h(x, y) = card ({ 1 i n : x i y i

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "h(x, y) = card ({ 1 i n : x i y i"

Transcript

1 Κεφάλαιο 1 Μετρικοί χώροι 1.1 Ορισμός και παραδείγματα Ορισμός μετρική). Εστω X ένα μη κενό σύνολο. Μετρική στο X λέγεται κάθε συνάρτηση ρ : X X R με τις παρακάτω ιδιότητες: i) ρx, y) για κάθε x, y X και ρx, y) = αν και μόνον αν x = y η ρ είναι μη αρνητική). ii) ρx, y) = ρy, x) για κάθε x, y X συμμετρική ιδιότητα). iii) ρx, z) ρx, y) + ρy, z) για κάθε x, y, z X τριγωνική ανισότητα). Αν ρ είναι μια μετρική στο X τότε το ζεύγος X, ρ) λέγεται μετρικός χώρος. Τα στοιχεία του X θα λέγονται και σημεία. Παραδείγματα α) Η συνήθης μετρική στο R είναι η dx, y) = x y, x, y R. β) Η Ευκλείδεια μετρική στον R, τον χώρο των διατεταγμένων -άδων x = x 1,..., x ) πραγματικών αριθμών, ορίζεται ως εξής: αν x = x 1,..., x ) και y = y 1,..., y ) R, τότε ) 1/2 ρ 2 x, y) = x i y i ) 2. Πρέπει φυσικά να ελεγχθεί η τριγωνική ανισότητα βλέπε 1.3). γ) Κάθε μη κενό σύνολο X μπορεί να γίνει μετρικός χώρος κατά «τετριμμένο τρόπο»: Θεωρούμε τη συνάρτηση δ : X X R με { 1, x y δx, y) =, x = y

2 4 Μετρικοι χωροι ως μετρική ελέγξτε ότι ικανοποιεί τις i), ii) και iii) του ορισμού). Αυτή η μετρική λέγεται διακριτή μετρική στο X. δ) Στο ίδιο σύνολο X μπορούμε να ορίσουμε πολλές διαφορετικές μετρικές: Αν έχουμε μια συνάρτηση f : X R η οποία είναι 1-1, τότε αυτή επάγει μια μετρική d f στο X ως εξής: d f x, y) = fx) fy), x, y X. Εύκολα ελέγχεται ότι η d f είναι μετρική στο X. ε) Ο n-διάστατος κύβος του Haing. Θεωρούμε το σύνολο H n = {, 1} n = { x 1, x 2,..., x n ) xi = ή 1, i = 1,..., n }. Θεωρούμε την h : H n H n R, όπου hx, y) είναι το πλήθος των θέσεων στις οποίες διαφέρουν οι n-άδες x = x 1,..., x n ) και y = y 1,..., y n ), δηλαδή hx, y) = card { 1 i n : x i y i }). Αφήνεται σαν άσκηση για τον αναγνώστη να δείξει ότι η h είναι μετρική στο H n. Ο H n, h ) λέγεται κύβος του Haing και η h μετρική του Haing. Ορισμός σχετική μετρική). Εστω X, ρ) ένας μετρικός χώρος. οποιοδήποτε μη κενό υποσύνολο του X, η απεικόνιση ρ A : A A R με ρ A x, y) = ρx, y), x, y A Αν A είναι ο περιορισμός δηλαδή της ρ στο A A) είναι μετρική στο σύνολο A. Η μετρική ρ A είναι η σχετική μετρική που επάγεται από την ρ στο A. Για παράδειγμα, κάθε μη κενό υποσύνολο του R είναι μετρικός χώρος με τον περιορισμό της συνήθους μετρικής σε αυτό. Ορισμός διάμετρος). α) Εστω X, ρ) ένας μετρικός χώρος. Ο X, ρ) λέγεται φραγμένος αν υπάρχει C > ώστε για κάθε x, y X να ισχύει ρx, y) C. Ισοδύναμα, αν sup{ρx, y) : x, y X} <. Αν αυτό συμβαίνει, τότε η διάμετρος του X, ρ) είναι ο αριθμός diax) := sup{ρx, y) : x, y X}. β) Ενα μη κενό υποσύνολο A ενός μετρικού χώρου X, ρ) λέγεται φραγμένο αν ο μετρικός χώρος A, ρ A ) είναι φραγμένος. Ισοδύναμα, αν sup{ρx, y) : x, y A} <. Αν αυτό συμβαίνει, τότε η διάμετρος του A είναι ο αριθμός diaa) := sup{ρx, y) : x, y A}. Συμφωνούμε ότι το κενό σύνολο ως υποσύνολο οποιουδήποτε μετρικού χώρου) έχει μηδενική διάμετρο.

3 1.2 Χωροι με νορμα 5 Παραδείγματα α) Το R με τη συνήθη μετρική dx, y) = x y δεν είναι φραγμένος μετρικός χώρος. β) Το R με τη μετρική που επάγει η arctan : R π 2, π 2 ), δηλαδή ρx, y) = arctan x arctan y, x, y R είναι φραγμένος μετρικός χώρος και μάλιστα dia R, ρ) = π. Για την ανισότητα dia R, ρ) π παρατηρήστε ότι dia R, ρ) arctan n arctan n) για κάθε n N, άρα dia R, ρ) li arctan n arctan n) = π n 2 π ) = π. 2 Η άλλη ανισότητα προκύπτει εύκολα από το γεγονός ότι arctan t < π 2 εξηγήστε γιατί). γ) Το R με τη μετρική σx, y) = x y 1 + x y, x, y R για κάθε t R είναι επίσης φραγμένος μετρικός χώρος, αφού σx, y) < 1 για κάθε x, y R. Δείξτε ότι dia R, σ) = 1. δ) Αν δ είναι η διακριτή μετρική σε ένα σύνολο X, τότε ο μετρικός χώρος X, δ) είναι φραγμένος και, αν έχει περισσότερα από ένα σημεία, η διάμετρός του είναι ίση με 1). 1.2 Χώροι με νόρμα Πολλοί από τους κλασικούς μετρικούς χώρους που θα συναντήσουμε σε αυτό το μάθημα είναι ταυτόχρονα γραμμικοί χώροι. Επιπλέον, η μετρική τους συνδέεται φυσιολογικά με τη γραμμική τους δομή. Οπως λέμε, «επάγεται από μια νόρμα». Ορισμός νόρμα). Εστω X ένας πραγματικός γραμμικός χώρος. Νόρμα στον X είναι κάθε συνάρτηση : X R με τις εξής ιδιότητες: α) x για κάθε x X και x = αν και μόνον αν x = μη αρνητική). β) λx = λ x για κάθε λ R και κάθε x X θετικά ομογενής). γ) x + y x + y για κάθε x, y X τριγωνική ανισότητα). Αν είναι μια νόρμα στον X, τότε το ζεύγος X, ) λέγεται χώρος με νόρμα.

4 6 Μετρικοι χωροι Παρατηρήσεις α) Αν είναι μια νόρμα στον X, τότε η συνάρτηση d : X X R με dx, y) = x y, x, y X είναι μετρική η μετρική που επάγεται στον X από τη νόρμα). Πράγματι, dx, y) = x y για κάθε x, y X και ισχύει dx, y) = x y = αν και μόνο αν x y = δηλαδή αν και μόνο αν x = y. dy, x) = y x = 1)x y) = 1 x y = x y για κάθε x, y X. Αν x, y, z X τότε dx, z) = x z = x y) + y z) x y + y z = dx, y) + dy, z). Επιπλέον, η d είναι συμβατή με τη γραμμική δομή του χώρου: Η d είναι αναλλοίωτη ως προς μεταφορές, δηλαδή dx + z, y + z) = dx, y) για κάθε x, y, z X. Η d είναι ομογενής, δηλαδή dλx, λy) = λ dx, y) για κάθε x, y X και για κάθε λ R. Παρατηρήστε ότι οι τελευταίες δύο ιδιότητες δεν έχουν νόημα σε όλους τους μετρικούς χώρους, αφού στην διατύπωσή τους εμπλέκονται οι πράξεις της πρόσθεσης και του βαθμωτού πολλαπλασιασμού. Με άλλα λόγια, μια μετρική που επάγεται σε έναν γραμμικό χώρο από μια νόρμα έχει πρόσθετες ιδιότητες και ο μετρικός χώρος που προκύπτει έχει πολύ πιο πλούσια δομή από αυτήν του «γενικού» μετρικού χώρου. β) Χρήσιμο είναι να τονίσουμε ότι η κλάση των χώρων με νόρμα είναι γνήσια υποκλάση της κλάσης των μετρικών χώρων. Παρατηρήστε ότι κάθε γραμμικός χώρος X {} έχει άπειρα το πλήθος σημεία: αν x X, x, τότε ο υπόχωρος span{x}) = {λx : λ R} του X έχει άπειρα το πλήθος σημεία για την ακρίβεια, είναι ισοπληθικός με το R). Από την άλλη πλευρά, κάθε πεπερασμένο μη κενό σύνολο γίνεται μετρικός χώρος με τη διακριτή μετρική. Παρατηρήστε επίσης ότι σε κάθε μη μηδενικό) γραμμικό χώρο X μπορούμε να ορίσουμε μετρική η οποία δεν επάγεται από νόρμα. Για παράδειγμα, αν θεωρήσουμε στον X τη διακριτή μετρική δ, τότε δεν υπάρχει νόρμα : X R ώστε δx, y) = x y. Η απόδειξη αυτού του ισχυρισμού είναι απλή: αν υπήρχε τέτοια νόρμα, παίρνοντας x X, x, θα είχαμε n x = nx = δnx, ) = 1 για κάθε n N ή ισοδύναμα x = 1/n για κάθε n = 1, 2,..., που είναι προφανώς άτοπο. Στο υπόλοιπο αυτού του Κεφαλαίου ορίζουμε μερικούς κλασικούς χώρους με νόρμα.

5 1.2 Χωροι με νορμα Χώροι πεπερασμένης διάστασης 1. Στον R ορίζουμε την supreu νόρμα : R R ως εξής: αν x = x 1,..., x ) R τότε x := ax{ x i : i = 1,..., }. Αποδεικνύουμε μόνο την τριγωνική ανισότητα. Εχουμε x + y = x i + y i για κάποιον i {1,..., n}. Για το συγκεκριμένο i, x i + y i x i + y i x + y. Συνεπώς, x + y x + y. Ο χώρος R, ) συμβολίζεται με l. 2. Στον R ορίζουμε την 1-νόρμα 1 : R R με x 1 := x x = x i. Η τριγωνική ανισότητα είναι άμεση συνέπεια της τριγωνικής ανισότητας για την απόλυτη τιμή στο R. Ο χώρος R, 1 ) συμβολίζεται με l Στον R ορίζουμε την Ευκλείδεια νόρμα 2 : R R με ) 1/2 x 2 := x i 2. Ολες οι ιδιότητες της νόρμας είναι τετριμμένες εκτός από την τριγωνική ανισότητα για την απόδειξη της οποίας απαιτείται η ανισότητα Cauchy Schwarz. Πρόταση Ανισότητα Cauchy Schwarz). Εστω x 1,..., x και y 1,..., y πραγματικοί αριθμοί. Τότε, ισχύει η ανισότητα ) 1/2 ) 1/2 x i y i x i 2 y i 2.

6 8 Μετρικοι χωροι Απόδειξη. Η απόδειξη που παραθέτουμε οφείλεται στον Schwarz. Θέτουμε B = x iy i, A = x i 2 και C = y i 2. Πρέπει να δείξουμε ότι B 2 AC ή ισοδύναμα 2B) 2 4AC. Θεωρούμε τη συνάρτηση p : R R με pλ) := λ x 1 + y 1 ) λ x + y ) 2, η οποία μετά από πράξεις παίρνει τη μορφή pλ) = Aλ 2 + 2Bλ + C για κάθε λ R. Αν A = τότε x i = για i = 1,..., και προφανώς η αρχική ανισότητα ισχύει ως ισότητα). Υποθέτουμε λοιπόν ότι A > και τότε η pλ) είναι τριώνυμο το οποίο είναι μη αρνητικό για κάθε λ R. Από τη θεωρία του τριωνύμου πρέπει να ισχύει 2B) 2 4AC, το οποίο δίνει και τη ζητούμενη ανισότητα. Επιστρέφουμε τώρα στην απόδειξη της τριγωνικής ανισότητας για την Ευκλείδεια νόρμα. Εχουμε διαδοχικά x + y 2 2 = = x i + y i 2 x i x i y i + y i 2 x x i y i + y 2 2 x x 2 y 2 + y 2 2 όπου στην τελευταία ανισότητα χρησιμοποιήσαμε την ανισότητα Cauchy Schwarz. Ετσι, x + y 2 2 x 2 + y 2 ) 2 = x + y 2 x 2 + y 2. Ο χώρος R, 2 ) λέγεται Ευκλείδειος χώρος και συμβολίζεται με l Γενικότερα, στον R μπορούμε να θεωρήσουμε την p-νόρμα, 1 < p <, όπου x p := x i p. Αποδεικνύουμε και σ αυτή την περίπτωση μόνο την τριγωνική ανισότητα η οποία δεν είναι άμεση. Για την απόδειξη θα χρειασθούμε δύο ανισότητες.

7 1.2 Χωροι με νορμα 9 Πρόταση Ανισότητα Hölder). Αν x 1,..., x και y 1,..., y είναι πραγματικοί αριθμοί και p, q > 1 ώστε 1 1 p + 1 q = 1, τότε ισχύει η ανισότητα ) 1/q x i y i x i p y i q. Απόδειξη. Από το γεγονός ότι η συνάρτηση log :, + ) R είναι κοίλη, για κάθε x, y > έχουμε 1 log p xp + 1 ) q yq 1 p logxp ) + 1 q logyq ) ή ισοδύναμα 1 logxy) log p xp + 1 ) q yq. Από το γεγονός ότι η συνάρτηση log είναι γνησίως αύξουσα έπεται ότι ) xy xp p + yq q για κάθε x, y. Εστω τώρα x 1,..., x και y 1,..., y πραγματικοί αριθμοί. Μπορούμε να υποθέσουμε ότι x 1 p + + x p και y 1 q + + y q ) 1/q. Αλλιώς ισχύει x 1 = = x = ή y 1 = = y = και αυτό σημαίνει ότι x iy i = οπότε η ζητούμενη ανισότητα ισχύει κατά τετριμμένο τρόπο. Θεωρούμε τους αριθμούς και a i = b i = για τους οποίους ισχύει a i, b i και x i x 1 p + + x p, y i y 1 q + + y q ) 1/q, i = 1,..., i = 1,..., a p i = b q i = 1. Αν λοιπόν εφαρμόσουμε την ) για κάθε ζεύγος a i, b i έχουμε ότι 1 Οι p και q λέγονται συζυγείς εκθέτες. a i b i ap i p + bq i q

8 1 Μετρικοι χωροι και αθροίζοντας ως προς i = 1,..., βλέπουμε ότι a i b i 1 p a p i + 1 q b q i = 1 p + 1 q = 1. Ισοδύναμα, που δίνει το ζητούμενο: x i y i 1, x 1 p + + x p y 1 q + + y q ) 1/q x i y i x 1 p + + x p y 1 q + + y q ) 1/q. Σημείωση Παρατηρήστε ότι η ανισότητα Hölder αποτελεί γενίκευση της ανισότητας Cauchy Schwarz: η δεύτερη είναι ειδική περίπτωση της πρώτης για p = q = 2. Πρόταση Ανισότητα Minkowski). Αν x 1,..., x και y 1,..., y είναι πραγματικοί αριθμοί και p > 1, τότε ισχύει η ανισότητα x i + y i p x i p + y i p. Απόδειξη. Μπορούμε να υποθέσουμε ότι x i + y i p >, αλλιώς δεν έχουμε τίποτα να δείξουμε. Εχουμε διαδοχικά +) x i + y i p = x i + y i p 1 x i + y i x i + y i p 1 x i + x i + y i p 1 y i. Εφαρμόζοντας την ανισότητα Hölder στο άθροισμα x i + y i p 1 x i παίρνουμε ) 1/q x i + y i p 1 x i x i + y i qp 1) x i p όπου q ο συζυγής εκθέτης του p, δηλαδή 1 p + 1 q ανισότητα γράφεται = 1 ή qp 1) = p. Άρα, η προηγούμενη ) 1/q x i + y i p 1 x i x i + y i p x i p.

9 1.2 Χωροι με νορμα 11 Με ανάλογο τρόπο παίρνουμε ) 1/q x i + y i p 1 y i x i + y i p y i p. Τελικά, από την +) έχουμε ) 1/q ) 1/p x i + y i p x i + y i p x i p + y i p ή ) 1 1/q x i + y i p x i p + y i p. Το ζητούμενο προκύπτει από την 1 1 q = 1 p. Παρατηρήστε τώρα ότι η τριγωνική ανισότητα x + y p x p + y p για την p-νόρμα είναι ακριβώς η ανισότητα Minkowski όπου x = x 1,..., x ) και y = y 1,..., y )). Ο χώρος R, p ) συμβολίζεται με l p. 5. Αξίζει τον κόπο να δούμε τη μορφή που παίρνουν οι επαγόμενες μετρικές d p x, y) = x y p στον R. Αν x = x 1,..., x ) και y = y 1,..., y ) R, τότε d p x, y) = x i y i p αν 1 p < και d x, y) = ax{ x i y i : i = 1,..., } Χώροι ακολουθιών 1. Ο χώρος l l N) των φραγμένων ακολουθιών x : N R, δηλαδή l = {x : N R υπάρχει M Mx) > : για κάθε n N ισχύει xn) M} είναι πραγματικός γραμμικός χώρος με τις κατά σημείο πράξεις. Στον l ορίζουμε την supreu νόρμα : l R με Αποδεικνύουμε ότι η είναι νόρμα: x := sup{ xn) : n = 1, 2,...}.

10 12 Μετρικοι χωροι α) Είναι x για κάθε x l. Αν x =, τότε xn) για κάθε n N, δηλαδή xn) = για n = 1, 2,.... Συνεπώς, x =. β) Ισχύει λx = sup n λxn) = λ sup n xn) = λ x, για κάθε λ R. γ) Εστω x, y l και n N. Τότε, xn) + yn) xn) + yn) x + y. Παίρνοντας supreu ως προς n συμπεραίνουμε ότι x + y = sup xn) + yn) x + y. n 1 2. Ο χώρος c c N) των μηδενικών ακολουθιών, δηλαδή { } c = x : N R li xn) = n είναι επίσης γραμμικός χώρος και μάλιστα γραμμικός υπόχωρος του l αφού κάθε συγκλίνουσα ακολουθία είναι φραγμένη) με τις κατά σημείο πράξεις. Σε αυτόν θεωρούμε την supreu νόρμα που κληρονομεί από τον l. 3. Ο χώρος l 1 l 1 N) των 1-αθροίσιμων ακολουθιών 2 δηλαδή, { } l 1 = x : N R xn) < + n=1 είναι γραμμικός υπόχωρος του c. Πράγματι, γνωρίζουμε ότι αν li xn) =. Ορίζουμε τη νόρμα 1 : l 1 R με n x 1 := xn). n=1 n=1 xn) < + τότε 4. Γενικότερα, αν 1 p <, ο χώρος l p l p N) των p-αθροίσιμων ακολουθιών αποτελείται από όλες τις ακολουθίες x : N R για τις οποίες ισχύει n=1 xn) p < +. Στον l p ορίζουμε την p νόρμα x p := xn) p. n=1 Χρησιμοποιώντας την ανισότητα Minkowski για πεπερασμένα αθροίσματα και περνώντας στο όριο, αποδείξτε ότι η p ικανοποιεί την τριγωνική ανισότητα οι άλλες ιδιότητες της νόρμας ελέγχονται εύκολα). 2 Μιλάμε λοιπόν για τις ακολουθίες των οποίων η σειρά είναι απολύτως συγκλίνουσα.

11 1.2 Χωροι με νορμα Θεωρούμε τον χώρο c c N) των τελικά μηδενικών ακολουθιών. Δηλαδή, x c αν και μόνον αν υπάρχει n n x) N ώστε xn) = για κάθε n n. Σε αυτό το χώρο μπορούμε να ορίσουμε οποιαδήποτε από τις p νόρμες, 1 p Χώροι συναρτήσεων 1. Ο χώρος C[, 1]) των συνεχών συναρτήσεων επί του [, 1] είναι το σύνολο C[, 1]) = {f : [, 1] R f συνεχής} το οποίο είναι γραμμικός χώρος με τις κατά σημείο πράξεις. Στον C[, 1]) ορίζουμε την : C[, 1]) R, με f = sup{ ft) : t [, 1]}. Παρατηρήστε ότι το sup όντως υπάρχει, αφού η f : [, 1] R είναι συνεχής, και μάλιστα είναι ax διότι κάθε συνεχής συνάρτηση, που είναι ορισμένη σε κλειστό διάστημα, παίρνει μέγιστη τιμή. Ελέγξτε ότι η είναι νόρμα. 2. Στον C[, 1]) μπορούμε επίσης να θεωρήσουμε την 1-νόρμα f 1 := 1 και γενικότερα, για κάθε 1 p <, την p νόρμα ft) dt 1 1/p f p := ft) dt) p. Για να δείξουμε ότι η p ικανοποιεί την τριγωνική ανισότητα, αρκεί να παρατηρήσουμε ότι οι ανισότητες Hölder και Minkowski ισχύουν και για ολοκληρώσιμες συναρτήσεις. Ανισότητα Hölder για συναρτήσεις. Αν f, g : [, 1] R είναι συνεχείς συναρτήσεις, 1 < p < και q είναι ο συζυγής εκθέτης του p δηλαδή, 1 p + 1 q = 1), τότε 1 1 ft)gt) dt 1 1/q ft) p dt gt) dt) q. Η απόδειξη της ανισότητας Hölder είναι εντελώς ανάλογη με αυτήν της αντίστοιχης ανισότητας για πεπερασμένες ακολουθίες. Χρησιμοποιήστε το γεγονός ότι ) ft)gt) 1 p ft) p + 1 q gt) q

12 14 Μετρικοι χωροι για κάθε t [, 1]. Αν κάνουμε την πρόσθετη υπόθεση ότι 1 ft) p dt = 1 gt) q dt = 1, τότε παίρνοντας ολοκληρώματα στην ) έχουμε 1 ft)gt) dt 1 p 1 = 1 p + 1 q = 1 ft) p dt + 1 q 1 gt) q dt = 1 1 1/q ft) p dt gt) dt) q. Στη γενική περίπτωση, «κανονικοποιούμε» τις f και g, θεωρώντας τις f 1 := f/ f p και g 1 := g/ g q. Κατόπιν, χρησιμοποιώντας την ανισότητα Hölder για συναρτήσεις και ακολουθώντας βήμα προς βήμα την απόδειξη της ανισότητας Minkowski για πεπερασμένες ακολουθίες, μπορούμε να δείξουμε την τριγωνική ανισότητα για την p : Ανισότητα Minkowski για συναρτήσεις. συναρτήσεις και 1 p <, τότε 1 1/p 1 ft) + gt) dt) p Αν f, g : [, 1] R είναι συνεχείς 1/p 1 1/p ft) dt) p + gt) dt) p. 3. Στον C 1 [, 1]), τον χώρο των συναρτήσεων f : [, 1] R που έχουν συνεχή παράγωγο, μπορούμε να θεωρήσουμε τη νόρμα Παρατηρήστε ότι η f := f + f. f := f δεν είναι νόρμα και δεν επάγει μετρική) στον C 1 [, 1]). 4. Αξίζει τον κόπο να δούμε τη μορφή που παίρνουν οι επαγόμενες μετρικές d p f, g) = f g p στον C[, 1]). Αν f, g : [, 1] R είναι συνεχείς συναρτήσεις, τότε 1 d p f, g) = ft) gt) p dt αν 1 p < και d f, g) = ax{ ft) gt) : t [, 1]}.

Πραγματική Ανάλυση Πέτρος Βαλέττας Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών

Πραγματική Ανάλυση Πέτρος Βαλέττας Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Πραγματική Ανάλυση Πέτρος Βαλέττας Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών 2010-11 Περιεχόμενα I Μετρικοί χώροι 1 1 Μετρικοί χώροι 3 1.1 Ορισμός και παραδείγματα........................... 3 1.2 Χώροι με

Διαβάστε περισσότερα

Πραγµατική Ανάλυση. Πέτρος Βαλέττας

Πραγµατική Ανάλυση. Πέτρος Βαλέττας Πραγµατική Ανάλυση Πέτρος Βαλέττας Τµήµα Μαθηµατικών Πανεπιστήµιο Αθηνών Αθήνα 2015 Περιεχόµενα I Μετρικοί χώροι 1 1 Μετρικοί χώροι 3 1.1 Ορισµός και παραδείγµατα.......................... 3 1.2 Χώροι

Διαβάστε περισσότερα

B = F i. (X \ F i ) = i I

B = F i. (X \ F i ) = i I Κεφάλαιο 3 Τοπολογία μετρικών χώρων Ομάδα Α 3.1. Εστω (X, ρ) μετρικός χώρος και F, G υποσύνολα του X. Αν το F είναι κλειστό και το G είναι ανοικτό, δείξτε ότι το F \ G είναι κλειστό και το G \ F είναι

Διαβάστε περισσότερα

f(f 1 (B)) f(f 1 (B)) B. X \ (f 1 (C)) = X \ f 1 (C) = f 1 (Y \ C) X \ (f 1 (C)) f 1 (Y \ C). f 1 (Y \ C) = f 1 (Y \ C ) = X \ f 1 (C ).

f(f 1 (B)) f(f 1 (B)) B. X \ (f 1 (C)) = X \ f 1 (C) = f 1 (Y \ C) X \ (f 1 (C)) f 1 (Y \ C). f 1 (Y \ C) = f 1 (Y \ C ) = X \ f 1 (C ). Κεφάλαιο 4 Συναρτήσεις μεταξύ μετρικών χώρων 4.1 Συνεχείς συναρτήσεις Εστω (X, ρ) και (Y, σ) δύο μετρικοί χώροι. Στην 2.2 δώσαμε τον ορισμό της συνέχειας μιας συνάρτησης f : X Y σε κάποιο σημείο x 0 X:

Διαβάστε περισσότερα

1 + t + s t. 1 + t + s

1 + t + s t. 1 + t + s Κεφάλαιο 1 Μετρικοί χώροι Ομάδα Α 1.1. Εστω (X, ) χώρος με νόρμα. Δείξτε ότι η νόρμα είναι άρτια συνάρτηση και ικανοποιεί την ανισότητα x y x y για κάθε x, y X. Υπόδειξη. Για κάθε x X έχουμε x = ( 1)x

Διαβάστε περισσότερα

j=1 x n (i) x s (i) < ε.

j=1 x n (i) x s (i) < ε. Κεφάλαιο 5 Πληρότητα 5.1 Πλήρεις μετρικοί χώροι Ορισμός 5.1.1 (πλήρης μετρικός χώρος). Ενας μετρικός χώρος (X, ρ) λέγεται πλήρης (complete) αν κάθε ρ βασική ακολουθία (x n ) στον X είναι ρ συγκλίνουσα.

Διαβάστε περισσότερα

i=1 i=1 i=1 (x i 1, x i +1) (x 1 1, x k +1),

i=1 i=1 i=1 (x i 1, x i +1) (x 1 1, x k +1), Κεφάλαιο 6 Συμπάγεια 6.1 Ορισμός της συμπάγειας Οπως θα φανεί στην αμέσως επόμενη παράγραφο, υπάρχουν διάφοροι τρόποι με τους οποίους μπορεί κανείς να εισάγει την έννοια του συμπαγούς μετρικού χώρου. Ο

Διαβάστε περισσότερα

EukleÐdeiec emfuteôseic: ˆnw frˆgmata

EukleÐdeiec emfuteôseic: ˆnw frˆgmata EukleÐdeiec emfuteôseic: ˆnw frˆgmata Εστω f : X Y μια εμφύτευση του μετρικού χώρου (X, ρ) στο χώρο με νόρμα (Y, ). Η παραμόρφωση της f ορίζεται ως εξής: f(x) f(y) ρ(x, y) dist(f) = sup sup x y ρ(x, y)

Διαβάστε περισσότερα

f(x) = lim f n (t) = d(t, x n ) d(t, x) = f(t)

f(x) = lim f n (t) = d(t, x n ) d(t, x) = f(t) Κεφάλαιο 7 Ακολουθίες και σειρές συναρτήσεων 7.1 Ακολουθίες συναρτήσεων: κατά σημείο σύγκλιση Ορισμός 7.1.1. Εστω X σύνολο, (Y, ρ) μετρικός χώρος και f n, f : X Y (n = 1, 2,...). Λέμε ότι η ακολουθία συναρτήσεων

Διαβάστε περισσότερα

1 Χώροι πηλίκα { } x = y x y Y. Με τις πράξεις της πρόσθεσης και του βαθμωτού πολλαπλασιασμού που ορίζονται με τον

1 Χώροι πηλίκα { } x = y x y Y. Με τις πράξεις της πρόσθεσης και του βαθμωτού πολλαπλασιασμού που ορίζονται με τον Χώροι πηλίκα Έστω διανυσματικός χώρος και Y διανυσματικός υπόχωρος του. Για κάθε θεωρούμε το σύμπλοκο σχετικά με τον Y, = + y y Y = + Y ορ { : } δηλαδή το είναι η παράλληλη μεταφορά του Y κατά το διάνυσμα.

Διαβάστε περισσότερα

L 2 -σύγκλιση σειρών Fourier

L 2 -σύγκλιση σειρών Fourier Κεφάλαιο 7 L -σύγκλιση σειρών Fourier 7.1 Χώροι Hilbert 7.1.1 Χώροι µε εσωτερικό γινόµενο και χώροι Hilbert Ορισµός 7.1.1. Εστω X γραµµικός χώρος πάνω από το K. Μια συνάρτηση, : X X K λέγεται εσωτερικό

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: L 2 -σύγκλιση σειρών Fourier. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: L 2 -σύγκλιση σειρών Fourier. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: L -σύγκλιση σειρών Fourier Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Το Θεώρημα Stone - Weierstrass

Το Θεώρημα Stone - Weierstrass Το Θεώρημα Stone - Weierstrass Θεώρημα 1 Έστω ¹ X συμπαγής χώρος Hausdorff και έστω C R (X η πραγματική άλγεβρα όλων των συνεχών συναρτήσεων f : X R. Έστω ότι ένα υποσύνολο A C R (X (1 το A είναι υπάλγεβρα

Διαβάστε περισσότερα

5 Σύγκλιση σε τοπολογικούς χώρους

5 Σύγκλιση σε τοπολογικούς χώρους 121 5 Σύγκλιση σε τοπολογικούς χώρους Στο κεφάλαιο αυτό πρόκειται να μελετήσουμε την έννοια της σύγκλισης σε γενικούς τοπολογικούς χώρους, πέραν των μετρικών χώρων. Όπως έχουμε ήδη διαπιστώσει ( πρβλ.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 5 Δεκεμβρίου 2012)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 5 Δεκεμβρίου 2012) ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 5 Δεκεμβρίου 2012) Τμήμα Θ. Αποστολάτου & Π. Ιωάννου 1 Σειρές O Ζήνων ο Ελεάτης (490-430 π.χ.) στη προσπάθειά του να υποστηρίξει

Διαβάστε περισσότερα

Ασκήσεις Απειροστικού Λογισμού ΙΙ Πρόχειρες Σημειώσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Περιεχόμενα Υπακολουθίες και ακολουθίες Cuchy Σειρές πραγματικών αριθμών 3 3 Ομοιόμορφη συνέχεια 3 4 Ολοκλήρωμα

Διαβάστε περισσότερα

R ισούται με το μήκος του. ( πρβλ. την ιστορική σημείωση 3.27 στο τέλος

R ισούται με το μήκος του. ( πρβλ. την ιστορική σημείωση 3.27 στο τέλος 73 3. Συμπαγείς χώροι 3. Συμπαγείς χώροι και βασικές ιδιότητες Οι συμπαγείς χώροι είναι μια από τις πιο σημαντικές κλάσεις τοπολογικών χώρων. Η κλάση των συμπαγών χώρων περιλαμβάνει τα κλειστά διαστήματα,b

Διαβάστε περισσότερα

M. J. Lighthill. g(y) = f(x) e 2πixy dx, (1) d N. g (p) (y) =

M. J. Lighthill. g(y) = f(x) e 2πixy dx, (1) d N. g (p) (y) = Εισαγωγή στην ανάλυση Fourier και τις γενικευμένες συναρτήσεις * M. J. Lighthill μετάφραση: Γ. Ευθυβουλίδης ΚΕΦΑΛΑΙΟ 2 Η ΘΕΩΡΙΑ ΤΩΝ ΓΕΝΙΚΕΥΜΕΝΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΚΑΙ ΤΩΝ ΜΕΤΑΣΧΗΜΑΤΙΣΜΩΝ ΤΟΥΣ FOURIER 2.1. Καλές

Διαβάστε περισσότερα

ι3.4 Παραδείγματα T ) έχει την ιδιότητα Heine-Borel, αν κάθε κλειστό και φραγμένο υποσύνολό του είναι συμπαγές.

ι3.4 Παραδείγματα T ) έχει την ιδιότητα Heine-Borel, αν κάθε κλειστό και φραγμένο υποσύνολό του είναι συμπαγές. 6 ι3.4 Παραδείγματα Στην παράγραφο αυτή θα μελετήσουμε κάποια σημαντικά παραδείγματα, για τις εφαρμογές, χώρων συναρτήσεων οι οποίοι είναι τοπικά κυρτοί και μετρικοποιήσιμοι αλλά η τοπολογία τους δεν επάγεται

Διαβάστε περισσότερα

f(t) = (1 t)a + tb. f(n) =

f(t) = (1 t)a + tb. f(n) = Παράρτημα Αʹ Αριθμήσιμα και υπεραριθμήσιμα σύνολα Αʹ1 Ισοπληθικά σύνολα Ορισμός Αʹ11 (ισοπληθικότητα) Εστω A, B δύο μη κενά σύνολα Τα A, B λέγονται ισοπληθικά αν υπάρχει μια συνάρτηση f : A B, η οποία

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. ΔΕΚΑΤΟ ΕΚΤΟ ΜΑΘΗΜΑ Τώρα θα μας απασχολήσουν τρία ερωτήματα σε σχέση με την κατά σημείο σύγκλιση ακολουθίας συναρτήσεων. Και για τα τρία ερωτήματα θα υποθέσουμε ότι f f στο

Διαβάστε περισσότερα

1 1 + nx. f n (x) = nx 1 + n 2 x 2. x2n 1 + x 2n

1 1 + nx. f n (x) = nx 1 + n 2 x 2. x2n 1 + x 2n Οι ασκήσεις αυτές έχουν σκοπό να βοηθήσουν τους φοιτητές στην μελέτη τους για το μάθημα «Ανάλυση ΙΙ» του Τμήματος Μαθηματικών του Πανεπιστημίου Αιγαίου. Συνιστούμε στους φοιτητές να επεξεργαστούν αυτές

Διαβάστε περισσότερα

(s n (f)) g = s n (f g) = f (s n (g)). s n (f) g = (f D n ) g = f (D n g) = f (g D n ) = f s n (g). K n (x)g δ (x) dx. K n (x) dx.

(s n (f)) g = s n (f g) = f (s n (g)). s n (f) g = (f D n ) g = f (D n g) = f (g D n ) = f s n (g). K n (x)g δ (x) dx. K n (x) dx. Ανάλυση Fourier και Ολοκλήρωμα Lebesgue (11 1) 3ο Φυλλάδιο Ασκήσεων Υποδείξεις 1. Εστω f, g : T C ολοκληρώσιμες συναρτήσεις. Δείξτε ότι, για κάθε n N, (s n (f)) g = s n (f g) = f (s n (g)). Υπόδειξη. Θυμηθείτε

Διαβάστε περισσότερα

Y είναι τοπολογία. Αυτή περιέχει το και

Y είναι τοπολογία. Αυτή περιέχει το και 8.3 Σχετική τοπολογία και υπόχωροι. Ορισμός.37. Έστω X, τ.χ. Αν U : U X, τότε η οικογένεια είναι μια τοπολογία στο σύνολο, η οποία ονομάζεται η σχετική ( ή επαγόμενη ) τοπολογία του. Ο χώρος, ονομάζεται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάμε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων Αυτές συνδέονται μεταξύ τους με την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 14, 30 Απριλίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Χώροι με εσωτερικό γινόμενο (Ευκλείδειοι χώροι) 2. Βέλτιστες προσεγγίσεις

Διαβάστε περισσότερα

Πραγµατική Ανάλυση ( ) Ασκήσεις - Κεφάλαιο 3

Πραγµατική Ανάλυση ( ) Ασκήσεις - Κεφάλαιο 3 Πραγµατική Ανάλυση (2015-16) Ασκήσεις - Κεφάλαιο 3 Οµάδα Α 1. Εστω (X, ρ) µετρικός χώρος και F, G υποσύνολα του X. Αν το F είναι κλειστό και το G είναι ανοικτό, δείξτε ότι το F \ G είναι κλειστό και το

Διαβάστε περισσότερα

Απειροσ τικός Λογισμός ΙΙ Πρόχειρες Σημειώσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών

Απειροσ τικός Λογισμός ΙΙ Πρόχειρες Σημειώσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Απειροστικός Λογισμός ΙΙ Πρόχειρες Σημειώσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών - Περιεχόμενα Υπακολουθίες και βασικές ακολουθίες. Υπακολουθίες. Θεώρημα Bolzno Weierstrss.αʹ Απόδειξη με χρήση της

Διαβάστε περισσότερα

Το φασματικό Θεώρημα

Το φασματικό Θεώρημα Το φασματικό Θεώρημα 1 Το φάσμα ενός τελεστή Λήμμα 1.1 Έστω A B(H) φυσιολογικός τελεστής. Αν x H είναι ιδιοδιάνυσμα του A με ιδιοτιμή λ, τότε A x = λx. Έπεται ότι οι ιδιόχωροι ενός φυσιολογικού τελεστή

Διαβάστε περισσότερα

B = {x A : f(x) = 1}.

B = {x A : f(x) = 1}. Θεωρία Συνόλων Χειμερινό Εξάμηνο 016 017 Λύσεις 1. Χρησιμοποιώντας την Αρχή του Περιστερώνα για τους φυσικούς αριθμούς, δείξτε ότι για κάθε πεπερασμένο σύνολο A και για κάθε f : A A, αν η f είναι 1-1 τότε

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. 1 ΤΡΙΑΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ Άσκηση 11.1.2. (i) Είναι η συνάρτηση d : R R R με τύπο d(x, y) = (x y) 2 μετρική στο R; (ii) Ίδια ερώτηση για την d : R R R με τύπο d(x, y) = x y

Διαβάστε περισσότερα

f 1 (A) = {f 1 (A i ), A i A}

f 1 (A) = {f 1 (A i ), A i A} ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΕΜ Χειμερινό εξάμηνο 2017-18 ΜΕΜ231-ΤΟΠΟΛΟΓΙΑ, 11Η ΔΙΑΛΕΞΗ ΣΥΜΠΑΓΕΙΑ ΔΙΔΑΣΚΩΝ: Ι.Δ. ΠΛΑΤΗΣ Μετά τη συνεκτικότητα, όπου είδαμε κάπως αναλυτικά την ιδιότητα εκείνη που επιτρέπει σύνολα

Διαβάστε περισσότερα

Κ X κυρτό σύνολο. Ένα σημείο x Κ

Κ X κυρτό σύνολο. Ένα σημείο x Κ 8 5 Το θεώρημα Kre-Mlm Βασικές ιδιότητες συμπαγών και κυρτών συνόλων. Ορισμός 5. Έστω X διανυσματικός χώρος και Κ X κυρτό σύνολο. Ένα σημείο x Κ λέγεται ακραίο ( extreme ) σημείο του Κ, αν δεν είναι γνήσιος

Διαβάστε περισσότερα

6 Συνεκτικοί τοπολογικοί χώροι

6 Συνεκτικοί τοπολογικοί χώροι 36 6 Συνεκτικοί τοπολογικοί χώροι Έστω R διάστημα και f : R συνεχής συνάρτηση τότε, όπως γνωρίζουμε από τον Απειροστικό Λογισμό, η f έχει την ιδιότητα της ενδιάμεσου τιμής. Η ιδιότητα αυτή δεν εξαρτάται

Διαβάστε περισσότερα

Το φασματικό Θεώρημα

Το φασματικό Θεώρημα Το φασματικό Θεώρημα 1 Το φάσμα ενός τελεστή Λήμμα 1.1 Έστω A B(H) φυσιολογικός τελεστής. Αν x H είναι ιδιοδιάνυσμα του A με ιδιοτιμή λ, τότε A x = λx. Έπεται ότι οι ιδιόχωροι ενός φυσιολογικού τελεστή

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος.

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii9/laii9html Παρασκευή 9 Μαρτίου 9 Ασκηση Εστω (E,,

Διαβάστε περισσότερα

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014 ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014 Περιεχόμενα 1 Εισαγωγή 2 2 Μεγιστικός τελέστης στην μπάλα 2 2.1 Βασικό θεώρημα........................ 2 2.2 Γενική περίπτωση μπάλας.................. 6 2.2.1 Στο

Διαβάστε περισσότερα

n = r J n,r J n,s = J

n = r J n,r J n,s = J Ανάλυση Fourer και Ολοκλήρωμα Lebesgue (2011 12) 4ο Φυλλάδιο Ασκήσεων Υποδείξεις 1. Εστω E [a, b] με µ (E) = 0. Δείξτε ότι το [a, b] \ E είναι πυκνό υποσύνολο του [a, b]. Υπόδειξη. Θεωρήστε ένα μη κενό

Διαβάστε περισσότερα

3. Γραμμικά Συστήματα

3. Γραμμικά Συστήματα 3. Γραμμικά Συστήματα Ασκήσεις 3. Αποδείξτε ότι το γινόμενο δύο άνω τριγωνικών πινάκων είναι άνω τριγωνικός πίνακας. Επίσης, στην περίπτωση που ένας άνω τριγωνικός πίνακας U 2 R n;n είναι αντιστρέψιμος,

Διαβάστε περισσότερα

Μέτρο και ολοκλήρωμα Lebesgue: Εγχειρίδιο χρήσης.

Μέτρο και ολοκλήρωμα Lebesgue: Εγχειρίδιο χρήσης. Κεφάλαιο 1 Μέτρο και ολοκλήρωμα Lebesgue: Εγχειρίδιο χρήσης. Κύριες βιβλιογραφικές αναφορές για αυτό το Κεφάλαιο είναι οι Stein and Shakarchi 2009 και Wheeden 2015. 1.1 Μέτρο Lebesgue στο R Αν E R το μέτρο

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ Μ. Παπαδημητράκης. 1 ΔΕΚΑΤΟ ΜΑΘΗΜΑ Συνεχίζουμε την λύση της άσκησης 6.3.. Μέχρι τώρα έχουμε αποδείξει ότι για κάθε διαμέριση του [, b] υπάρχει μια αντίστοιχη διαμέριση του [, B] ώστε να ισχύουν

Διαβάστε περισσότερα

Παράρτηµα Β. Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης [ ) ( )

Παράρτηµα Β. Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης [ ) ( ) Παράρτηµα Β Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης Β1 Χώροι Baach Βάσεις Schauder Στο εξής συµβολίζουµε µε Z,, γραµµικούς (διανυσµατικούς) χώρους πάνω απ το ίδιο σώµα K = ή και γράφουµε απλά

Διαβάστε περισσότερα

Λύσεις στην Συναρτησιακή Ανάλυση Κανονική εξεταστική 2009 (μπορεί να περιέχουν λάθη)

Λύσεις στην Συναρτησιακή Ανάλυση Κανονική εξεταστική 2009 (μπορεί να περιέχουν λάθη) Λύσεις στην Συναρτησιακή Ανάλυση Κανονική εξεταστική 009 (μπορεί να περιέχουν λάθη) (L) Θέμα 1 α) i Ένα σύνολο A X λέγεται γραμμικά ανεξάρτητο αν κάθε πεπερασμένο υποσύνολό του είναι γραμμικά ανεξάρτητο.

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΕΝΑΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΕΝΑΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΕΝΑΤΟ ΜΑΘΗΜΑ, 5-10-13 Μ. Παπαδημητράκης. 1 Τώρα θα μιλήσουμε για την έννοια της περιοχής, η οποία έχει κεντρικό ρόλο στη μελέτη της έννοιας του ορίου (ακολουθίας και συνάρτησης). Αν > 0, ονομάζουμε

Διαβάστε περισσότερα

ΑΚΟΛΟΥΘΙΕΣ ΣΕΙΡΕΣ. Ορισμός 1. Μια 1 1 (ένα προς ένα) συνάρτηση με πεδίο ορισμού το και πεδίο τιμών ένα υποσύνολο X του, δηλαδή μία 1 1 συνάρτηση

ΑΚΟΛΟΥΘΙΕΣ ΣΕΙΡΕΣ. Ορισμός 1. Μια 1 1 (ένα προς ένα) συνάρτηση με πεδίο ορισμού το και πεδίο τιμών ένα υποσύνολο X του, δηλαδή μία 1 1 συνάρτηση ΑΚΟΛΟΥΘΙΕΣ ΣΕΙΡΕΣ 1. ΑΚΟΛΟΥΘΙΕΣ Ορισμός 1. Μια 1 1 (ένα προς ένα) συνάρτηση με πεδίο ορισμού το και πεδίο τιμών ένα υποσύνολο X του, δηλαδή μία 1 1 συνάρτηση : 1 λέγεται ακολουθία πραγματικών αριθμών ή

Διαβάστε περισσότερα

(β ) ((X c Y ) (X c Y c )) c

(β ) ((X c Y ) (X c Y c )) c Λύσεις Ασκήσεων στα Θεμέλια των Μαθηματικών II Ρωμανός-Διογένης Μαλικιώσης Παρασκευή, 29 Οκτωβρίου 2010 Άσκηση 1. Απλοποιήστε τις ακόλουθες εκφράσεις (α ) (D c F ) c (D F ) (β ) ((X c Y ) (X c Y c )) c

Διαβάστε περισσότερα

4 Ασθενείς τοπολογίες σε χώρους με νόρμα. 4.1 θεωρήματα Mazur, Alaoglou, Goldstine.

4 Ασθενείς τοπολογίες σε χώρους με νόρμα. 4.1 θεωρήματα Mazur, Alaoglou, Goldstine. 8 Έστω (, ) 4 Ασθενείς τοπολογίες σε χώρους με νόρμα 4. θεωρήματα Mazur, Alaoglou, Goldste. χώρος με νόρμα. Υπενθυμίζουμε ότι η ασθενής τοπολογία T του έχει ως βάση ( ανοικτών ) περιοχών του όλα τα σύνολα

Διαβάστε περισσότερα

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( )

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( ) Συνεχείς συναρτήσεις πολλών µεταβλητών 7 Η Ευκλείδεια απόσταση που ορίσαµε στον R επιτρέπει ( εκτός από τον ορισµό των ορίων συναρτήσεων και ακολουθιών και τον ορισµό της συνέχειας συναρτήσεων της µορφής

Διαβάστε περισσότερα

Παναγιώτης Ψαρράκος Αν. Καθηγητής

Παναγιώτης Ψαρράκος Αν. Καθηγητής Ανάλυση Πινάκων Κεφάλαιο 1: Νόρμες Διανυσμάτων και Πινάκων Παναγιώτης Ψαρράκος Αν. Καθηγητής Δ.Π.Μ.Σ. Εφαρμοσμένες Μαθηματικές Επιστήμες Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebrai/lai2018/lai2018.html Παρασκευή 23 Νοεµβρίου

Διαβάστε περισσότερα

V x, y W x, y, y συνιστούν προφανώς ένα ανοικτό

V x, y W x, y, y συνιστούν προφανώς ένα ανοικτό 81 3.2 Το θεώρημα Tychooff. Στην παράγραφο αυτή θα ασχοληθούμε με το θεώρημα Tychooff, δηλαδή ότι ένα αυθαίρετο καρτεσιανό γινόμενο συμπαγών χώρων είναι, με την τοπολογία γινόμενο, συμπαγής χώρος. Το θεώρημα

Διαβάστε περισσότερα

Κεφάλαιο 12. Σειρές Ορισμός και Παραδείγματα Ορισμός

Κεφάλαιο 12. Σειρές Ορισμός και Παραδείγματα Ορισμός Κεφάλαιο 2 Σειρές Στο κεφάλαιο αυτό θα εισάγουμε την έννοια της σειράς, δηλαδή του αθροίσματος ενός άπειρου πλήθους πραγματικών αριθμών. Στην Παράγραφο 2. θα ορίσουμε, καταρχάς, τις σειρές, και θα δούμε

Διαβάστε περισσότερα

Όταν δεν υπάρχει κίνδυνος σύγχυσης γράφουμε συνήθως ο τοπολογικός χώρος X και χρησιμοποιούμε την σύντμηση τ.χ. (= τοπολογικός χώρος).

Όταν δεν υπάρχει κίνδυνος σύγχυσης γράφουμε συνήθως ο τοπολογικός χώρος X και χρησιμοποιούμε την σύντμηση τ.χ. (= τοπολογικός χώρος). 4 Τοπολογικοί χώροι. Στοιχειώδεις έννοιες της τοπολογίας Στην παράγραφο αυτή εισάγουμε τις βασικές έννοιες της τοπολογίας, δηλαδή αυτές του ανοικτού και κλειστού συνόλου, της κλειστότητας και του εσωτερικού

Διαβάστε περισσότερα

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 07, 2 Μαρτίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Συμμετρικοί και θετικά ορισμένοι πίνακες. Η ανάλυση Cholesky 2. Νόρμες

Διαβάστε περισσότερα

Eisagwg sth Sunarthsiak Anˆlush. Shmei seic

Eisagwg sth Sunarthsiak Anˆlush. Shmei seic Eisagwg sth Sunarthsiak Anˆlush Shmei seic Tm ma Majhmatik n Panepist mio Ajhn n Aj na, 2014 Perieqìmena I Basik jewrða 3 1 Χώροι με νόρμα 1 1.1 Γραμμικοί χώροι.............................. 1 1.2 Χώροι

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. 1 ΔΩΔΕΚΑΤΟ ΜΑΘΗΜΑ Έστω συνάρτηση f ορισμένη σε διάστημα I. Λέμε ότι η F είναι αντιπαράγωγος της f στο I αν ισχύει F = f στο I. ΠΡΟΤΑΣΗ. Αν η F είναι αντιπαράγωγος της f στο

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις Ασκήσεις 5 Βασικά σημεία Ιδιότητες ιδιόχωρων: Έστω,, Ισχύουν τα εξής Ασκήσεις Διαγωνίσιμες Γραμμικές Απεικονίσεις κάποιες διακεκριμένες ιδιοτιμές της γραμμικής απεικόνισης : V V, όπου o Αν v v 0, όπου

Διαβάστε περισσότερα

x \ B T X. A = {(x, y) R 2 : x 0, y 0}

x \ B T X. A = {(x, y) R 2 : x 0, y 0} ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΕΜ Χειμερινό εξάμηνο 2017-18 ΜΕΜ231-ΤΟΠΟΛΟΓΙΑ, 6Η ΔΙΑΛΕΞΗ ΚΛΕΙΣΤΑ ΣΥΝΟΛΑ, ΕΣΩΤΕΡΙΚΑ ΚΑΙ ΚΛΕΙΣΤΟΤΗΤΕΣ, ΟΡΙΑΚΑ ΣΥΝΟΛΑ, ΧΩΡΟΙ HAUSDORFF ΔΙΔΑΣΚΩΝ: Ι.Δ. ΠΛΑΤΗΣ 1. Κλειστα συνολα Εχοντας

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

> ln 1 + ln ln n = ln(1 2 3 n) = ln(n!).

> ln 1 + ln ln n = ln(1 2 3 n) = ln(n!). η Διάλεξη: Άρρητοι αριθμοί Το σύνολο Q των ρητών αριθμών είναι το Q = { m n : m Z, n N}. αριθμός που δεν είναι ρητός λέγεται άρρητος. Ενας πραγματικός Ασκηση: Αποδείξτε ότι το άθροισμα και το γινόμενο

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ Μ. Παπαδημητράκης. 1 ΤΡΙΑΚΟΣΤΟ ΠΕΜΠΤΟ ΜΑΘΗΜΑ Ας θυμηθούμε από την περασμένη φορά ότι ένα σύνολο M σε έναν μετρικό χώρο (X, d είναι συμπαγές όταν: αν έχουμε οποιαδήποτε ανοικτά σύνολα που καλύπτουν

Διαβάστε περισσότερα

Ας ξεκινήσουμε υπενθυμίζοντας τον ορισμό της συνέχειας σε μετρικούς χώρους. διατυπώνεται και με τον ακόλουθο τρόπο: για κάθε σφαίρα

Ας ξεκινήσουμε υπενθυμίζοντας τον ορισμό της συνέχειας σε μετρικούς χώρους. διατυπώνεται και με τον ακόλουθο τρόπο: για κάθε σφαίρα 33.4.Συνεχείς συναρτήσεις Η έννοια της συνεχούς συνάρτησης είναι θεμελιώδης και μελετάται κατ αρχήν για συναρτήσεις μιας και κατόπιν δύο ή περισσότερων μεταβλητών στα μαθήματα του Απειροστικού Λογισμού.

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2 ΣΕ 37 ΜΑΘΗΜΑΤΑ

ΑΝΑΛΥΣΗ 2 ΣΕ 37 ΜΑΘΗΜΑΤΑ ΑΝΑΛΥΣΗ 2 ΣΕ 37 ΜΑΘΗΜΑΤΑ Μ. Παπαδημητράκης. ΠΡΩΤΟ ΜΑΘΗΜΑ Έστω [, b] ένα κλειστό διάστημα με < b. Διαμέριση του [, b] είναι ένα οποιοδήποτε πεπερασμένο υποσύνολο του [, b] το οποίο περιέχει τουλάχιστον

Διαβάστε περισσότερα

Διαφορικές Εξισώσεις.

Διαφορικές Εξισώσεις. Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 05-6. Λύσεις δεύτερου φυλλαδίου ασκήσεων.. Βρείτε όλες τις λύσεις της εξίσωσης Bernoulli x y = xy + y 3 καθορίζοντας προσεκτικά το διάστημα στο οποίο ορίζεται καθεμιά

Διαβάστε περισσότερα

sup(a + B) = sup A + sup B inf(a + B) = inf A + inf B.

sup(a + B) = sup A + sup B inf(a + B) = inf A + inf B. Ασκήσεις, Φυλλάδιο. Βρειτε το συνολο Φ A ολων των ανω ϕραγματων του A, και το συνολο φ A ολων των κατω ϕραγματων του A, οταν: a) A = m :, m N}, b) A = + m 2. Βρειτε το if και sup οποτε υπαρχουν) των συνολων

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Ολοκλήρωµα Lebesgue - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Ολοκλήρωµα Lebesgue - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Ολοκλήρωµα Lebesgue - Ασκήσεις Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

ΚΥΡΤΗ ΓΕΩΜΕΤΡΙΚΗ ΑΝΑΛΥΣΗ

ΚΥΡΤΗ ΓΕΩΜΕΤΡΙΚΗ ΑΝΑΛΥΣΗ Α. Γιαννόπουλος, Α. Τσολομύτης ΚΥΡΤΗ ΓΕΩΜΕΤΡΙΚΗ ΑΝΑΛΥΣΗ ( ) 2013 2018 Απαγορεύεται η αναπαραγωγή του αρχείου από άλλες ιστοσελίδες εκτός των http://yria.ath.aegea.gr/~atsol και http://users.uoa.gr/~apgiaop

Διαβάστε περισσότερα

Τμήμα Μηχανικών Οικονομίας και Διοίκησης Εφαρμοσμένη Θεωρία Πινάκων. Quiz 2. Σύντομες Λύσεις

Τμήμα Μηχανικών Οικονομίας και Διοίκησης Εφαρμοσμένη Θεωρία Πινάκων. Quiz 2. Σύντομες Λύσεις Τμήμα Μηχανικών Οικονομίας και Διοίκησης Εφαρμοσμένη Θεωρία Πινάκων Γ. Καραγιώργος ykarag@aegean.gr Quiz 2 Σύντομες Λύσεις Άσκηση 1. Βρείτε μία βάση και τη διάσταση, για τους διανυσματικούς χώρους M 3

Διαβάστε περισσότερα

3.5 Το θεώρημα Hahn-Banach σε τοπολογικούς διανυσματικούς χώρους.

3.5 Το θεώρημα Hahn-Banach σε τοπολογικούς διανυσματικούς χώρους. 7 3.5 Το θεώρημα Hah-Baach σε τοπολογικούς διανυσματικούς χώρους. Εξετάζουμε καταρχήν τη σχέση μεταξύ ενός μιγαδικού διανυσματικού χώρου E και του υποκείμενου πραγματικού χώρου E R. Έστω E μιγαδικός διανυσματικός

Διαβάστε περισσότερα

f(x) f(c) x 1 c x 2 c

f(x) f(c) x 1 c x 2 c Μαθηματικός Λογισμός Ι Φθινόπωρο 2014 Σημειώσεις 1-12-14 Μ. Ζαζάνης 1 Πραγματικές Συναρτήσεις και Ορια Εστω S R ένα υποσύνολο του R και f : S R μια συνάρτηση με πεδίο ορισμού το S και τιμές στους πραγματικούς

Διαβάστε περισσότερα

ή κανονικός ( regular ), αν για κάθε x και κάθε κλειστό αντιπαραδείγματα με τα οποία αποδεικνύεται ότι οι αντίστροφες συνεπαγωγές δεν ισχύουν.

ή κανονικός ( regular ), αν για κάθε x και κάθε κλειστό αντιπαραδείγματα με τα οποία αποδεικνύεται ότι οι αντίστροφες συνεπαγωγές δεν ισχύουν. 93 4 Διαχωριστικά αξιώματα Στο κεφάλαιο αυτό εισάγουμε τα λεγόμενα διαχωριστικά αξιώματα και εξετάζουμε τις βασικές ιδιότητές τους. Ένα από αυτά το έχουμε ήδη εισαγάγει δηλαδή το αξίωμα Husdorff ( ορισμός

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

Ισότητα, Αλγεβρικές και Αναλυτικές Ιδιότητες Πραγματικών Ακολουθιών

Ισότητα, Αλγεβρικές και Αναλυτικές Ιδιότητες Πραγματικών Ακολουθιών Ισότητα, Αλγεβρικές και Αναλυτικές Ιδιότητες Πραγματικών Ακολουθιών Συμβολισμοί Σε αναλογία με τους ορισμούς συμβολίζουμε μια ακολουθία: 1 είτε μέσω του διανυσματικού ορισμού, παραθέτοντας αναγκαστικά

Διαβάστε περισσότερα

Πραγµατική Ανάλυση Ασκήσεις ( )

Πραγµατική Ανάλυση Ασκήσεις ( ) Πραγµατική Ανάλυση Ασκήσεις (205 6) Πρόχειρες Σηµειώσεις Τµήµα Μαθηµατικών Πανεπιστήµιο Αθηνών 205-6 Περιεχόµενα Μετρικοί χώροι 2 Σύγκλιση ακολουθιών και συνέχεια συναρτήσεων 9 3 Τοπολογία µετρικών χώρων

Διαβάστε περισσότερα

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα.

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα. Ασκήσεις 0 Ασκήσεις Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα o H -στήλη του P P είναι E αν και μόνο αν η -στήλη του P είναι ιδιοδιάνυσμα του που αντιστοιχεί στην ιδιοτιμή

Διαβάστε περισσότερα

Ασκήσεις. και. για κάποιο k n. ( ) BdΚ και επί πλέον το BdΚ είναι ακραίο. [Υπόδειξη Πρβλ. την άσκηση 11 της παραγράφου 3.1 για το (α)].

Ασκήσεις. και. για κάποιο k n. ( ) BdΚ και επί πλέον το BdΚ είναι ακραίο. [Υπόδειξη Πρβλ. την άσκηση 11 της παραγράφου 3.1 για το (α)]. 3 Ασκήσεις ) Έστω διανυσματικός χώρος, C κυρτό και C. (α) Αποδείξτε ότι τα ακόλουθα είναι ισοδύναμα: (ι) e( C) = +,(ιι), = = και (ιιι) Το σύνολο C \{ } είναι κυρτό. (β) Επίσης αποδείξτε ότι αν e( C) και

Διαβάστε περισσότερα

X = {(x 1, x 2 ) x 1 + 2x 2 = 0}.

X = {(x 1, x 2 ) x 1 + 2x 2 = 0}. Γραμμική Άλγεβρα ΙΙ Διάλεξη 4 Χρήστος Κουρουνιώτης Πανεπιστήμιο Κρήτης 26/2/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 4 26/2/2014 1 / 12 Υποσύνολα ενός διανυσματικού χώρου. Πότε είναι ένα υποσύνολο X ενός

Διαβάστε περισσότερα

1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό

1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό 1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό 1.1 Όρια ακολουθιών Λέμε ότι η ακολουθία { n } συγκλίνει με όριο R αν για κάθε ϵ > 0 υπάρχει ακέραιος N = N(ϵ) τέτοιος ώστε (1.1) n < ϵ για κάθε n > N, και

Διαβάστε περισσότερα

A, και εξετάστε αν είναι διαγωνίσιμη.

A, και εξετάστε αν είναι διαγωνίσιμη. Ασκήσεις 6 Ασκήσεις Ελάχιστο Πολυώνυμο Βασικά σημεία Ορισμός ελαχίστου πολυωνύμου πίνακα και ιδιότητές του Θεώρημα (Κριτήριο διαγωνισιμότητας) Ένας είναι διαγωνίσιμος αν και μόνο αν ( x) γινόμενο διακεκριμένων

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ Μ. Παπαδημητράκης. 1 ΕΒΔΟΜΟ ΜΑΘΗΜΑ Θα γυρίσουμε πίσω για να κάνουμε μια απόδειξη που είχαμε παραλείψει σε κάποιο προηγούμενο παράδειγμα. Παράδειγμα. Έστω ξ [, b] και η συνάρτηση { 0, αν x [, b],

Διαβάστε περισσότερα

Ακρότατα πραγματικών συναρτήσεων

Ακρότατα πραγματικών συναρτήσεων Ακρότατα πραγματικών συναρτήσεων Ορισμός Έστω U R, U και f : U R R συνάρτηση τότε: )Το λέγεται τοπικό ελάχιστο της f αν υπάρχει περιοχή V του ώστε f f για κάθε V U Το λέγεται τοπικό μέγιστο της f αν υπάρχει

Διαβάστε περισσότερα

( ) = inf { (, Ρ) : Ρ διαµέριση του [, ]}

( ) = inf { (, Ρ) : Ρ διαµέριση του [, ]} 7 ΙΙΙ Ολοκληρωτικός Λογισµός πολλών µεταβλητών Βασικές έννοιες στη µια µεταβλητή Έστω f :[ ] φραγµένη συνάρτηση ( Ρ = { t = < < t = } είναι διαµέριση του [ ] 0 ( Ρ ) = Μ ( ) όπου sup f ( t) : t [ t t]

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Προσεγγίσεις της µονάδας και Αθροισιµότητα - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Προσεγγίσεις της µονάδας και Αθροισιµότητα - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Προσεγγίσεις της µονάδας και Αθροισιµότητα - Ασκήσεις Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό

Διαβάστε περισσότερα

f(x) dx. f(x)dx = 0 Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 7: Ολοκλήρωµα Riemann Α Οµάδα

f(x) dx. f(x)dx = 0 Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 7: Ολοκλήρωµα Riemann Α Οµάδα Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 7: Ολοκλήρωµα Riemnn Α Οµάδα. Εστω f : [, ] R. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε πλήρως την απάντησή σας).

Διαβάστε περισσότερα

Apì ton diakritì kôbo ston q ro tou Gauss

Apì ton diakritì kôbo ston q ro tou Gauss Apì ton diaritì Ôbo ston q ro tou Gauss 1 Isoperimetri anisìthta sto diaritì Ôbo Θεωρούμε την οικογένεια J των συναρτήσεων J : [0 1] [0 ) που ικανοποιούν τα εξής: J0) = J1) = 0. Για κάθε a b [0 1] a +

Διαβάστε περισσότερα

x < A y f(x) < B f(y).

x < A y f(x) < B f(y). Χειμερινό Εξάμηνο 2016 2017 Ασκήσεις στα Κεφάλαια 5 & 6 1. Αυτή είναι ουσιαστικά η Άσκηση 5.2 (σελ. 119), από τις σημειώσεις του Σκανδάλη. Εστω A, < καλά διατεταγμένο σύνολο και έστω στοιχείο a A. Αποδείξτε

Διαβάστε περισσότερα

Στοιχεία Συναρτησιακής Ανάλυσης. Σηµειώσεις

Στοιχεία Συναρτησιακής Ανάλυσης. Σηµειώσεις Στοιχεία Συναρτησιακής Ανάλυσης Σηµειώσεις σύντοµη εκδοχή Ε. Στεφανόπουλος Τµήµα Μαθηµατικών Πανεπιστήµιο Αιγαίου Καρλόβασι 2016 2 Περιεχόµενα 1 Γραµµικοι χωροι µε νορµα 5 1.1 Γραµµικοί χώροι......................................

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Σύγκλιση και Συνέχεια Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Π Κ Τ Μ Ε Μ Λύσεις των ασκήσεων

Π Κ Τ Μ Ε Μ Λύσεις των ασκήσεων Π Κ Τ Μ Ε Μ Λύσεις των ασκήσεων Πρ. Η f : [0, ] R είναι συνεχής στο [0, ]. Χρησιμοποιώντας το Θεώρημα Bolzao- Weierstraß δείξτε ότι η f είναι φραγμένη στο [0, ]. Μην επικαλεστείτε κάποιο άλλο θεώρημα.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z)

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z) ΚΕΦΑΛΑΙΟ 1: Πρότυπα Στο κεφάλαιο αυτό θα υπενθυμίσουμε τις βασικές έννοιες που αφορούν πρότυπα πάνω από ένα δακτύλιο Θα περιοριστούμε στα πλέον απαραίτητα για αυτά που ακολουθούν στα άλλα κεφάλαια Η κατευθυντήρια

Διαβάστε περισσότερα

βαθμού 1 με A 2. Υπολογίστε τα χαρακτηριστικά και ελάχιστα πολυώνυμα των

βαθμού 1 με A 2. Υπολογίστε τα χαρακτηριστικά και ελάχιστα πολυώνυμα των Ασκήσεις 6 Ασκήσεις Ελάχιστο Πολυώνυμο Βασικά σημεία Ορισμός ελαχίστου πολυωνύμου πίνακα και ιδιότητές του Ορισμός ελαχίστου πολυωνύμου γραμμικής απεικόνισης και ιδιότητές του Κριτήριο διαγωνισιμότητας

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Συντελεστές και σειρές Fourier

Συντελεστές και σειρές Fourier Κεφάλαιο 3 Συντελεστές και σειρές Fourier Κύριες βιβλιογραφικές αναφορές για αυτό το Κεφάλαιο είναι οι Zygmund 22, Katznelson 24 και Stein and Shakarchi 211. 3.1 Συντελεστές Fourier μιας ολοκληρώσιμης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι ΚΕΦΑΛΑΙΟ : Ημιαπλοί Δακτύλιοι Είδαμε στο κύριο θεώρημα του προηγούμενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισμα απλών προτύπων Εδώ θα χαρακτηρίσουμε όλους

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 25 Οκτωβρίου Ασκηση 1. Στο σύνολο των πραγματικών αριθμών R ορίζουμε μια σχέση R R R ως εξής:

Α Δ Ι. Παρασκευή 25 Οκτωβρίου Ασκηση 1. Στο σύνολο των πραγματικών αριθμών R ορίζουμε μια σχέση R R R ως εξής: Α Δ Ι Α - Φ 1 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 25 Οκτωβρίου 2013 Ασκηση

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση

Διαβάστε περισσότερα

2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y.

2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y. 2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. Έστω (, ) και (, ) {( x, ) : x και } χώροι με νόρμα. Τότε ο διανυσματικός χώρος = ( με τις συνήθεις κατά σημείο πράξεις ) γίνεται χώρος με

Διαβάστε περισσότερα

lim y < inf B + ε = x = +. f(x) =

lim y < inf B + ε = x = +. f(x) = ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Εξετάσεις στη Μαθηματική Ανάλυση Ι ΟΜΑΔΑ: Α 8 Μαρτίου, 0 Θέμα. (αʹ) Εστω A, B μη κενά σύνολα πραγματικών αριθμών τέτοια ώστε x y, για

Διαβάστε περισσότερα