανονική, γιατί οι ιδιόχωροι του A είναι ανά δυο κάθετοι (Λήμμα 1.1). Τότε όμως Ax, x δ για κάθε, πράγμα που αντιφάσκει με το (ii). Παρατήρηση Ο μηδενοχώρος ker A (δηλαδή ο ιδιόχωρος που αντιστοιχεί στην ιδιοτιμή 0) μπορεί να έχει οποιαδήποτε διάσταση: Aς θεωρήσουμε, για παράδειγμα, τον τελεστή D a στον l με D a e = a()e όπου η a = {a()} είναι μηδενική ακολουθία. Ο D a είναι συμπαγής φυσιολογικός και σ p (D a ) = {a() : N}. Aν λοιπόν a() 0 για κάθε N, τότε ker D a = {0}. Aν a() = 0 για πεπερασμένο πλήθος δεικτών, τότε ο ker D a έχει πεπερασμένη διάσταση, και αν a() = 0 για άπειρο πλήθος δεικτών, τότε ο ker D a είναι απειροδιάστατος. Το φασματικό Θεώρημα Θεώρημα.1 Αν H είναι χώρος Hilbert, κάθε συμπαγής φυσιολογικός τελεστής A B(H) διαγωνοποιείται στον υπόχωρο (ker A). Υπάρχουν δηλαδή a() C και ορθοκανονική βάση {x : N} του (ker A) ώστε Ax = a()x για κάθε N. Ισοδύναμα, αν U : (ker A) l είναι ο uitary τελεστής που ικανοποιεί U(x ) = e για κάθε N, τότε UAU 1 = D a (ο διαγώνιος τελεστής με διαγώνιο την ακολουθία a = (a )). Το Θεώρημα έπεται άμεσα από το ακόλουθο: Θεώρημα. Αν A είναι συμπαγής τελεστής σ' έναν χώρο Hilbert H, τα ακόλουθα είναι ισοδύναμα: (i) Οι ιδιόχωροι {M λ : λ σ p (A)} είναι κάθετοι ανά δύο, έχουν αριθμήσιμο πλήθος και παράγουν τον H. (ii) Οι αντίστοιχες προβολές P λ είναι κάθετες ανά δύο, έχουν αριθμήσιμο πλήθος και για κάθε αρίθμηση {λ : N} του σ p (A), αν P = P λ ισχύει P x = x για κάθε x H και A = 4 λ P

5 όπου η δεύτερη σειρά συγκλίνει ως προς την νόρμα του B(H). (iii) Ο A είναι φυσιολογικός. Υπενθύμιση: Έστω {M : N} κάθετοι ανά δύο υπόχωροι ενός χώρου Hilbert H και M := M το ευθύ τους άθροισμα, δηλ. ο μικρότερος κλειστός υπόχωρος που περιέχει κάθε M. Αν P = P (M ), η προβολή P = P (M) στον M ικανοποιεί P x = P x και P x = P x για κάθε x H. Επομένως αν κάθε M έχει μια ορθοκανονική βάση {e i, : i I}, η ένωση {e i, : i I} είναι ορθοκανονική βάση του M. Απόδειξη του Θεωρήματος (i) (ii) Από την υπενθύμιση είναι φανερό ότι οι ιδιόχωροι είναι κάθετοι ανά δύο και παράγουν τον H (δηλ. το ευθύ τους άθροισμα είναι ο H) αν και μόνον αν οι προβολές είναι κάθετες ανά δύο και το άθροισμά τους συγκλίνει κατά σημείο στον ταυτοτικό τελεστή. Μένει να δείξουμε ότι η σειρά A = λ P συγκλίνει ως προς την νόρμα του B(H). Έστω x H. Από τη σχέση x = lim Ax = Ax = lim P x συμπεραίνουμε (αφού ο A είναι γραμμικός και συνεχής) ότι AP x. Όμως το P x ανήκει στον ιδιόχωρο M λ και άρα AP x = λ P x, οπότε έχουμε λ P x (σύγκλιση κατά σημείο). Όμως, επειδή ο A είναι συμπαγής, η σειρά συγκλίνει ως προς τη νόρμα τελεστή: Πράγματι, έστω ϵ > 0. Αφού η ακολουθία (λ ) είναι μηδενική (Πρόταση 1.8) υπάρχει 0 ώστε λ < ϵ για κάθε 0. Συνεπώς, αν 0, έχουμε Ax λ k P k x = = k=+1 k=+1 ϵ k=+1 ϵ x λ k P k x λ k P k x γιατί τα P k x είναι κάθετα ανά δύο P k x γιατί λ k < ϵ όταν k 0 αφού Επομένως δείξαμε ότι A λ k P k ϵ αν 0. P k x x. (ii) (iii) Η σχέση A = λ P δίνει A = λ P και επομένως, αφού P P k = 0 όταν k έχουμε άρα AA = A A. και A A = lim AA = lim λ k P k λ k P k λ P = lim λ P = lim λ k λ k P k λ k λk P k 5

6 (iii) (i) (Αυτό είναι το ουσιαστικό περιεχόμενο του Θεωρήματος.) Απόδειξη. (α) Υποθέτουμε πρώτα ότι ο A είναι αυτοσυζυγής. Aπό την Πρόταση 1.4, το σύνολο {M λ : λ σ p (A)} είναι μη κενό. Από το Λήμμα 1.1, οι ιδιόχωροι του A είναι ανά δύο κάθετοι και αναλλοίωτοι από τον A. Πρέπει να δείξουμε ότι παράγουν τον H. Ονομάζουμε M τον ελάχιστο κλειστό υπόχωρο που περιέχει όλους τους M λ (δηλαδή M = λ M λ ). Tο μόνο που έχουμε να δείξουμε είναι ότι M = H, δηλαδή ότι M = {0}. Έστω ότι M {0}. Eπειδή κάθε M λ είναι αναλλοίωτος από τον A, το ίδιο ισχύει 1 και για τον M. Αλλά ο A είναι αυτοσυζυγής, άρα αφήνει αναλλοίωτο και τον M. Eπομένως ο περιορισμός B A M ορίζει έναν τελεστή B : M M. Παρατηρούμε ότι ο B B(M ) είναι συμπαγής και αυτοσυζυγής (γιατί?). Επομένως, σύμφωνα με την Πρόταση 1.4, ο B θα έπρεπε να έχει ιδιοτιμές. Όμως, αν Bx = λx όπου x M \ {0} και λ C, τότε Ax = Bx = λx, άρα το x είναι ιδιοδιάνυσμα του A που αντιστοιχεί στην ιδιοτιμή λ (του A), επομένως x M λ M. Δηλαδή x M M, άρα x = 0, άτοπο. (β) Γενική περίπτωση. Έστω A K(H) φυσιολογικός. Θεωρούμε τον αυτοσυζυγή συμπαγή τελεστή T := A A. Από την περίπτωση (α) οι ιδιόχωροι {M µ (T ), µ σ p (T )} του T είναι ανά δύο κάθετοι και παράγουν τον H. Παρατηρούμε ότι κάθε ιδιόχωρος M µ (T ) είναι αναλλοίωτος από τον A και από τον A. Πράγματι, επειδή A A = AA, έχουμε A(A A) = (AA )A = (A A)A και A (A A) = A (AA ) = (A A)A. Δηλαδή οι A και A μετατίθενται με τον A A, άρα αφήνουν τον M µ (T ) αναλλοίωτο. Επομένως ο τελεστής C µ := A Mµ (T ) απεικονίζει τον M µ (T ) στον εαυτό του και έχουμε C µ = A Mµ (T ) (δες το Λήμμα.3 αμέσως μετά). Άρα o C µ είναι φυσιολογικός, C µc µ = C µ C µ, γιατί A A = AA. Αν µ = 0, ο ιδιόχωρος M 0 (T ) = ker T είναι ο πυρήνας ker A = M 0 (A) του A: αν x ker T τότε Ax = Ax, Ax = A Ax, x = 0 άρα x ker A και το αντίστροφο είναι προφανές. Αν µ 0, ο αντίστοιχος ιδιόχωρος M µ (T ) έχει πεπερασμένη διάσταση (Πρόταση 1.8). Ο C µ είναι λοιπόν φυσιολογικός τελεστής σε έναν χώρο πεπερασμένης διάστασης. Επομένως υπάρχει μια ορθοκανονική βάση του M µ (T ) από ιδιοδιανύσματα του A (από το Φασματικό Θεώρημα σε χώρους πεπερασμένης διάστασης). Δηλαδή για κάθε µ σ p (T ) \ {0}, ο περιορισμός του A στον M µ (T ) διαγωνοποιείται ως προς κάποια ορθοκανονική βάση B µ = {e µ, = 1,..., µ }. Άρα, η (αριθμήσιμη ) ένωση των B µ, µ σ p (T ) \ {0} είναι ορθοκανονική βάση του A-αναλλοίωτου υποχώρου N [M µ (T ) : µ σ p (T ) \ {0}] η οποία αποτελείται από μη μηδενικά ιδιοδιανύσματα του A. Οι αντίστοιχοι ιδιόχωροι του A παράγουν τον χώρο N, άρα, μαζί με τον ker A = M 0 (A), παράγουν τον χώρο H. Λήμμα.3 Έστω A B(H) και M H κλειστός A-αναλλοίωτος υπόχωρος. Έστω B B(M) ο περιορισμός B := A M. Τότε, B = A M αν και μόνον αν ο M είναι και A -αναλλοίωτος. Απόδειξη. Εφόσον εξ ορισμού ο B απεικονίζει τον M στον M, αν B = A M τότε βέβαια ο A απεικονίζει τον M στον M. Aντίστροφα, έστω A (M) M. Έστω x M. Θα δείξω ότι A x = B x. Για κάθε y M έχουμε By = Ay, άρα B x, y = x, By (ορισμός του B ) = x, Ay = A x, y. 1 Πράγματι, κάθε x M γράφεται x = λ P λx άρα Ax = λ AP λx. Όμως, κάθε AP λ x ανήκει στον M λ, άρα στον M, οπότε Ax M. 6

7 Επομένως B x A x, y = 0 για κάθε y M, οπότε το διάνυσμα B x A x είναι κάθετο στον M. Από την άλλη μεριά όμως έχουμε A x A (M) M, άρα B x A x M. Επομένως B x A x = 0. Παράδειγμα.4 Αν U : l (Z) l (Z) είναι ο τελεστής της αμφίπλευρης μετατόπισης (Ue = e +1 για κάθε Z), ο υπόχωρος M = spa{e : 0} είναι U-αναλλοίωτος, αλλά ο περιορισμός S := U M δεν ικανοποιεί S = U M, καθώς Se 0 = 0 ενώ U e 0 = e 1. Θεώρημα.5 (Φασματικό θεώρημα: Tρίτη μορφή) Ένας τελεστής A σ' έναν χώρο Hilbert H είναι φυσιολογικός και συμπαγής αν και μόνον αν υπάρχει μια (πεπερασμένη ή άπειρη) ορθοκανονική ακολουθία {x } ιδιοδιανυσμάτων του A, με αντίστοιχες ιδιοτιμές {a()} ώστε N lim A a()p [x ] = 0 ( ) (όπου P [x ] η προβολή στον (μονοδιάστατο) υπόχωρο που παράγει το x ). Τότε η ακολουθία {a()}, αν είναι άπειρη, είναι μηδενική. Απόδειξη. Αν ο A ικανοποιεί την ( ) τότε είναι -όριο τελεστών πεπερασμένης τάξης, άρα συμπαγής. Επίσης, οι τελεστές αυτοί είναι φυσιολογικοί, άρα και ο A είναι φυσιολογικός. Αντίστροφα, έστω A συμπαγής και φυσιολογικός. Έχουμε δείξει ότι υπάρχει αριθμήσιμη ορθοκανονική βάση, έστω {x : N}, του χώρου (ker A) από ιδιοδιανύσματα του A που αντιστοιχούν σε μη μηδενικές ιδιοτιμές του. Δηλαδή υπάρχουν a() C ώστε Ax = a()x. Από την Πρόταση 1.8 η ακολουθία {a()} είναι μηδενική, αν είναι άπειρη. Επειδή επιπλέον οι προβολές P [x ] είναι κάθετες ανά δύο, έπεται (όπως την απόδειξη του Θεωρήματος.) ότι η σειρά a()p [x ] συγκλίνει στην τοπολογία της νόρμας του B(H). Έστω B B(H) το όριό της. Οι (φραγμένοι) τελεστές A και B μηδενίζονται στον ker A και συμπίπτουν σε κάθε x (διότι Ax = a()x = Bx ) άρα συμπίπτουν και στον (ker A). 3 Πρώτες συνέπειες Πόρισμα 3.1 Έστω A συμπαγής φυσιολογικός τελεστής σ' έναν χώρο Hilbert H. Τότε (i) A = max{ λ : λ σ p (A)} (ii) A = max{ Ax, x : x H, x = 1} Απόδειξη. (i) Έστω {a() : N} μια αρίθμηση του σ p (A) \ {0}. Υπάρχει μια ορθοκανονική βάση {x } του (ker A) που αποτελείται από ιδιοδιανύσματα του A, δηλαδή Ax = a()x, οπότε για κάθε και συνεπώς a() = a()x = Ax A sup{ λ : λ σ p (A)} = sup{ a() : N} A. Από την άλλη μεριά, εφόσον A = a()p [x ], για κάθε x H έχουμε Ax = a() x, x x άρα Ax = a() x, x sup a() 7 x, x sup a() x

8 άρα A sup a() και έχουμε ισότητα. Επίσης, η ακολουθία ( a() ) είναι μηδενική, άρα παίρνει μέγιστη τιμή: sup a() = max a(). (ii) Για κάθε x H νόρμας 1 έχουμε Ax, x A, άρα sup{ Ax, x : x H, x = 1} A. Από την άλλη μεριά, υπάρχει λ σ p (A) με λ = A. Αν x 0 είναι ένα αντίστοιχο ιδιοδιάνυσμα νόρμας 1, τότε Ax 0 = λx 0 οπότε Ax 0, x 0 = λ = A και άρα max{ Ax, x : x H, x = 1} = A. Θεώρημα 3. (Γενική μορφή συμπαγούς τελεστή σε χώρο Hilbert) Aν A : H K είναι συμπαγής τελεστής μεταξύ χώρων Hilbert H και K, υπάρχουν ορθοκανονικές ακολουθίες {x } στον K και {y } στον H και (πεπερασμένη ή μηδενική) ακολουθία θετικών αριθμών {a } ώστε A = a i x i yi i=1 όπου η σειρά συγκλίνει ως προς τη νόρμα του B(H, K). Υπενθύμιση: Αν x K, y H ο τελεστής x y : H K ορίζεται από τη σχέση (x y )(z) = z, y x, z H. Ειδικότερα αν y = 1 ο τελεστής y y είναι η προβολή στον υπόχωρο [y] του H. Απόδειξη. Ονομάζουμε T τον θετικό συμπαγή τελεστή T = A A. Χρησιμοποιώντας το Φασματικό Θεώρημα γράφουμε T = µ P [u ] = µ u u όπου η {u } είναι ορθοκανονική βάση του υπόχωρου (ker T ) = (ker A) από ιδιοδιανύσματα του T με (μη μηδενικές) ιδιοτιμές {µ } (άρα µ > 0, αφού ο T είναι θετικός). Ορίζουμε v = Au a ( N), όπου a = µ. Η ακολουθία {v } είναι ορθοκανονική: Πράγματι v, v m = 1 a a m Au, Au m = 1 a a m A Au, u m = 1 a a m µ u, u m = µ a a m u, u m = δ m, αφού η {u } είναι ορθοκανονική και µ = a. Eπειδή οι {v }, {u } είναι ορθοκανονικές ακολουθίες και η {a } είναι μηδενική (διότι η µ είναι μηδενική), η σειρά a i v i u i i=1 συγκλίνει ως προς τη νόρμα του B(H) (απόδειξη: Άσκηση) και ορίζει φραγμένο (μάλιστα συμπαγή) τελεστή, έστω B. Παρατηρούμε ότι ο B μηδενίζεται στον υπόχωρο [u : N] = ker A A = ker A, ενώ για κάθε N έχουμε Bu = a v = Au, άρα οι (φραγμένοι) τελεστές A και B συμπίπτουν και στον (ker A), επομένως είναι ίσοι. 8

Το φασματικό Θεώρημα

Το φασματικό Θεώρημα Το φασματικό Θεώρημα 1 Το φάσμα ενός τελεστή Λήμμα 1.1 Έστω A B(H) φυσιολογικός τελεστής. Αν x H είναι ιδιοδιάνυσμα του A με ιδιοτιμή λ, τότε A x = λx. Έπεται ότι οι ιδιόχωροι ενός φυσιολογικού τελεστή

Διαβάστε περισσότερα

= lim. (P QP ) n x, x. E(Ex) = lim. (P QP ) m P x = Ex, EP x = lim

= lim. (P QP ) n x, x. E(Ex) = lim. (P QP ) m P x = Ex, EP x = lim Άσκηση: Η προβολή στην τομή δύο υποχώρων Αν P, Q είναι δύο ορθές προβολές σε έναν χώρο Hilbert H και R = P Q είναι η προβολή στην τομή im P im Q, δείξτε ότι, για κάθε x H, Rx = lim (P QP ) x = lim (P Q)

Διαβάστε περισσότερα

1 Χώροι πηλίκα { } x = y x y Y. Με τις πράξεις της πρόσθεσης και του βαθμωτού πολλαπλασιασμού που ορίζονται με τον

1 Χώροι πηλίκα { } x = y x y Y. Με τις πράξεις της πρόσθεσης και του βαθμωτού πολλαπλασιασμού που ορίζονται με τον Χώροι πηλίκα Έστω διανυσματικός χώρος και Y διανυσματικός υπόχωρος του. Για κάθε θεωρούμε το σύμπλοκο σχετικά με τον Y, = + y y Y = + Y ορ { : } δηλαδή το είναι η παράλληλη μεταφορά του Y κατά το διάνυσμα.

Διαβάστε περισσότερα

Καλώς ήρθατε στους Γραμμικούς Τελεστές! http://eclass.uoa.gr/courses/math122/ Εαρινό Εξάμηνο 2014-15 Χώροι με εσωτερικό γινόμενο Ορισμός Εστω E K-γραμμικός χώρος (K = R ή C). Ενα εσωτερικό γινόμενο (inner

Διαβάστε περισσότερα

4 Ασθενείς τοπολογίες σε χώρους με νόρμα. 4.1 θεωρήματα Mazur, Alaoglou, Goldstine.

4 Ασθενείς τοπολογίες σε χώρους με νόρμα. 4.1 θεωρήματα Mazur, Alaoglou, Goldstine. 8 Έστω (, ) 4 Ασθενείς τοπολογίες σε χώρους με νόρμα 4. θεωρήματα Mazur, Alaoglou, Goldste. χώρος με νόρμα. Υπενθυμίζουμε ότι η ασθενής τοπολογία T του έχει ως βάση ( ανοικτών ) περιοχών του όλα τα σύνολα

Διαβάστε περισσότερα

Θεωρία Τελεστών. Ενότητα: Το Φασµατικό Θεώρηµα - Εισαγωγή. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών

Θεωρία Τελεστών. Ενότητα: Το Φασµατικό Θεώρηµα - Εισαγωγή. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών Ενότητα: Το Φασµατικό Θεώρηµα - Εισαγωγή Αριστείδης Κατάβολος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

4.2 Αυτοπάθεια και ασθενής συμπάγεια * * X, x X, είναι επί του. X. Σημειώνουμε ότι υπάρχουν παραδείγματα μη

4.2 Αυτοπάθεια και ασθενής συμπάγεια * * X, x X, είναι επί του. X. Σημειώνουμε ότι υπάρχουν παραδείγματα μη 94 Ένας χώρος με νόρμα (, ( ( ( ϕ : : ϕ =, ( 4. Αυτοπάθεια και ασθενής συμπάγεια λέγεται αυτοπαθής ( refleive, αν η κανονική εμφύτευση,, είναι επί του, δηλαδή ϕ =. Παρατηρούμε ότι ένας αυτοπαθής χώρος

Διαβάστε περισσότερα

Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα

Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα Περίληψη του μαθήματος Μιχάλης Παπαδημητράκης Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης 1η εβδομάδα. Στα πρώτα δύο μαθήματα είπαμε κάποια πολύ βασικά πράγματα για

Διαβάστε περισσότερα

Παράρτηµα Β. Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης [ ) ( )

Παράρτηµα Β. Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης [ ) ( ) Παράρτηµα Β Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης Β1 Χώροι Baach Βάσεις Schauder Στο εξής συµβολίζουµε µε Z,, γραµµικούς (διανυσµατικούς) χώρους πάνω απ το ίδιο σώµα K = ή και γράφουµε απλά

Διαβάστε περισσότερα

Θεωρία Τελεστών. Ενότητα: Το ϕασµατικό ϑεώρηµα για αυτοσυζυγείς τελεστές. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών

Θεωρία Τελεστών. Ενότητα: Το ϕασµατικό ϑεώρηµα για αυτοσυζυγείς τελεστές. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών Ενότητα: Το ϕασµατικό ϑεώρηµα για αυτοσυζυγείς τελεστές Αριστείδης Κατάβολος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creatve Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις Ασκήσεις 5 Βασικά σημεία Ιδιότητες ιδιόχωρων: Έστω,, Ισχύουν τα εξής Ασκήσεις Διαγωνίσιμες Γραμμικές Απεικονίσεις κάποιες διακεκριμένες ιδιοτιμές της γραμμικής απεικόνισης : V V, όπου o Αν v v 0, όπου

Διαβάστε περισσότερα

f(f 1 (B)) f(f 1 (B)) B. X \ (f 1 (C)) = X \ f 1 (C) = f 1 (Y \ C) X \ (f 1 (C)) f 1 (Y \ C). f 1 (Y \ C) = f 1 (Y \ C ) = X \ f 1 (C ).

f(f 1 (B)) f(f 1 (B)) B. X \ (f 1 (C)) = X \ f 1 (C) = f 1 (Y \ C) X \ (f 1 (C)) f 1 (Y \ C). f 1 (Y \ C) = f 1 (Y \ C ) = X \ f 1 (C ). Κεφάλαιο 4 Συναρτήσεις μεταξύ μετρικών χώρων 4.1 Συνεχείς συναρτήσεις Εστω (X, ρ) και (Y, σ) δύο μετρικοί χώροι. Στην 2.2 δώσαμε τον ορισμό της συνέχειας μιας συνάρτησης f : X Y σε κάποιο σημείο x 0 X:

Διαβάστε περισσότερα

Θεωρία Τελεστών Σημειώσεις Αριστείδης Κατάβο λος1 Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών telmasu, 11 Ιουνίου 2016

Θεωρία Τελεστών Σημειώσεις Αριστείδης Κατάβο λος1 Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών telmasu, 11 Ιουνίου 2016 Θεωρία Τελεστών Σημειώσεις Αριστείδης Κατάβολος 1 Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών 2014-15 1 telmasu, 11 Ιουνίου 2016 Περιεχόμενα 1 Χώροι με νόρμα, χώροι Hilbert 1 1.1 Χώροι με νόρμα και τελεστές...................

Διαβάστε περισσότερα

2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y.

2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y. 2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. Έστω ( X, ) και (, ) X Y {( x, ) : x X και Y} Y χώροι με νόρμα. Τότε ο διανυσματικός χώρος = ( με τις συνήθεις κατά σημείο πράξεις ) γίνεται

Διαβάστε περισσότερα

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα.

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα. Ασκήσεις 0 Ασκήσεις Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα o H -στήλη του P P είναι E αν και μόνο αν η -στήλη του P είναι ιδιοδιάνυσμα του που αντιστοιχεί στην ιδιοτιμή

Διαβάστε περισσότερα

Θεωρία Τελεστών. Ενότητα: Χώροι µε νόρµα - Χώροι Hilbert. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών

Θεωρία Τελεστών. Ενότητα: Χώροι µε νόρµα - Χώροι Hilbert. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών Ενότητα: Χώροι µε νόρµα - Χώροι Hilbert Αριστείδης Κατάβολος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y.

2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y. 2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. Έστω (, ) και (, ) {( x, ) : x και } χώροι με νόρμα. Τότε ο διανυσματικός χώρος = ( με τις συνήθεις κατά σημείο πράξεις ) γίνεται χώρος με

Διαβάστε περισσότερα

Παναγιώτης Ψαρράκος Αν. Καθηγητής

Παναγιώτης Ψαρράκος Αν. Καθηγητής Ανάλυση Πινάκων Κεφάλαιο 1: Νόρμες Διανυσμάτων και Πινάκων Παναγιώτης Ψαρράκος Αν. Καθηγητής Δ.Π.Μ.Σ. Εφαρμοσμένες Μαθηματικές Επιστήμες Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών

Διαβάστε περισσότερα

4.2 Αυτοπάθεια και ασθενής συμπάγεια * * X, x X, είναι επί του. X. Σημειώνουμε ότι υπάρχουν παραδείγματα μη

4.2 Αυτοπάθεια και ασθενής συμπάγεια * * X, x X, είναι επί του. X. Σημειώνουμε ότι υπάρχουν παραδείγματα μη 94 Ένας χώρος με νόρμα (, ( ( ( ϕ : : ϕ =, ( 4.2 Αυτοπάθεια και ασθενής συμπάγεια λέγεται αυτοπαθής ( refleive, αν η κανονική εμφύτευση,, είναι επί του, δηλαδή ϕ =. Παρατηρούμε ότι ένας αυτοπαθής χώρος

Διαβάστε περισσότερα

ι3.4 Παραδείγματα T ) έχει την ιδιότητα Heine-Borel, αν κάθε κλειστό και φραγμένο υποσύνολό του είναι συμπαγές.

ι3.4 Παραδείγματα T ) έχει την ιδιότητα Heine-Borel, αν κάθε κλειστό και φραγμένο υποσύνολό του είναι συμπαγές. 6 ι3.4 Παραδείγματα Στην παράγραφο αυτή θα μελετήσουμε κάποια σημαντικά παραδείγματα, για τις εφαρμογές, χώρων συναρτήσεων οι οποίοι είναι τοπικά κυρτοί και μετρικοποιήσιμοι αλλά η τοπολογία τους δεν επάγεται

Διαβάστε περισσότερα

Λύσεις στην Συναρτησιακή Ανάλυση Κανονική εξεταστική 2009 (μπορεί να περιέχουν λάθη)

Λύσεις στην Συναρτησιακή Ανάλυση Κανονική εξεταστική 2009 (μπορεί να περιέχουν λάθη) Λύσεις στην Συναρτησιακή Ανάλυση Κανονική εξεταστική 009 (μπορεί να περιέχουν λάθη) (L) Θέμα 1 α) i Ένα σύνολο A X λέγεται γραμμικά ανεξάρτητο αν κάθε πεπερασμένο υποσύνολό του είναι γραμμικά ανεξάρτητο.

Διαβάστε περισσότερα

Στοιχειώδεις τελεστές στην άλγεβρα των adjointable τελεστών σε Hilbert πρότυπα

Στοιχειώδεις τελεστές στην άλγεβρα των adjointable τελεστών σε Hilbert πρότυπα Στοιχειώδεις τελεστές στην άλγεβρα των adjointable τελεστών σε Hilbert πρότυπα Χαράλαμπος Μαγιάτης Ανάλυση & Κβαντική Θεωρία Πληροφορίας Σεμινάριο Τμήματος Μαθηματικών ΕΚΠΑ 17/05/2019 1 / 56 Hilbert C

Διαβάστε περισσότερα

Je rhma John L mma Dvoretzky-Rogers

Je rhma John L mma Dvoretzky-Rogers Kefˆlaio 2 Je rhma Joh L mma Dvoretzky-Rogers 2.1 Elleiyoeidèc mègistou ìgkou eìc kurtoô s matoc Ορισμός 2.1.1. Ελλειψοειδές στον R είναι ένα κυρτό σώμα της μορφής { } (2.1.1) E = x R x, v i 2 : 1, όπου

Διαβάστε περισσότερα

3.5 Το θεώρημα Hahn-Banach σε τοπολογικούς διανυσματικούς χώρους.

3.5 Το θεώρημα Hahn-Banach σε τοπολογικούς διανυσματικούς χώρους. 7 3.5 Το θεώρημα Hah-Baach σε τοπολογικούς διανυσματικούς χώρους. Εξετάζουμε καταρχήν τη σχέση μεταξύ ενός μιγαδικού διανυσματικού χώρου E και του υποκείμενου πραγματικού χώρου E R. Έστω E μιγαδικός διανυσματικός

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: L 2 -σύγκλιση σειρών Fourier. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: L 2 -σύγκλιση σειρών Fourier. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: L -σύγκλιση σειρών Fourier Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Κ X κυρτό σύνολο. Ένα σημείο x Κ

Κ X κυρτό σύνολο. Ένα σημείο x Κ 8 5 Το θεώρημα Kre-Mlm Βασικές ιδιότητες συμπαγών και κυρτών συνόλων. Ορισμός 5. Έστω X διανυσματικός χώρος και Κ X κυρτό σύνολο. Ένα σημείο x Κ λέγεται ακραίο ( extreme ) σημείο του Κ, αν δεν είναι γνήσιος

Διαβάστε περισσότερα

Μία απεικόνιση από ένα διανυσματικό χώρο V στον εαυτό του, L : V V την ονομάζουμε γραμμικό τελεστή στο V (ή ενδομορφισμό του V ). Ορισμός. L : V V γρα

Μία απεικόνιση από ένα διανυσματικό χώρο V στον εαυτό του, L : V V την ονομάζουμε γραμμικό τελεστή στο V (ή ενδομορφισμό του V ). Ορισμός. L : V V γρα Γραμμική Άλγεβρα ΙΙ Διάλεξη 15 Αναλλοίωτοι Υπόχωροι, Ιδιόχωροι Χρήστος Κουρουνιώτης Πανεπιστήμιο Κρήτης 2/5/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 15 2/5/2014 1 / 12 Μία απεικόνιση από ένα διανυσματικό

Διαβάστε περισσότερα

A, και εξετάστε αν είναι διαγωνίσιμη.

A, και εξετάστε αν είναι διαγωνίσιμη. Ασκήσεις 6 Ασκήσεις Ελάχιστο Πολυώνυμο Βασικά σημεία Ορισμός ελαχίστου πολυωνύμου πίνακα και ιδιότητές του Θεώρημα (Κριτήριο διαγωνισιμότητας) Ένας είναι διαγωνίσιμος αν και μόνο αν ( x) γινόμενο διακεκριμένων

Διαβάστε περισσότερα

Συµπαγείς τελεστές. Κεφάλαιο Τελεστές πεπερασµένης τάξης. n. Γράφουµε rank(t ) = n. Αν οι E, F είναι χώροι µε νόρµα, συµβολίζουµε

Συµπαγείς τελεστές. Κεφάλαιο Τελεστές πεπερασµένης τάξης. n. Γράφουµε rank(t ) = n. Αν οι E, F είναι χώροι µε νόρµα, συµβολίζουµε Κεφάλαιο 3 Συµπαγείς τελεστές 3.1 Τελεστές πεπερασµένης τάξης Ορισµός 3.1.1 Μια γραµµική απεικόνιση T : E F µεταξύ δύο γραµµικών χώρων E, F λέγεται τάξης n (n N) αν ο υπόχωρος T (E) = im T έχει διάσταση

Διαβάστε περισσότερα

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 09, 9 Μαρτίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Επαναληπτικές μέθοδοι 2. Θεωρία γενικών επαναληπτικών μεθόδων 3. Σύγκλιση

Διαβάστε περισσότερα

Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα

Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα Περίληψη του μαθήματος Μιχάλης Παπαδημητράκης Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης 1η εβδομάδα. Στα πρώτα δύο μαθήματα είπαμε κάποια πολύ βασικά πράγματα για

Διαβάστε περισσότερα

B = F i. (X \ F i ) = i I

B = F i. (X \ F i ) = i I Κεφάλαιο 3 Τοπολογία μετρικών χώρων Ομάδα Α 3.1. Εστω (X, ρ) μετρικός χώρος και F, G υποσύνολα του X. Αν το F είναι κλειστό και το G είναι ανοικτό, δείξτε ότι το F \ G είναι κλειστό και το G \ F είναι

Διαβάστε περισσότερα

i=1 i=1 i=1 (x i 1, x i +1) (x 1 1, x k +1),

i=1 i=1 i=1 (x i 1, x i +1) (x 1 1, x k +1), Κεφάλαιο 6 Συμπάγεια 6.1 Ορισμός της συμπάγειας Οπως θα φανεί στην αμέσως επόμενη παράγραφο, υπάρχουν διάφοροι τρόποι με τους οποίους μπορεί κανείς να εισάγει την έννοια του συμπαγούς μετρικού χώρου. Ο

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος 6/6/06 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 0 Δίνεται ο πίνακας A =. Nα υπολογίσετε την βαθμίδα του και να βρείτε τη διάσταση και από μία βάση α) του μηδενοχώρου

Διαβάστε περισσότερα

1. a. Έστω b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα του A Έστω A και ( x) [ x]

1. a. Έστω b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα του A Έστω A και ( x) [ x] σκήσεις Ασκήσεις Ιδιοτιμές και ιδιοδιανύσματα Βασικά σημεία Ορισμός ιδιοτιμών και ιδιοδιανυσμάτων, υπολογισμός τους Ιδιόχωροι, διάσταση ιδιόχωρου, εύρεση βάσης ιδιόχωρου Σε διακεκριμένες ιδιοτιμές αντιστοιχούν

Διαβάστε περισσότερα

V x, y W x, y, y συνιστούν προφανώς ένα ανοικτό

V x, y W x, y, y συνιστούν προφανώς ένα ανοικτό 81 3.2 Το θεώρημα Tychooff. Στην παράγραφο αυτή θα ασχοληθούμε με το θεώρημα Tychooff, δηλαδή ότι ένα αυθαίρετο καρτεσιανό γινόμενο συμπαγών χώρων είναι, με την τοπολογία γινόμενο, συμπαγής χώρος. Το θεώρημα

Διαβάστε περισσότερα

iωb = curl E. (Faraday s law) (2)

iωb = curl E. (Faraday s law) (2) Το φασματικό πρόβλημα σε μια διανισοτροπική κοιλότητα Ευτυχία Η. Αργυροπούλου, Ανδρέας Δ. Ιωαννίδης Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Linnaeus University, Σουηδία EME 2013, Καρδίτσα Ευτυχία

Διαβάστε περισσότερα

π B = B και άρα η π είναι ανοικτή απεικόνιση.

π B = B και άρα η π είναι ανοικτή απεικόνιση. 3 Παράρτημα 2 Παρατηρήσεις, ασκήσεις και Διορθώσεις Παράγραφος ) Σελίδα, : Παρατηρούμε τα ακόλουθα για το χώρο πηλίκο / Y : Y = / Y και (α) { } (β) = Y / Y { } Επίσης από τον τύπο () έπεται ιδιαίτερα ότι

Διαβάστε περισσότερα

βαθμού 1 με A 2. Υπολογίστε τα χαρακτηριστικά και ελάχιστα πολυώνυμα των

βαθμού 1 με A 2. Υπολογίστε τα χαρακτηριστικά και ελάχιστα πολυώνυμα των Ασκήσεις 6 Ασκήσεις Ελάχιστο Πολυώνυμο Βασικά σημεία Ορισμός ελαχίστου πολυωνύμου πίνακα και ιδιότητές του Ορισμός ελαχίστου πολυωνύμου γραμμικής απεικόνισης και ιδιότητές του Κριτήριο διαγωνισιμότητας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z)

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z) ΚΕΦΑΛΑΙΟ 1: Πρότυπα Στο κεφάλαιο αυτό θα υπενθυμίσουμε τις βασικές έννοιες που αφορούν πρότυπα πάνω από ένα δακτύλιο Θα περιοριστούμε στα πλέον απαραίτητα για αυτά που ακολουθούν στα άλλα κεφάλαια Η κατευθυντήρια

Διαβάστε περισσότερα

R ισούται με το μήκος του. ( πρβλ. την ιστορική σημείωση 3.27 στο τέλος

R ισούται με το μήκος του. ( πρβλ. την ιστορική σημείωση 3.27 στο τέλος 73 3. Συμπαγείς χώροι 3. Συμπαγείς χώροι και βασικές ιδιότητες Οι συμπαγείς χώροι είναι μια από τις πιο σημαντικές κλάσεις τοπολογικών χώρων. Η κλάση των συμπαγών χώρων περιλαμβάνει τα κλειστά διαστήματα,b

Διαβάστε περισσότερα

Παναγιώτης Ψαρράκος Αν. Καθηγητής

Παναγιώτης Ψαρράκος Αν. Καθηγητής Ανάλυση Πινάκων Κεφάλαιο 5: Κανονικοί Πίνακες Παναγιώτης Ψαρράκος Αν. Καθηγητής Δ.Π.Μ.Σ. Εφαρμοσμένες Μαθηματικές Επιστήμες Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Εθνικό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: ΓΡΑΜΜΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ

ΚΕΦΑΛΑΙΟ 5: ΓΡΑΜΜΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ ΚΕΦΑΛΑΙΟ 5: 5. ΟΡΙΣΜΟΙ Έστω U και V δύο διανυσματικοί χώροι. Μια συνάρτηση F : U V θα λέγεται γραμμική απεικόνιση (ή ομομορφισμός, ή απλά μορφισμός εάν ικανοποιεί τις συνθήκες (i F ( u + = u + για κάθε

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ, 6-12-13 Μ. Παπαδημητράκης. 1 Τώρα θα δούμε την απόδειξη του Θεωρήματος που διατυπώσαμε στο τέλος του προηγούμενου μαθήματος. Απόδειξη. [α] Θεωρούμε συνάρτηση f : A R και

Διαβάστε περισσότερα

ΧΑΡΑΚΤΗΡΙΣΤΙΚΟ ΠΟΛΥΩΝΥΜΟ ΠΙΝΑΚΑ: Έστω Α ένας n nπίνακας επί ενός σώματος F. Για χ στο F, ορίζεται το πολυώνυμο ( ως προς χ ) : h ( x) = det( A- xi ).

ΧΑΡΑΚΤΗΡΙΣΤΙΚΟ ΠΟΛΥΩΝΥΜΟ ΠΙΝΑΚΑ: Έστω Α ένας n nπίνακας επί ενός σώματος F. Για χ στο F, ορίζεται το πολυώνυμο ( ως προς χ ) : h ( x) = det( A- xi ). 1 ΧΑΡΑΚΤΗΡΙΣΤΙΚΟ ΠΟΛΥΩΝΥΜΟ ΠΙΝΑΚΑ: Έστω Α ένας n nπίνακας επί ενός σώματος F. Για χ στο F, ορίζεται το πολυώνυμο ( ως προς χ ) : h ( x) = det( A- xi ). A n Πόρισμα 1: Ο βαθμός του χαρ/κου πολυωνύμου ενός

Διαβάστε περισσότερα

5 Σύγκλιση σε τοπολογικούς χώρους

5 Σύγκλιση σε τοπολογικούς χώρους 121 5 Σύγκλιση σε τοπολογικούς χώρους Στο κεφάλαιο αυτό πρόκειται να μελετήσουμε την έννοια της σύγκλισης σε γενικούς τοπολογικούς χώρους, πέραν των μετρικών χώρων. Όπως έχουμε ήδη διαπιστώσει ( πρβλ.

Διαβάστε περισσότερα

h(x, y) = card ({ 1 i n : x i y i

h(x, y) = card ({ 1 i n : x i y i Κεφάλαιο 1 Μετρικοί χώροι 1.1 Ορισμός και παραδείγματα Ορισμός 1.1.1 μετρική). Εστω X ένα μη κενό σύνολο. Μετρική στο X λέγεται κάθε συνάρτηση ρ : X X R με τις παρακάτω ιδιότητες: i) ρx, y) για κάθε x,

Διαβάστε περισσότερα

1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό

1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό 1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό 1.1 Όρια ακολουθιών Λέμε ότι η ακολουθία { n } συγκλίνει με όριο R αν για κάθε ϵ > 0 υπάρχει ακέραιος N = N(ϵ) τέτοιος ώστε (1.1) n < ϵ για κάθε n > N, και

Διαβάστε περισσότερα

Ασκήσεις6 Διαγωνοποίηση Ερμιτιανών Πινάκων

Ασκήσεις6 Διαγωνοποίηση Ερμιτιανών Πινάκων 7 Βασικά σημεία Ασκήσεις6 Διαγωνοποίηση Ερμιτιανών Πινάκων Το σύνηθες εσωτερικό γινόμενο στο και Ορθοκανονικές βάσεις και η μέθοδος Gram-Schmidt Ορισμός, Ερμιτιανού πίνακα και μοναδιαίου πίνακα Ιδιότητες

Διαβάστε περισσότερα

Εφαρμογές του μεταθετικού Θεωρήματος Gelfand-Naimark σε μη μεταθετικές C* άλγεβρες

Εφαρμογές του μεταθετικού Θεωρήματος Gelfand-Naimark σε μη μεταθετικές C* άλγεβρες Εφαρμογές του μεταθετικού Θεωρήματος Gelfand-Naimark σε μη μεταθετικές C* άλγεβρες 1 Εξάρτηση του φάσματος από την άλγεβρα Έστω A άλγεβρα Banach με μονάδα 1 και B Ď A κλειστή υπάλγεβρα που περιέχει την

Διαβάστε περισσότερα

f x 0 για κάθε x και f 1

f x 0 για κάθε x και f 1 06 4.2 Το Λήμμα του Uysoh το Λήμμα της εμφύτευσης και το θεώρημα μετρικοποίησης του Uysoh. Ο κύριος στόχος αυτής της παραγράφου είναι η απόδειξη ενός θεμελιώδους αποτελέσματος γνωστού ως το Λήμμα του Uysoh.

Διαβάστε περισσότερα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα Σελίδα από 58 Κεφάλαιο 9 Ιδιοτιμές και Ιδιοδιανύσματα 9. Ορισμοί... 9. Ιδιότητες... 9. Θεώρημα Cayley-Hamlto...9 9.. Εφαρμογές του Θεωρήματος Cayley-Hamlto... 9.4 Ελάχιστο Πολυώνυμο...40 Ασκήσεις του Κεφαλαίου

Διαβάστε περισσότερα

8.1 Διαγωνοποίηση πίνακα

8.1 Διαγωνοποίηση πίνακα Κεφάλαιο 8 Κανονικές μορφές από 6 Κεφάλαιο 8 Κ Α Ν Ο Ν Ι Κ Ε Σ Μ Ο Ρ Φ Ε Σ 8. Διαγωνοποίηση πίνακα Ορισμός 8.α Ένας πίνακας M n ( ) oνομάζεται διαγωνοποιήσιμος στο αν υπάρχει αντιστρέψιμος πίνακας P M

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάμε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων Αυτές συνδέονται μεταξύ τους με την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

1 ιαδικασία διαγωνιοποίησης

1 ιαδικασία διαγωνιοποίησης ιαδικασία διαγωνιοποίησης Εστω V ένας R-διανυσματικός χώρος (ή έναςc-διανυσματικός χώρος) διάστασης n. Είναι γνωστό ότι κάθε διάνυσμα (,,..., n ) του χώρου V μπορεί να παρασταθεί και σαν πίνακας στήλη

Διαβάστε περισσότερα

Ασκήσεις2 8. ; Αληθεύει ότι το (1, 0, 1, 2) είναι ιδιοδιάνυσμα της f ; b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης 3 3

Ασκήσεις2 8. ; Αληθεύει ότι το (1, 0, 1, 2) είναι ιδιοδιάνυσμα της f ; b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης 3 3 Ασκήσεις 8 Ασκήσεις Ιδιοτιμές και ιδιοδιανύσματα Βασικά σημεία Ορισμός ιδιοτιμων και ιδιοδιανυσμάτων, υπολογισμός τους Σε διακεκριμένες ιδιοτιμές αντιστοιχούν γραμμικά ανεξάρτητα ιδιοδιανύσματα Αν ΑΧ=λΧ,

Διαβάστε περισσότερα

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 07, 2 Μαρτίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Συμμετρικοί και θετικά ορισμένοι πίνακες. Η ανάλυση Cholesky 2. Νόρμες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobso Στο κεφάλαιο αυτό μελετάμε δακτυλίους του Art χρησιμοποιώντας το ριζικό του Jacobso. Ως εφαρμογή αποδεικνύουμε ότι κάθε δακτύλιος του Art είναι και της Noether. 4.1. Δακτύλιοι

Διαβάστε περισσότερα

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 08, 5 Μαρτίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Νόρμες πινάκων 2. Δείκτης κατάστασης πίνακα 3. Αριθμητική κινητής

Διαβάστε περισσότερα

Θεωρία Τελεστών. Ενότητα: Η έννοια του ϕάσµατος. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών

Θεωρία Τελεστών. Ενότητα: Η έννοια του ϕάσµατος. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών Ενότητα: Η έννοια του ϕάσµατος Αριστείδης Κατάβοος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Μιχάλης Παπαδημητράκης. Αναλυτική χωρητικότητα Συνεχής αναλυτική χωρητικότητα

Μιχάλης Παπαδημητράκης. Αναλυτική χωρητικότητα Συνεχής αναλυτική χωρητικότητα Μιχάλης Παπαδημητράκης Αναλυτική χωρητικότητα Συνεχής αναλυτική χωρητικότητα 1 Παράγωγος στο. Ας θυμηθούμε ότι μια μιγαδική συνάρτηση f ορισμένη σε ένα υποσύνολο του μιγαδικού επιπέδου λέμε ότι είναι

Διαβάστε περισσότερα

Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ

Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Στο πρώτο μέρος αυτού του κεφαλαίου συνοψίζουμε όσα είναι απαραίτητα για την εύρεση ιδιοτιμών και ιδιοδιανυσμάτων ενός τετραγωνικού πίνακα Στο δεύτερο μέρος αναπτύσσονται

Διαβάστε περισσότερα

Φασµατικη θεωρια µη φραγµενων γραµµικων τελεστων

Φασµατικη θεωρια µη φραγµενων γραµµικων τελεστων Φασµατικη θεωρια µη φραγµενων γραµµικων τελεστων Πτυχιακη Εργασια Ιωσηφιδης Ηλιας Α.Μ: 311/2329 Επιβλεπων : Τσολοµυτης Αντωνης A Τµηµα Μαθηµατικων Πανεπιστηµιο Αιγαιου Σαµος 27 Εξεταστικη Επιτροπη : Τσολοµύτης

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10 Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 0 Επαναληπτικες Ασκησεις ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθοι Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laiihtml

Διαβάστε περισσότερα

j=1 x n (i) x s (i) < ε.

j=1 x n (i) x s (i) < ε. Κεφάλαιο 5 Πληρότητα 5.1 Πλήρεις μετρικοί χώροι Ορισμός 5.1.1 (πλήρης μετρικός χώρος). Ενας μετρικός χώρος (X, ρ) λέγεται πλήρης (complete) αν κάθε ρ βασική ακολουθία (x n ) στον X είναι ρ συγκλίνουσα.

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑ ΠΙΝΑΚΩΝ. (ii) Αν ο Β m+1, με m N, αντιστρέφεται, τότε και ο Β αντιστρέφεται

ΕΝΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑ ΠΙΝΑΚΩΝ. (ii) Αν ο Β m+1, με m N, αντιστρέφεται, τότε και ο Β αντιστρέφεται ΕΝΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑ ΠΙΝΑΚΩΝ 1) Έστω A, Β Μ n (R) τέτοιοι, ώστε A + Β = Ι n. Να δείξετε ότι : A = A 2 κκκ Β = Β 2 ΑΑ = Ο 2) Έστω A, Β Μ n (R), με A = A 2 και ΑΑ + ΒΒ = Ο. Να δειχθεί ότι ΑΑ = ΒΒ

Διαβάστε περισσότερα

Κεφάλαιο 6 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 6 Ιδιοτιμές και Ιδιοδιανύσματα Κεφάλαιο 6 Ορισμοί Έστω Α ένας πίνακας με πραγματικά στοιχεία Ο πραγματικός ή μιγαδικός αριθμός λ καλείται ιδιοτιμή του πίνακα Α εάν υπάρχει μη μηδενικό διάνυσμα v με πραγματικά ή μιγαδικά στοιχεία τέτοιο

Διαβάστε περισσότερα

x, y = x 1 y 1 + x 2 y 2 + x 3 y 3. x k y k. k=1 k=1

x, y = x 1 y 1 + x 2 y 2 + x 3 y 3. x k y k. k=1 k=1 Σημειώσεις για τους χώρους Hilbert και άλλα Αριστείδης Κατάβολος Από το βιβλίο «Εισαγωγή στη Θεωρία Τελεστών», εκδ. «Συμμετρία», 2008. Περιεχόμενα I Χώροι Hilbert 1 1 Εσωτερικά γινόμενα 1 1.0.1 Παραδείγματα.........................

Διαβάστε περισσότερα

6 Συνεκτικοί τοπολογικοί χώροι

6 Συνεκτικοί τοπολογικοί χώροι 36 6 Συνεκτικοί τοπολογικοί χώροι Έστω R διάστημα και f : R συνεχής συνάρτηση τότε, όπως γνωρίζουμε από τον Απειροστικό Λογισμό, η f έχει την ιδιότητα της ενδιάμεσου τιμής. Η ιδιότητα αυτή δεν εξαρτάται

Διαβάστε περισσότερα

ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ. και την ΟΙΚΟΝΟΜΙΑ»

ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ. και την ΟΙΚΟΝΟΜΙΑ» ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ «ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ σε ΣΥΓΧΡΟΝΕΣ ΤΕΧΝΟΛΟΓΙΕΣ και την ΟΙΚΟΝΟΜΙΑ» Εφαρμογές

Διαβάστε περισσότερα

Κυρτή Ανάλυση. Ενότητα: Υπερεπίπεδα στήριξης και διαχωριστικά ϑεωρήµατα. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Κυρτή Ανάλυση. Ενότητα: Υπερεπίπεδα στήριξης και διαχωριστικά ϑεωρήµατα. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Υπερεπίπεδα στήριξης και διαχωριστικά ϑεωρήµατα Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Το Θεώρημα Stone - Weierstrass

Το Θεώρημα Stone - Weierstrass Το Θεώρημα Stone - Weierstrass Θεώρημα 1 Έστω ¹ X συμπαγής χώρος Hausdorff και έστω C R (X η πραγματική άλγεβρα όλων των συνεχών συναρτήσεων f : X R. Έστω ότι ένα υποσύνολο A C R (X (1 το A είναι υπάλγεβρα

Διαβάστε περισσότερα

a n = sup γ n. lim inf n n n lim sup a n = lim lim inf a n = lim γ n. lim sup a n = lim β n = 0 = lim γ n = lim inf a n. 2. a n = ( 1) n, n = 1, 2...

a n = sup γ n. lim inf n n n lim sup a n = lim lim inf a n = lim γ n. lim sup a n = lim β n = 0 = lim γ n = lim inf a n. 2. a n = ( 1) n, n = 1, 2... ΜΑΘΗΜΑΤΙΚΗ ΑΝΑΛΥΣΗ Β.ΒΛΑΧΟΥ, Α. ΣΟΥΡΜΕΛΙΔΗΣ Τμήμα Μαθηματικών, Πανεπιστήμιο Πατρών Φθινόπωρο 2013 1 Θα θέλαμε να αναφέρουμε ότι για την συγγραφή αυτών των σημειώσεων χρησιμοποιήσαμε ιδιαίτερα α)το βιβλίο

Διαβάστε περισσότερα

Ασκήσεις. και. για κάποιο k n. ( ) BdΚ και επί πλέον το BdΚ είναι ακραίο. [Υπόδειξη Πρβλ. την άσκηση 11 της παραγράφου 3.1 για το (α)].

Ασκήσεις. και. για κάποιο k n. ( ) BdΚ και επί πλέον το BdΚ είναι ακραίο. [Υπόδειξη Πρβλ. την άσκηση 11 της παραγράφου 3.1 για το (α)]. 3 Ασκήσεις ) Έστω διανυσματικός χώρος, C κυρτό και C. (α) Αποδείξτε ότι τα ακόλουθα είναι ισοδύναμα: (ι) e( C) = +,(ιι), = = και (ιιι) Το σύνολο C \{ } είναι κυρτό. (β) Επίσης αποδείξτε ότι αν e( C) και

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι ΚΕΦΑΛΑΙΟ : Ημιαπλοί Δακτύλιοι Είδαμε στο κύριο θεώρημα του προηγούμενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισμα απλών προτύπων Εδώ θα χαρακτηρίσουμε όλους

Διαβάστε περισσότερα

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 14, 30 Απριλίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Χώροι με εσωτερικό γινόμενο (Ευκλείδειοι χώροι) 2. Βέλτιστες προσεγγίσεις

Διαβάστε περισσότερα

Ασκήσεις6 Το σύνηθες εσωτερικό γινόμενο στο

Ασκήσεις6 Το σύνηθες εσωτερικό γινόμενο στο Ασκήσεις6 7 Ασκήσεις6 Το σύνηθες εσωτερικό γινόμενο στο και Βασικά σημεία Το σύνηθες εσωτερικό γινόμενο στο και (ορισμοί και ιδιότητες) Ορθοκανονικές βάσεις και η μέθοδος Gram-Schmidt Ορθογώνιο συμπλήρωμα

Διαβάστε περισσότερα

Καλώς ήρθατε στη Θεωρία Γραμμικών Τελεστών! (712 & ΘΕΜ.13) http://eclass.uoa.gr/courses/math492/ Εαρινό Εξάμηνο 2015-16 Τελεστές Γουατ ιζ αν Οπερέιτωρ; Παράδειγμα 1. T : f a 1 f + a 2 f + a 3 f : διαφορικός

Διαβάστε περισσότερα

Μιχάλης Παπαδημητράκης. Πραγματική Ανάλυση. Μέτρο και ολοκλήρωμα Lebesgue στο R. Τμήμα Μαθηματικών. Πανεπιστήμιο Κρήτης

Μιχάλης Παπαδημητράκης. Πραγματική Ανάλυση. Μέτρο και ολοκλήρωμα Lebesgue στο R. Τμήμα Μαθηματικών. Πανεπιστήμιο Κρήτης Μιχάλης Παπαδημητράκης Πραγματική Ανάλυση Μέτρο και ολοκλήρωμα Lebesgue στο R Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Περιεχόμενα Το μέτρο Lebesgue.. Μήκη διαστημάτων..................................2

Διαβάστε περισσότερα

Γραμμική Άλγεβρα II Εαρινό εξάμηνο

Γραμμική Άλγεβρα II Εαρινό εξάμηνο Γραμμική Άλγεβρα II Εαρινό εξάμηνο 0-0 Υποδείξεις/Απαντήσεις των Ασκήσεων Περιεχόμενα Ασκήσεις Πολυώνυμα Ασκήσεις Ιδιοτιμές-Ιδιοδιανύσματα 6 Ασκήσεις Διαγωνίσιμες γραμμικές απεικονίσεις 9 Ασκήσεις4 Τριγωνίσιμες

Διαβάστε περισσότερα

ΚΕΦ.6:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ. ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ

ΚΕΦ.6:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ. ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ ΚΕΦ:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ Τετραγωνικές μορφές: Συναρτήσεις με τύπο Q ν α ι j j, j [ ] ν α α ν αν α νν ν Τ Χ ΑΧ Για παράδειγμα εάν v Q α + α + α + α α + α + α + α δηλ a a a a α + α + α

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β ΠΕΡΙΤΤΟΙ Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii8/laii8html Παρασκευή 4 Ιουνίου

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΤΕΛΙΚΗΣ ΕΞΕΤΑΣΗΣ 9 Ιουνίου (διάρκεια ώρες και λ) Διαβάστε προσεκτικά και απαντήστε

Διαβάστε περισσότερα

ή κανονικός ( regular ), αν για κάθε x και κάθε κλειστό αντιπαραδείγματα με τα οποία αποδεικνύεται ότι οι αντίστροφες συνεπαγωγές δεν ισχύουν.

ή κανονικός ( regular ), αν για κάθε x και κάθε κλειστό αντιπαραδείγματα με τα οποία αποδεικνύεται ότι οι αντίστροφες συνεπαγωγές δεν ισχύουν. 93 4 Διαχωριστικά αξιώματα Στο κεφάλαιο αυτό εισάγουμε τα λεγόμενα διαχωριστικά αξιώματα και εξετάζουμε τις βασικές ιδιότητές τους. Ένα από αυτά το έχουμε ήδη εισαγάγει δηλαδή το αξίωμα Husdorff ( ορισμός

Διαβάστε περισσότερα

Ασκήσεις4 48. P AP τριγωνικό. Αφού δείξτε ότι ο A δεν είναι διαγωνίσιμος, βρείτε αντιστρέψιμο A 1 3 1

Ασκήσεις4 48. P AP τριγωνικό. Αφού δείξτε ότι ο A δεν είναι διαγωνίσιμος, βρείτε αντιστρέψιμο A 1 3 1 Ασκήσεις4 48 Ασκήσεις4 Τριγωνισιμότητα Βασικά σημεία Ορισμός τριγωνίσιμου πίνακα, ορισμός τριγωνίσιμης γραμμικής απεικόνισης Θεώρημα: είναι τριγωνίσιμος αν και μόνο αν ( x ) γινόμενο πρωτοβάθμιων παραγόντων

Διαβάστε περισσότερα

Κεφάλαιο 1. ιατεταγµένοι χώροι. 1.1 Κώνοι και διάταξη

Κεφάλαιο 1. ιατεταγµένοι χώροι. 1.1 Κώνοι και διάταξη Κεφάλαιο 1 ιατεταγµένοι χώροι 1.1 Κώνοι και διάταξη Εστω E γραµµικός χώρος. Ενα κυρτό, µη κενό υποσύνολο P του E είναι κώνος αν λ P για κάθε λ R +. Αν επιπλέον ισχύει P ( P) = {0} το P είναι οξύς κώνος

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ Ονοματεπώνυμο:......... Α.Μ....... Ετος... ΑΙΘΟΥΣΑ:....... I. (περί τις 55μ. = ++5++. Σωστό ή Λάθος: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - //8 ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ (αʹ Αν AB = BA όπου A, B τετραγωνικά και

Διαβάστε περισσότερα

Χαρακτηριστική Εξίσωση Πίνακα

Χαρακτηριστική Εξίσωση Πίνακα Έστω ο n nτετραγωνικός πίνακας A της μορφής a L a M O M an L a όπου aij, i n, j n πραγματικές σταθερές Ονομάζουμε χαρακτηριστική εξίσωση του πίνακα A την εξίσωση A λi, όπου I ο n n μοναδιαίος πίνακας και

Διαβάστε περισσότερα

2. d(x, y) = 0 x = y. 3. d(x, y) = d(y, x)

2. d(x, y) = 0 x = y. 3. d(x, y) = d(y, x) Τελεστές σε χώρους Hilbert Γεωργάτος Σπυρίδων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Τμήμα Μαθηματικών Επιτροπή Επιβλέπων: Φελουζής Ευάγγελος - Αναπληρωτής Καθηγητής Μέλη : Τσολομύτης Αντώνιος - Καθηγητής Νικολόπουλος Χρήστος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 00 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ9) Ηράκλειο, 7 Ιανουαρίου 00 Θέμα. (μονάδες.5) α) [μονάδες:.0]. Υπολογίστε

Διαβάστε περισσότερα

Όταν δεν υπάρχει κίνδυνος σύγχυσης γράφουμε συνήθως ο τοπολογικός χώρος X και χρησιμοποιούμε την σύντμηση τ.χ. (= τοπολογικός χώρος).

Όταν δεν υπάρχει κίνδυνος σύγχυσης γράφουμε συνήθως ο τοπολογικός χώρος X και χρησιμοποιούμε την σύντμηση τ.χ. (= τοπολογικός χώρος). 4 Τοπολογικοί χώροι. Στοιχειώδεις έννοιες της τοπολογίας Στην παράγραφο αυτή εισάγουμε τις βασικές έννοιες της τοπολογίας, δηλαδή αυτές του ανοικτού και κλειστού συνόλου, της κλειστότητας και του εσωτερικού

Διαβάστε περισσότερα

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2). ΜΑΣ 37: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ Να βρεθεί το πολυώνυμο Lagrage για τα σημεία (, ), (, ) και (4, ) Να βρεθεί το πολυώνυμο παρεμβολής Lagrage που προσεγγίζει τη συνάρτηση 3 f ( x) si x στους κόμβους

Διαβάστε περισσότερα

f(x) f(c) x 1 c x 2 c

f(x) f(c) x 1 c x 2 c Μαθηματικός Λογισμός Ι Φθινόπωρο 2014 Σημειώσεις 1-12-14 Μ. Ζαζάνης 1 Πραγματικές Συναρτήσεις και Ορια Εστω S R ένα υποσύνολο του R και f : S R μια συνάρτηση με πεδίο ορισμού το S και τιμές στους πραγματικούς

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 2008

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 2008 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 8 Ημερομηνία παράδοσης της Εργασίας: Φεβρουαρίου 8 Πριν από την λύση κάθε άσκησης καλό

Διαβάστε περισσότερα

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0.

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0. Ασκήσεις4 46 Ασκήσεις 4 Τριγωνίσιμες γραμμικές απεικονίσεις, Θεώρημα των Cayley-Hamilton Βασικά σημεία Ορισμός τριγωνίσιμου πίνακα, ορισμός τριγωνίσιμης γραμμικής απεικόνισης Κριτήριο τριγωνισιμότητας

Διαβάστε περισσότερα

Στοιχειώδεις τελεστές στην άλγεβρα των adjointable τελεστών σε Hilbert πρότυπα, (συνέχεια)

Στοιχειώδεις τελεστές στην άλγεβρα των adjointable τελεστών σε Hilbert πρότυπα, (συνέχεια) Στοιχειώδεις τελεστές στην άλγεβρα των adjointable τελεστών σε Hilbert πρότυπα, (συνέχεια) Χαράλαμπος Μαγιάτης Ανάλυση & Κβαντική Θεωρία Πληροφορίας Σεμινάριο Τμήματος Μαθηματικών ΕΚΠΑ 24/05/2019 1 / 13

Διαβάστε περισσότερα

Ασκήσεις Απειροστικού Λογισμού ΙΙ Πρόχειρες Σημειώσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Περιεχόμενα Υπακολουθίες και ακολουθίες Cuchy Σειρές πραγματικών αριθμών 3 3 Ομοιόμορφη συνέχεια 3 4 Ολοκλήρωμα

Διαβάστε περισσότερα

n = r J n,r J n,s = J

n = r J n,r J n,s = J Ανάλυση Fourer και Ολοκλήρωμα Lebesgue (2011 12) 4ο Φυλλάδιο Ασκήσεων Υποδείξεις 1. Εστω E [a, b] με µ (E) = 0. Δείξτε ότι το [a, b] \ E είναι πυκνό υποσύνολο του [a, b]. Υπόδειξη. Θεωρήστε ένα μη κενό

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Σύγκλιση και Συνέχεια Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Βάση και Διάσταση Διανυσματικού Χώρου

Βάση και Διάσταση Διανυσματικού Χώρου Βάση και Διάσταση Διανυσματικού Χώρου Έστω V ένας διανυσματικός χώρος επί του σώματος F. Ορισμός : Ένα υποσύνολο S του διανυσματικού χώρου V θα λέμε ότι είναι βάση του V αν ισχύει Α) Η θήκη του S παράγει

Διαβάστε περισσότερα