HY118-Διακριτά Μαθηματικά

Σχετικά έγγραφα
Τι είδαμε την προηγούμενη φορά

HY118- ιακριτά Μαθηµατικά

Τι είδαμε την προηγούμενη φορά

Γιατί πιθανότητες; Γιατί πιθανότητες; Θεωρία πιθανοτήτων. Θεωρία Πιθανοτήτων. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017.

Εισαγωγή Η Θεωρία Πιθανοτήτων παίζει μεγάλο ρόλο στη μοντελοποίηση και μελέτη συστημάτων των οποίων δεν μπορούμε να προβλέψουμε ή να παρατηρήσουμε την

HY118- ιακριτά Μαθηµατικά

Τμήμα Λογιστικής και Χρηματοοικονομικής. Θεωρία Πιθανοτήτων. Δρ. Αγγελίδης Π. Βασίλειος

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

HY118-Διακριτά Μαθηματικά

Στατιστική. Ενότητα 1 η : Δεσμευμένη Πιθανότητα, Ολική Πιθανότητα, Ανεξαρτησία. Γεώργιος Ζιούτας Τμήμα Χημικών Μηχανικών Α.Π.Θ.

Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς.

15! 15! 12! (15 3)!3! 12!3! 12!2 3

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Φροντιστήριο #8 Ασκήσεις σε Πιθανότητες 15/05/2015

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

10/10/2016. Στατιστική Ι. 2 η Διάλεξη

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές

Συνδυαστική. Σύνθετο Πείραμα. Πείραμα Συνδυαστική. Το υλικό των. ΗΥ118 Διακριτά Μαθηματικά, Άνοιξη Τρίτη, 17/04/2018

Θεωρία Πιθανοτήτων & Στατιστική

3 ΠΙΘΑΝΟΤΗΤΕΣ. ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω = ω, ω,..., ω }.

Στοχαστικές Στρατηγικές

B A B A A 1 A 2 A N = A i, i=1. i=1

Βιομαθηματικά BIO-156. Θεωρία Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 89. Ύλη: Πιθανότητες Το σύνολο R-Εξισώσεις Σ Λ 2. Για τα ενδεχόμενα Α και Β ισχύει η ισότητα: A ( ) ( ') ( ' )

ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες

ΘΕΜΑ 3 Το ύψος κύματος (σε μέτρα) σε μία συγκεκριμένη θαλάσσια περιοχή είναι τυχαία μεταβλητή X με συνάρτηση πυκνότητας πιθανότητας

5. 3 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ

ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος. Ενδεχόμενα {,,..., }.

Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου

Πιθανότητες. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση

Υπολογιστικά & Διακριτά Μαθηματικά

Βιομαθηματικά BIO-156. Θεωρία Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2016

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

Πιθανότητες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο 3 94 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

Θεωρία Πιθανοτήτων και Στατιστική

Οι μελέτες φυσικών φαινομένων ή πραγματικών προβλημάτων καταλήγουν είτε σεπροσδιοριστικά

Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Α ΛΥΚΕΙΟΥ

Λύσεις 1ης Ομάδας Ασκήσεων

α) Αν Α, Β, Γ είναι τρία ενδεχόμενα ενός δειγματικού χώρου Ω ενός πειράματος τύχης, να διατυπώσετε λεκτικά τα παρακάτω ενδεχόμενα:

Θεωρία Πιθανοτήτων & Στατιστική

Μέρος ΙΙ. Τυχαίες Μεταβλητές

Μαθηματικά στην Πολιτική Επιστήμη:

Πιθανότητες. Έννοια πιθανότητας Ορισμοί πιθανότητας Τρόπος υπολογισμού Πράξεις πιθανοτήτων Χρησιμότητα τους

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων

Δεσμευμένη (ή υπο-συνθήκη) Πιθανότητα (Conditional Probability)

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 3 Ο «ΠΙΘΑΝΟΤΗΤΕΣ»

C(10,3) (10 3)!3! 7!3! 7!2 3

Λύσεις 2ης Ομάδας Ασκήσεων

Πιθανότητες και Στοχαστικές ιαδικασίες Θόρυβος µετρήσεων είκτης Χρηµατιστηρίου Σήµα Πληροφορίας (φωνή, data) Ατµοσφαιρικός Θόρυβος Πως δηµιουργείται

ΙΣΟΠΙΘΑΝΑ ΕΝΔΕΧΟΜΕΝΑ-ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ

1. Πείραμα τύχης. 2. Δειγματικός Χώρος ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ

Θέματα Τ.Θ.Δ.Δ. ΘΕΜΑ Β

ΕΣΜΕΥΜΕΝΕΣ ΠΙΘΑΝΟΤΗΤΕΣ

Θέματα Τ.Θ.Δ.Δ. ΘΕΜΑ Β

ΗΥ118 Διακριτά Μαθηματικά. Εαρινό Εξάμηνο 2016

1 ο Κεφάλαιο : Πιθανότητες. 1. Δειγματικοί χώροι 2. Διαγράμματα Venn. Φυσική γλώσσα και ΚΑΤΗΓΟΡΙΕΣ ΑΣΚΗΣΕΩΝ. 3. Κλασικός ορισμός. 4.

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΝΟΤΗΤΑ: Πιθανότητες - Κατανομές ΟΝΟΜΑ ΚΑΘΗΓΗΤΗ: ΦΡ. ΚΟΥΤΕΛΙΕΡΗΣ ΤΜΗΜΑ: Τμήμα Διαχείρισης Περιβάλλοντος και Φυσικών

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Ι Φεβρουάριος 2018 Σειρά Α Θέματα 3 ως 7 και αναλυτικές (ή σύντομες) απαντήσεις

P (A 1 A 2... A n ) = P (A 1 )P (A 2 A 1 )P (A 3 A 1 A 2 ) P (A n A 1 A 2 A n 1 ).

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α. α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης;

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις στο μάθημα ΠΙΘΑΝΟΤΗΤΕΣ Ι

17/10/2016. Στατιστική Ι. 3 η Διάλεξη

ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 2 : Πληροφορία και Εντροπία Διάλεξη: Κώστας Μαλιάτσος Χρήστος Ξενάκης, Κώστας Μαλιάτσος

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ

Στατιστική Ι-Πιθανότητες ΙΙΙ

Στατιστική λήψη αποφάσεων

Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Περιεχόμενα 3ης Διάλεξης 1 Σύνοψη Προηγούμενου Μαθήματος 2 Δεσμευμένη Πιθανότητα 3 Bayes Theorem 4 Στοχαστική Ανεξαρτησία 5 Αμοιβαία (ή πλήρης) Ανεξαρ

7. ιακϱιτή Πιϑανότητα

3. Να δειχτει οτι α α. Ποτε ισχυει το ισον; Πειραμα τυχης: λεγεται καθε πειραμα για το οποιο δεν μπορουμε να προβλεψουμε

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων

1.2 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2018 Τελική Εξέταση Ιουνίου Λύσεις

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Περιεχόμενα 3ης Διάλεξης 1 Σύνοψη Προηγούμενου Μαθήματος 2 Δεσμευμένη Πιθανότητα 3 Bayes Theorem 4 Στοχαστική Ανεξαρτησία 5 Αμοιβαία (ή πλήρης) Ανεξαρ

Έντυπο Yποβολής Αξιολόγησης ΓΕ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2017 Τελική Εξέταση Ιουνίου - Τετάρτη, 14/06/2017 ΛΥΣΕΙΣ

ΠΙΘΑΝΟΤΗΤΕΣ. Ερωτήσεις του τύπου «Σωστό - Λάθος»

Περιεχόμενα 2ης Διάλεξης 1 Σύνοψη προηγούμενου μαθήματος 2 Αξιωματικός ορισμός και απαρίθμηση 3 Διατάξεις - Συνδυασμοί 4 Παραδείγματα υπολογισμού πιθα

ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ- 1 o ΔΙΑΓΩΝΙΣΜΑ

Στατιστική Ι. Ενότητα 3: Πιθανότητες. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (Τεύχος 96) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ. f (x) s lim e. t,i 1,2,3,...

Α ΕΝΟΤΗΤΑ. Πιθανότητες. Α.1 (1.1 παρ/φος σχολικού βιβλίου) Α.2 (1.2 παρ/φος σχολικού βιβλίου) Δειγματικός χώρος - Ενδεχόμενα. Η έννοια της πιθανότητας

ΠΙΘΑΝΟΤΗΤΕΣ Α ΛΥΚΕΙΟΥ Ανδρεσάκης Δ. ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΙΘΑΝΟΤΗΤΕΣ

Transcript:

HY118-Διακριτά Μαθηματικά Παρασκευή, 04/05/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 07-May-18 1 1

Θεωρία πιθανοτήτων 07-May-18 2 2

Τι είδαμε την προηγούμενη φορά Μία τυχαία μεταβλητή Vείναι κάθε μεταβλητή η τιμή της οποίας είναι άγνωστη, και η τιμή της οποίας εξαρτάται από τις συγκεκριμένες συνθήκες που επικρατούν κατά την εκτέλεση ενός πειράματος. Το πεδίο της V, dom[v] {v 1,,v n }, είναι το σύνολο όλων των δυνατών τιμών που η V μπορεί να πάρει. Ο δειγματικός χώρος Ωτου πειράματος είναι το πεδίο της τυχαίας μεταβλητής, Ω= dom[v](όπως είπαμε, το σύνολο όλων των δυνατών ενδεχομένων τιμών της). Ένα ενδεχόμενο Γ είναι ένα υποσύνολο του δειγματικού χώρου Ω Απλά / σύνθετα ενδεχόμενα Ασυμβίβαστα ενδεχόμενα 07-May-18 3 3

Πιθανότητα: Αξιωματικός ορισμός Έστω p μία συνάρτηση p:ω [0,1] τέτοια ώστε s Ω p(s) = 1, και 0 p(s) 1, s Ω Τότε, η πιθανότητα κάθε ενδεχομένου Γ Ωείναι: p( ): p( s) s 07-May-18 4 4

Παράδειγμα Έστω 1000 άτομα παρακολουθούν έναν αγώνα. Από αυτά, 515 είναι γυναίκες και 485 είναι άνδρες. Έστω επίσης ότι γνωρίζουμε ότι από τις 515 γυναίκες, οι 90 είναι φίλαθλοι και ότι από τους 485 άνδρες οι 302 είναι φίλαθλοι Πείραμα: τυχαία επιλογή ενός ατόμου. 07-May-18 5 5

Παράδειγμα γφ: όλες οι γυναίκες φίλαθλοι γμ:όλες οι γυναίκες που δεν είναι φίλαθλοι αφ:όλοι οι άντρες φίλαθλοι αμ: όλοι οι άντρες που δεν είναι φίλαθλοι Δειγματικός χώρος Ω =γφ γμ αφ αμ Τα γφ, γμ, αφ, αμ είναι ασυμβίβαστα, σύνθετα ενδεχόμενα η ένωση των οποίων δίνει το δειγματικό χώρο 07-May-18 6 6

Παράδειγμα Έστω 1000 άτομα παρακολουθούν έναν αγώνα. Από αυτά, 515 είναι γυναίκες και 485 είναι άνδρες. 07-May-18 7 7

Παράδειγμα Ποια είναι η πιθανότητα να επιλέξουμε άτομο που είναι φίλαθλος ή είναι γυναίκα;(ω={γφ, γμ, αφ, αμ}) 1 ος τρόπος 2 ος τρόπος 3 ος τρόπος 07-May-18 8 8

Παράδειγμα Ποια είναι η πιθανότητα να επιλέξουμε άντρα που δεν είναι φίλαθλος ή γυναίκα που είναι φίλαθλος; 1 ος τρόπος 2 ος τρόπος 07-May-18 9 9

Ανεξάρτητα ενδεχόμενα Δύο ενδεχόμενα E, Fονομάζονταιανεξάρτηταεάν και μόνο αν p(e F) = p(e) p(f). Διαισθητικά, δύο ενδεχόμενα είναι ανεξάρτητα αν και μόνο αν το να συμβεί το ένα δεν κάνει περισσότερο ή λιγότερο πιθανό το να συμβεί το άλλο. 07-May-18 10 10

Παράδειγμα Το προηγούμενοπαράδειγμά μας:έστω ότι 1000 άτομα παρακολουθούν έναν αγώνα. Από αυτά, 515 είναι γυναίκες και 485 είναι άνδρες. Φ Γ = φίλαθλη γυναίκα => p(φ Γ) = 0,09 p(φ) p(γ) = 0,201 Αρα τα Φ και Γ δεν είναι ανεξάρτητα 07-May-18 11 11

Σχέση ανεξάρτητων και ασυμβίβαστων ενδεχομένων Ερώτηση:Έστω δύο ασυμβίβαστα ενδεχόμενα Α και Β με p(a)>0 και p(β)>0. Eίναι ανεξάρτητα; 07-May-18 12 12

Σχέση ανεξάρτητων και ασυμβίβαστων ενδεχομένων Ερώτηση:Έστω δύο ασυμβίβαστα ενδεχόμενα Α και Β με p(a)>0 και p(β)>0. Eίναι ανεξάρτητα; Όχι! Εφόσον p(α)>0 και p(b)>0 και Α Β =, τότε p(α Β) = 0 p(α)p(b). Άρα ενώ τα Α και Β είναι ασυμβίβαστα, δεν είναι ανεξάρτητα. 07-May-18 13 13

Σχέση ανεξάρτητων και ασυμβίβαστων ενδεχομένων Ερώτηση: Έστω δύο ανεξάρτητα ενδεχόμενα Α και Β με p(a)>0 και p(β)>0. Είναι κατ ανάγκη ασυμβίβαστα; 07-May-18 14 14

Ανεξάρτητα/ασυμβίβαστα ενδεχόμενα Ερώτηση:Έστω δύο ανεξάρτητα ενδεχόμενα Α και Β με p(a)>0 και p(β)>0. Είναι κατ ανάγκη ασυμβίβαστα; Όχι! p(α)>0 και p(b)>0 Επίσης, εφόσον είναι ανεξάρτητα, p(α Β)=p(Α)p(B) επομένως p(α Β) 0, Άρα Α Β Άρα ενώ τα Α και Β είναι ανεξάρτητα, δεν είναι ασυμβίβαστα. 07-May-18 15 15

Δεσμευμένη πιθανότητα Έστω E, Fενδεχόμενα. Τότε, η δεσμευμένη πιθανότητα του E δεδομένου του F, συμβολίζεται μεp(e F), και ορίζεται ως p(e F) : p(e F)/p(F). Αυτή είναι η πιθανότητα να συμβεί το E, αν μας δοθεί η πληροφορία ότι το ενδεχόμενο F θα συμβεί (είναι γεγονός). 07-May-18 16 16

Δεσμευμένη πιθανότητα, παράδειγμα Υποθέστε ότι τελείως τυχαία, επιλέγω ένα γράμμα από το αγγλικό αλφάβητο.ποιά είναι ηπιθανότητα αυτό το γράμμα να είναι φωνήεν; z k x s p φωνήεν y u o n w a e i j b c d h v f g q r t l m Ω = τα γράμματα του Αγγλικού αλφαβήτου 07-May-18 17 17

Δεσμευμένη πιθανότητα, παράδειγμα Υποθέστε ότι τελείως τυχαία, επιλέγω ένα γράμμα από το αγγλικό αλφάβητο.ποιά είναι ηπιθανότητα αυτό το γράμμα να είναι φωνήεν; p(φ) = (#φωνηέντων) / (#γραμμάτων) = 6/26 z x s p k φωνήεν y u o n w a i j e b c h v d g q f r t l m Ω = τα γράμματα του Αγγλικού αλφαβήτου 07-May-18 18 18

Δεσμευμένη πιθανότητα, παράδειγμα Υποθέστε ότι τελείως τυχαία, επιλέγω ένα γράμμα από το αγγλικό αλφάβητο.ποιά είναι ηπιθανότητα αυτό το γράμμα να είναι φωνήεν; p(φ) = (#φωνηέντων) / (#γραμμάτων) = 6/26 Τώρα, υποθέστε ότι σας λέω ότι το επιλεγμένο γράμμα ανήκει στα 9 πρώτα γράμματα του αλφαβήτου.τώρα, ποιά είναι η πιθανότητα το γράμμα να είναι φωνήεν, δοσμένης της επιπρόσθετης πληροφορίας; z x s p k φωνήεν y u o n w a i j e b c h v d 1 α 9 γράμματα g q f r t l m Ω = τα γράμματα του Αγγλικού αλφαβήτου 07-May-18 19 19

Δεσμευμένη πιθανότητα, παράδειγμα Υποθέστε ότι τελείως τυχαία, επιλέγω ένα γράμμα από το αγγλικό αλφάβητο.ποιά είναι ηπιθανότητα αυτό το γράμμα να είναι φωνήεν; p(φ) = (#φωνηέντων)/(#γραμμάτων) = 6/26 Τώρα, υποθέστε ότι σας λέω ότι το επιλεγμένο γράμμα ανήκει στα 9 πρώτα γράμματα του αλφαβήτου. Τώρα, ποιά είναι η πιθανότητα το γράμμα να είναι φωνήεν, δοσμένης της επιπρόσθετης πληροφορίας; p(φ 9 πρώτα γράμματα) = (#φωνηέντων ΚΑΙ ανήκουν στα 91 α γράμματα) / 9 = 3/9. Άρα p(φ 9 πρώτα γράμματα) = 3/9 07-May-18 20 20 z x s p k φωνήεν y u o n w a i j e b c h v d 1 α 9 γράμματα g q f r t l m Ω = τα γράμματα του Αγγλικού αλφαβήτου

Εξήγηση της δεσμευμένης πιθανότητας Η πιθανότητα να συμβεί το E είναι p(e) (prior probability) Εάν μας δοθεί η πληροφορία ότι ένα ενδεχόμενο Fσυνέβη, τότε η προσοχή μας εστιάζεται στην περιοχή F. Επομένως, η πιθανότητα να συμβεί το E δεδομένου ότι το F συμβαίνει προσδιορίζεται από εκείνα τα στοιχεία του Ω για τα οποία το Ε και το F συμβαίνουν ταυτόχρονα. Επομένως, η εκ των υστέρων (posterior) πιθανότητα για το E, είναι p(e F)=p(E F)/p(F). Ενδεχόμενο E Ενδεχόμενο E F Ενδεχόμενο F Ω 07-May-18 21 21

Δεσμευμένη πιθανότητα 07-May-18 22 22

Προσοχή! p( A B) p( B A) p( B A) p( A) Επομένως, αν p(a) p(b), τότε p(a B) p(b A) Π.χ., έστω το πείραμα της ρίψης ενός ζαριού. Έστω Α = έφερα 5 και Β = έφερα περιττό αριθμό. Ποια είναι η p(a B); Ποια είναι η p(b A); p(a B)=1/3 ενώ p(b Α)=1 p( A B) p( B) 07-May-18 23 23

Δεσμευμένη πιθανότητα Έστω ότι ρίχνουμε ένα ζάρι τρεις φορές. Έστω τα ενδεχόμενα Α = {κάποια από τις 3 ζαριές κατέληξε σε 1} Β = {οι 3 ζαριές κατέληξαν σε διαφορετικό αποτέλεσμα} Ποια είναι η p(a B); p(a B)=p(A B)/p(B) p(b)=p(6,3)/6 3 = 6!/(3!*6 3 ) p(a B)=3 P(5,2)/6 3 = 3*5!/(3!*6 3 ) Άρα p(a B) = 3*5!/6! = 3/6= 1/2 07-May-18 24 24

Δεσμευμένη πιθανότητα Έστω ότι ρίχνουμε ένα ζάρι τρεις φορές. Έστω τα ενδεχόμενα Α = {κάποια από τις 3 ζαριές κατέληξε σε 1} Β = {οι 3 ζαριές κατέληξαν σε διαφορετικό αποτέλεσμα} Ποια είναι η p(β Α); 07-May-18 25 25

Δεσμευμένη πιθανότητα Έστω ότι ρίχνουμε ένα ζάρι τρεις φορές. Έστω τα ενδεχόμενα Α = {κάποια από τις 3 ζαριές κατέληξε σε 1} Β = {οι 3 ζαριές κατέληξαν σε διαφορετικό αποτέλεσμα} Ποια είναι η p(β Α); p(β Α)=p(Β Α)/p(Α) p(α)=1-p(α) = 1-5 3 /6 3 Άρα 07-May-18 26 26

Δεσμευμένη πιθανότητα για ανεξάρτητα ενδεχόμενα Εάν τα Eκαι Fείναι ανεξάρτητα ενδεχόμενα, τότε ισχύει ότι p(e F) = p(e). p(e F) = p(e F)/p(F) = p(e)p(f)/p(f) = p(e)...άρα, όταν δύο ενδεχόμενα είναι ανεξάρτητα μεταξύ τους, η γνώση ότι συνέβη το ένα δεν επηρεάζει την εκτίμηση της πιθανότητας να συμβεί το άλλο! 07-May-18 27 27

Ανεξάρτητα ενδεχόμενα Έστω ότι ρίχνουμε δύο νομίσματα στη σειρά. Α= {το 1 ο νόμισμα τυχαίνει κορώνα (Κ)} Β= {το 2 ο νόμισμα τυχαίνει διαφορετικό αποτέλεσμααπό το 1 ο νόμισμα} Είναι τα Α, Β ανεξάρτητα; Ναι, γιατί p(a B) = ½= p(a) Επίσης, p(b A) = ½ = p(b) 07-May-18 28 28

Νόμος της ολικής πιθανότητας Για οποιαδήποτε δύο γεγονότα Εκαι F ισχύει ότι Ε = Ε Ω = Ε (F F) = (Ε F) (E F) Τα (Ε F) και (E F) είναι ασυμβίβαστα Επομένως p(ε) = p(ε F)+p(E F) και άρα p(ε) = p(e F)p(F) + p(e F)p(F) 07-May-18 29 29

Νόμος της ολικής πιθανότητας Γενικότερα, έστω σύνολο nενδεχομένων F i που αποτελούν διαμέρισητου δειγματικού χώρου Ω. Έστω επίσης, ένα ενδεχόμενο Ε. Τότε: n p( E) p( E F) p( F) i 1 i i 07-May-18 30 30

Νόμος του Bayes Γνωρίζουμε ότι για ενδεχόμενα Ε, F: Επίσης: p( F E) p( F E) p( E) p( E F) p( E F) p( E F) p( E F) p( F) p( F) p( E F) p( F) p( F E) p( E) 07-May-18 31 31

Νόμος του Bayes Thomas Bayes 1702-1761 p( F E) p( E F) p( F) p( E) Η βάση των Bayesian μεθόδωνγια πιθανοκρατική εξαγωγή συμπερασμάτων.πολύ ισχυρή και διαδεδομένη μέθοδος στην τεχνητή νοημοσύνη: Γιαεξόρυξη δεδομένων (data mining), αυτοματοποιημένη διάγνωση (automated diagnosis), αναγνώριση προτύπων (pattern recognition), στατιστική μοντελοποίηση (statistical modeling)... Προκύπτει άμεσα από τον ορισμό της δεσμευμένης πιθανότητας 07-May-18 32 32

Νόμος του Bayes Thomas Bayes 1702-1761 Επομένως, λαμβάνοντας υπόψη και το νόμο ολικής πιθανότητας, για ενδεχόμενο Ε και για σύνολο ενδεχομένων F i που αποτελούν διαμέρισητου δειγματικού χώρου Ω, ο νόμος του Bayes μπορεί να γραφεί ως: p( F E) i p( E F) p( F) n i 1 i p( E F) p( F) i i i 07-May-18 33 33

Παράδειγμα Δύο τσάντες τ 1 και τ 2, περιέχουν άσπρες και μαύρες μπάλες Στην τ 1 έχουμε 75 άσπρες μπάλες και 25 μαύρες. Στην τ 2 τσάντα έχουμε 75 μαύρες μπάλες και 25 άσπρες Επιλέγουμε τυχαία μία από τις δύο τσάντες. Από αυτή την τσάντα, επιλέγουμε τυχαία 5 μπάλες Το αποτέλεσμα είναι 5 άσπρες μπάλες. Ποιά είναι η πιθανότητα να έχουμε επιλέξει την τσάντα τ 1 ; γενικότερα, πως μπορώ από την έκβαση ενός πειράματος να προσδιορίσω την πιθανότητα των ενδεχομένων ενός άλλου πειράματος; 07-May-18 34 34

Παράδειγμα Λύση:Έστω το πείραμα επιλογής της τσάντας.ο δειγματικός χώρος του πειράματος είναι οω={τ 1,τ 2 }. Ξέρουμε ότιp(τ 1 )=p(τ 2 )=1/2 αφού επιλέγουμε τυχαία την τσάντα. ΈστωB το ενδεχόμενο 5άσπρες μπάλες επιλέχθηκαν. Τι πρέπει να υπολογίσουμε; Tην p(τ 1 B)η οποία, από τον κανόνα του Bayes είναι: p( B 1) p( 1) p( 1 ) p( B) 07-May-18 35 35

Παράδειγμα p( ) 1 p( B 1) p( 1) p( B 1) p( 1) p( B) p( B ) p( ) p( B ) p( ) 1 1 2 2 p B p( B ) C(75,5)/ C(100,5) 0,229 1 ( 1) 0,458 p( 1) 1/2 1/2 p( B ) C(25,5)/ C(100,5) 0,0007 2 ( 2) 0,0014 p( 2) 1/2 1/2 p B 0,458 Άρα, p ( (!!!) 1 ) 0,997 0,458 0,0014 07-May-18 36 36

Άλλο παράδειγμα Υποθέστε ότι ένα αλκοτέστ βγαίνει θετικό στο 95% των περιπτώσεων μέθης στο 3% των περιπτώσεων μη μέθης. Ας υποθέσουμε επίσης ότι γνωρίζουμε ότι το 0.5% των ανθρώπων οδηγούν μεθυσμένοι. Ποια είναι η πιθανότητα κάποιος να οδηγούσε μεθυσμένος δεδομένου ότι έκανε το τεστ και αυτό βγήκε θετικό; 07-May-18 37 37

Κανόνας του Bayes Έστω«Μ» σημαίνει «οδηγώ μεθυσμένος» και«n» σημαίνει «οδηγώ νηφάλιος». Έστω«Θ» σημαίνει «θετικό αλκοτέστ» και«a» σημαίνει «αρνητικό αλκοτέστ». Θέλουμε να υπολογίσουμε την πιθανότητα p(m Θ) p( M ) p( M) p( M) p( ) p( M) p( M) p( M) p( M) p( N) p( N) 07-May-18 38 38

Άλλο παράδειγμα p(μ)= 0.005, εφόσον0.5% των ανθρώπων οδηγούν μεθυσμένοι. p(n)=1 P(Μ) = 0.995. p(θ Μ) = 0.95 : η πιθανότητα ότι το τεστ θα είναι θετικό δεδομένου ότι αυτός που το κάνει είναι μεθυσμένος p(θ Ν)=0.03, η πιθανότητα ότι το τεστ θα είναι θετικό δεδομένου ότι αυτός που το κάνει είναι νηφάλιος. 07-May-18 39 39

Κανόνας του Bayes Επομένως p( M ) p( M) p( M) p( ) p( M) p( M) p( M) p( M) p( N) p( N) 0.95*0.005 0.95*0.005 0.03*0.995 0.137 (!!!) 07-May-18 40 40

Παράδειγμα Έστω ότι σε ένα διαγώνισμα, θέλω να φτιάξω ένα θέμα με πολλαπλές επιλογές (έστω m). Θέλω να ξέρω πόσο πιστά η βαθμολόγηση ενός τέτοιου ερωτήματος αντανακλά τις πραγματικές σας γνώσεις Θεωρώ το ενδεχόμενο Γ = {ο φοιτητής γνωρίζει την σωστή απάντηση}. Έστω ότι p(γ) = p. Θεωρώ ότι αν ο φοιτητής δεν γνωρίζει τη σωστή απάντηση, δίνει κάποια τυχαία απάντηση. 07-May-18 41 41

Παράδειγμα Έστω το γεγονός Σ = {ο φοιτητής απαντά σωστά} Επομένως, με ενδιαφέρει να διερευνήσω την πιθανότητα p(γ Σ). Προσέξτε ότι: 07-May-18 42 42