arxiv: v1 [math.ap] 5 Apr 2018

Σχετικά έγγραφα
OSCILLATION CRITERIA FOR SECOND ORDER HALF-LINEAR DIFFERENTIAL EQUATIONS WITH DAMPING TERM

The Estimates of the Upper Bounds of Hausdorff Dimensions for the Global Attractor for a Class of Nonlinear

Gradient Estimates for a Nonlinear Parabolic Equation with Diffusion on Complete Noncompact Manifolds

Intrinsic Geometry of the NLS Equation and Heat System in 3-Dimensional Minkowski Space

8. The Normalized Least-Squares Estimator with Exponential Forgetting

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

Random Attractors for Stochastic Reaction-Diffusion Equations with Distribution Derivatives on Unbounded Domains

On Quasi - f -Power Increasing Sequences

A Note on Saigo s Fractional Integral Inequalities

Homework for 1/27 Due 2/5

Fourier Series. Fourier Series

On Generating Relations of Some Triple. Hypergeometric Functions

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

α ]0,1[ of Trigonometric Fourier Series and its Conjugate

1. For each of the following power series, find the interval of convergence and the radius of convergence:

Time Series Analysis Final Examination

Solve the difference equation

Degenerate Perturbation Theory

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

Other Test Constructions: Likelihood Ratio & Bayes Tests

Example Sheet 3 Solutions

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form:

The Heisenberg Uncertainty Principle

Oscillations CHAPTER 3. ν = = 3-1. gram cm 4 E= = sec. or, (1) or, 0.63 sec (2) so that (3)

Bessel function for complex variable

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)


2 Composition. Invertible Mappings

Uniform Convergence of Fourier Series Michael Taylor

Statistical Inference I Locally most powerful tests

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

The one-dimensional periodic Schrödinger equation

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Concrete Mathematics Exercises from 30 September 2016

Ψηφιακή Επεξεργασία Εικόνας

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

hp-bem for Contact Problems and Extended Ms-FEM in Linear Elasticity

Lecture 12 Modulation and Sampling

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Managing Production-Inventory Systems with Scarce Resources

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

α β

Problem Set 3: Solutions

4.6 Autoregressive Moving Average Model ARMA(1,1)

Oscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

A study on generalized absolute summability factors for a triangular matrix

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

C.S. 430 Assignment 6, Sample Solutions

1. Functions and Operators (1.1) (1.2) (1.3) (1.4) (1.5) (1.6) 2. Trigonometric Identities (2.1) (2.2) (2.3) (2.4) (2.5) (2.6) (2.7) (2.8) (2.

CRASH COURSE IN PRECALCULUS

Homework 3 Solutions

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Damage Constitutive Model of Mudstone Creep Based on the Theory of Fractional Calculus

On Inclusion Relation of Absolute Summability

Oscillation criteria for two-dimensional system of non-linear ordinary differential equations

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

Math221: HW# 1 solutions

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

On Strong Product of Two Fuzzy Graphs

Every set of first-order formulas is equivalent to an independent set

Uniform Estimates for Distributions of the Sum of i.i.d. Random Variables with Fat Tail in the Threshold Case

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Linear singular perturbations of hyperbolic-parabolic type

Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations

Presentation of complex number in Cartesian and polar coordinate system

ON LOCAL MOTION OF A COMPRESSIBLE BAROTROPIC VISCOUS FLUID WITH THE BOUNDARY SLIP CONDITION. Marek Burnat Wojciech M. ZajĄczkowski. 1.

Derivation of Optical-Bloch Equations

1. Matrix Algebra and Linear Economic Models

Reminders: linear functions

ω = radians per sec, t = 3 sec

Matrices and Determinants

LAD Estimation for Time Series Models With Finite and Infinite Variance

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Approximation of the Lerch zeta-function

Tridiagonal matrices. Gérard MEURANT. October, 2008

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4,

derivation of the Laplacian from rectangular to spherical coordinates

Solutions: Homework 3

The Simply Typed Lambda Calculus

Second Order Partial Differential Equations

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

The Neutrix Product of the Distributions r. x λ

Finite Field Problems: Solutions

Solution Series 9. i=1 x i and i=1 x i.

Riesz ( ) Vol. 47 No u( x, t) 5 x u ( x, t) + b. 5 x u ( x, t), 5 x = R D DASSL. , Riesz. , Riemann2Liouville ( R2L ) = a

Bounding Nonsplitting Enumeration Degrees

Transcript:

Large-ime Behavior ad Far Field Asympoics of Soluios o he Navier-Sokes Equaios Masakazu Yamamoo 1 arxiv:184.1746v1 [mah.ap] 5 Apr 218 Absrac. Asympoic expasios of global soluios o he icompressible Navier-Sokes equaio as eds o ifiiy wih high-order is sudied ad large-ime behavior of he expasio is clarified. Furhermore, far field asympoics also is derived. Those expasios are provided wihou mome codiios o he iiial velociy. The Bio-Savard law ogeher wih he reormalizaio for he voriciy equaios yields hose expasios. 1. Iroducio We cosider decay properies of soluios o he icompressible Navier-Sokes equaios i. I several precedig works, asympoic expasio of a soluio is provided. Those expasios require he fas decay for a iiial velociy. O he oher had, i is well kow ha a soluio o he Navier-Sokes equaio has a slow decay-rae as x. This special srucure of he Navier-Sokes equaio disurbs o derive he asympoic expasio wih high-order. I his paper, we ivesigae he asympoic expasio wih high-order wihou he srog assumpio for a iiial velociy as x. Here we sudy he followig iiial-value problem: 1.1 uu u = u p, >, x, u =, >, x, u,x = ax, x, where 2 ad a = a 1,...,a is a iiial velociy. Throughou his paper we assume he soleoidal codiio ha a =. Uiqueess, smoohess ad global exisece o ime of soluios are very impora quesio for his problem for hose quesios, see for example [8, 1 12, 15, 16, 24] ad refereces herei. Now we rea a smooh ad global soluio u which saisfies ha 1.2 u L q C1 2 11 q 1 2 for 1 q. This esimae is cofirmed uder several frameworks cf. [2,14,18,19,22,23,25,26], ad gives he upper boud of he decay-rae of he soluio. The lower boud of he decay-rae as is provided by he asympoic expasio. For he hea equaio, we see ha he decay propery of a soluio as x is iheried from a iiial daa. Thus, for he hea equaio, we ca derive he asympoic expasio wih arbirary high order if we assume he fas decay for he iiial daa. Whereas for 1.1, decay of u as x is o corolled by a. Namely, eve if a C, he 1.3 u,x = O x 1 as x for ay fixed > cf. [3]. Moreover, poiwise decay of he soluio is sudied by may auhors see for example [1, 2]. Whe we ry o iroduce a asympoic expasio wih high-order of he similar form as i he precedig works, i is ecessary ha u decays as x sufficiely fas. Hece he polyomial decay 1.3 is cumbersome. Furhermore, we are ieresed o far field asympoics of he soluio. The similar problem is appearig i several dissipaive equaios wih aomalous diffusio. The lower boud of he decay-rae as x of soluios o a semi-liear aomalous diffusio equaio is sudied see [4,27]. To solve behavior as x for he velociy, we employ he voriciy esor. The voriciy esor ω ij = i u j j u i for 1 i,j fulfills ha 1.4 ω ij ω ij i ω hj u h j ω hi u h =, 1 Graduae School of Sciece ad Techology, Niigaa Uiversiy, Niigaa 95-2181, Japa 1

2 where u i is he i-h compoe of he velociy. Moreover ω gives he velociy hrough he Bio-Savard law: 1.5 u j = k 1 ω kj. Ideed, sice u =, we see kω kj = u j j u = u j. We emphasize ha decay of ω as x is corolled by a iiial voriciy. Therefore a asympoic expasio of ω as x wih arbirary high-order ca be defied. This fac ogeher wih he Bio-Savard law derive a asympoic expasio for u wih high-order. Those idea firsly are esablished by Kukavica ad Reis [17], ad hey showed he followig esimae: For 2 q, m 2 ad µ < m1 1 q, x µ u j 2 α m = O 2 11 q 1 2 µ 2 α k 1 G y α ω kj,ydy L q as. This esimae gives he asympoic expasio of u as x wih arbirary high-order. However behavior of he coefficies R y α ω,xdx as is o clear, ad he lower boud of he decay rae as is o derived. Our goal is o clarify asympoic profiles of u as. Furhermore we derive he decay-rae of he soluio respec o boh he space ad he ime variables. From 1.4 ad 1.5, he voriciy saisfies ha 1.6 ω ij =G ω ij j Gs ω hi u h sds i Gs ω hj u h sds, where ω ij = i a j j a i. The op erm of he oliear erm as is vaishig sice ω hi u h s,ydy = h u i i u h u h s,ydy = ui u 1 2 i u 2 dy =. Applyig he Bio-Savard law o 1.6, we see ha 1.7 u j =G a j R k R j Gs ω hk u h sds k, Gs ω hj u h sds, where R k = k 1/2 is he Riesz rasform. The erm of he iiial velociy is represeed by G a j = R k 1/2 G ω kj. The velociy ofe is give by 1.8 u j = G a j h Gs P jk u h u k sds, k, where P jk is he Helmholz-Fujia-Kao projecio. Before cosiderig he behavior of he soluio, we cofirm ha his equaio ad 1.7 are equivale. Ideed, from he soleoidal codiio, he oliear erm of 1.8 is covered o he followig: h Gs P jk u h u k sds k, = = 1 2 k, k, R k R j Gs u h h u k ds R k R j Gs u h ω hk ds R k R j k Gs u 2 sds 1 2 Gs u h h u j ds Gs u h ω hj ds j Gs u 2 sds.

The las wo erms are caceled sice R k R j k ϕ = [ ] F 1 iξk iξ j ξ ξ iξ kˆϕ = F 1 [iξ jˆϕ] = j ϕ for ay suiable fucio ϕ. Throughou his paper we deoe he velociy by 1.7. The asympoic expasio of u as wih lower-order is give by U j;m = α R k 1/2 G y α ω kj ydy ad α =m1 U T j;m = 2l β =m 2l β =mk, l β G l β R k R j G s l y β ω hj u h s,ydyds s l y β ω hk u h s,ydyds 3 for 1 m. Namely, U m = U j;m j=1 ad UT m = U T j;m j=1 imply ha U m L q = 2 11 q m 2 U m 1 L q ad U T m L q = 2 11 q m 2 U T m 1 L q for 1 q ad >. Furhermore he followig esimae holds. Proposiio 1.1. Le 2, ω L 1 L ad x 1 ω L 1, ad a soluio u of 1.1 wih a j = R k 1/2 ω kj saisfy 1.2. The u Uk Uk T L = o q 2 11 q 2 as holds for 1 q. I addiio, if x 2 ω L 1, he u Uk Uk T L = O q 2 11 q 2 1 2 log2 as. Proposiio 1.1 is a represeaio of he asserio i he precedig works via Carpio [5], ad Fujigaki ad Miyakawa [9]. I wo dimesioal case, he similar esimae is provided wihou he mome codiio o he iiial daa, ad he coefficies o he expasio are clarified see [21]. Moreover, i his precedig work, he similar esimaes o he Hardy space draw a spaial decay of he soluio. Here we choose he oher way o lead he spaial decay, i.e., we sudy he esimae wih he polyomial weigh. To his we iroduce he followig fucios for 1 m : Uj;m S = l β R k R j G s l y β ω hk u h s,ydyds. 2l β =mk, Behavior of he coefficies R s l y β ω hk u h s,ydyds as are o clear. However, for Um S = US j;m j=1, we see ha 1.9 U T m Um S L q C 2 11 q 21 1 2 for 1 q see he seeces uder he proof of Proposiio 2.1 i Secio 2. Furhermore his fucio fulfills he followig weighed esimae.

4 Proposiio 1.2. Le 2, ω L 1 L ad x 2 ω L 1, ad a soluio u of 1.1 wih a j = R k 1/2 ω kj saisfy 1.2. The 1.1 x µ u Uk Uk S = O 2 11 q 2 1 2 µ 2 log2 L q as holds for q = 1 ad µ 1, ad for 1 < q ad µ. Proposiio 1.2 provides behavior of he velociy as x. Ideed x µ U k Uk S L q may diverge o ifiiy for large µ ad small q for he deails of his argume, see [4]. The asserio 1.1 wih µ < 1 1 q 1 also provides he spaial profile of he velociy cf. [6]. However, o describe he far field asympoics, we should choose µ ad q such ha µ 1 1 q 1. Proposiios 1.1 ad 1.2 give he asympoic expasio wih -h order. The reormalizaio yields oe wih higher-order, ad his mehod requires asympoic behavior of ω. Here we give he asympoic expasio of ω of he Escobedo-Zuazua [7] ype. For 2 m 1, le 1.11 Ω hk;m = α =m α G 2l β =m1 j=1 2l β =m1 j=1 y α ω hk ydy l β k G l β h G s l y β ω jh u j s,ydyds s l y β ω jk u j s,ydyds ad Ω m = Ω hk;m h,, he we have ha Ω m L q = 2 11 q m 2 Ω m 1 L q for 1 q ad >. We defie he esor I p = I hk;p,x h, for 1 p 2 by p2 Ωhk;pi Uh;i U T h;i, 3 p 2, I hk;p = i=1, 1 p 2. The λ 2p I p λ 2,λx = I p,x for λ >, ad hus 1.12 x µ I p L q = 2 11 q 2 p 2 µ 2 x µ I p 1 L q for 1 q ad µ, ad 1.13 x β I p,xdx = 2 p 2 β 2 x β I p 1,xdx for β Z. The fucios I hk;p build a approximaio of ω hk u h see 2.9 ad 2.1. By usig I p, we iroduce some fucios for 1 m : α R k 1/2 G U j;m = y α ω kj ydy U T j;m = α =m1 2l β =m l β G I hj;m2 1s,y dyds, l β R k R j G 2l β =mk, s l y β ω hj u h s,y I hk;m2 1s,y dyds, m1 s l y β ω hk u h s,y I hj;p s,y m1 I hk;p s,y

K j;m = V j;m = 2l β =mk, 2l β =m m1 2l β =1 m1 Vj;m T = Ṽ j;m = Ṽ T j;m = 2l β =1 l β G l β R k R j G 2 2 m 2 l β 2 l β G m2l β 2 2 m 2 l β 2 m2l β 2l β =m2 l β G s l 1s 2 m 2 1 β 2 ds 1 l y β I hk;m2 1,ydy s l 1s 2 m 2 1 β 2 ds k, l β R k R j G 1 l y β I hj;m 1,ydy, 2l β =m2k, l β R k R j G 1 l y β I hj;m2 1,ydy, 1 l y β I hj;m2 1,ydy, s l 1s 2 m 2 β 1 l y β I hk;m 1,ydy, J j;m = R k R j Gs,xy k, I hk;m2 s,ydyds Gs,xy m 2l β = 1 l y β I hk;m2 1,ydy, 2 s 2 m 2 β 2 s l 1s 2 m 2 β m 2l β = ds 2 s 2 m 2 β 2 ds l β R k R j G,x s l y β l β G,x s l y I β hj;m2 s,ydyds Here Ṽj;m = Ṽ j;m T = for 1 m 2 sice I hj;m =. Thus hose wo fucios are defied oly i he case 3. Those fucios are well-defied i C, ;L 1 L ad saisfy ha U m L q = 2 11 q 2 m 2 U m 1 L q, U T m L q = 2 11 q 2 m 2 U T m 1 L q, J m L q = 2 11 q 2 m 2 J m 1 L q, V T m L q = 2 11 q 2 m 2 V T m 1 L q, 1.14 V m L q = 2 11 q 2 m 2 V m 1 L q for 1 q ad >, ad 1.15 Ṽ m L q Ṽ m T L q = O 2 11 q 2 m 2 ad 1.16 K m L q = O 2 11 q 2 m 2 log2 as for 1 q. We cofirm hem laer see he las seeces of Secio 2. Therefore large-ime behavior of hem are sraighforward. Our mai asserio is esablished i he followig heorem. Theorem 1.3. Le 2, 1 m, ω L 1 L, x m1 ω L 1 ad a soluio u of 1.1 wih a j = R k 1/2 ω kj saisfy 1.2. The u m = o 2 11 q 2 m 2 Uk Uk T m Kk V k Vk T J k m k=3 Ṽk ṼT k L q 5

6 as holds for 1 q. This heorem yields he asympoic expasio as of 2-h order. The form of our expasio is complicaed. Now we emphasize ha he decay-rae of ay erms o he expasio wih respec o boh he space ad he ime variables is clear. The reormalizaio applied as i [13] provides he asympoic expasio of plai form. However he large-ime behavior of he expasio obaied by his mehod is covered. Remark 1.4. Upo he codiio for he iiial velociy ha a L 1 L ad x m a L 1, we also derive a asympoic expasio of 2-h order. To describe far field asympoics, we defie he followig fucios for 1 m : U S j;m = 2l β =mk, ad U S m = US j;m j=1. The 1.17 l β R k R j G I hk;m2 1s,y dyds s l y β ω hk u h s,y U T m U S m L q C 2 11 q 2 m 2 1 1 2 m1 I hk;p s,y for 1 q ad >. We cofirm 1.17 uder he proof of Proposiio 2.3 i Secio 2. We esablish he space-ime asympoics of he velociy wih high-order i he followig heorem. Theorem 1.5. Le 2, 1 m, ω L 1 L, x m1 ω L 1 ad a soluio u of 1.1 wih a j = R k 1/2 ω kj saisfy 1.2. The 1.18 x µ u m Uk Uk S m m Kk V k J k = o 2 11 q 2 m 2 µ 2 k=3 Ṽ k LqR as holds for q = 1 ad µ m1, ad for 1 < q ad µ m. Remark 1.6. Large-ime behavior of he coefficie of Uk S 1.17. is o sraighforward bu is implied by 1.9 ad Remark 1.7. Upo he addiioal codiio x m2 ω L 1, he sharp esimae for 1.18 is give by O 2 11 q 2 m 2 1 2 µ 2L m log2 as, where { 1, 1 m 1, 1.19 L m = log2, m =. The reormalizaio ogeher wih Theorem 1.5 gives a asympoic expasio wih 3-h order. By repeaig his procedure, we ca derive a asympoic expasio wih arbirary high order. However, largeime behavior of erms o hem should be complicaed. Noaios. For a vecor ad a esor, we abbreviae hem by usig a same leer, for example, a = a j j=1, b = b ij i,j=1. For x = x 1,...,x ad y = y 1,...,y, we deoe x y = j=1 x jy j, x 2 = x x. I a ewlie, a produc of scalars is described by -symbol. We symbolize ha = /, j = / x j 1 j, = 1,..., ad = j=1 2 j. The legh of a muli-idex α = α 1,...,α Z = N {} is give by α = α 1 α. We abbreviae ha = j=1 α j!, x α = j=1 xα j j ad α = j=1 α j j. We defie he Fourier rasform ad is iverse by ˆϕξ = F[ϕ]ξ = 2π /2 R ϕxe ix ξ dx ad ˇϕx = F 1 [ϕ]x = 2π /2 R ϕξe ix ξ dξ, respecively, where i = 1. For 1 q, L q deoes he Lebesgue space ad L q is is orm. Various cosas are simply deoed by C.

7 2. Prelimiaries To prove our asserios, some esimaes for he voriciy are required. Proposiio 2.1. Le ω L 1 L, x 2 ω L 1 ad a soluio u of 1.7 wih a j = R k 1/2 ω kj saisfy 1.2. The a soluio ω of 1.6 fulfills 2.1 ω L q C1 2 11 q 1 for 1 q. I addiio, le k Z ad x k ω L 1. The x k ω L q C 2 11 q 1 1k 2. for 1 q. Proof. The L p -L q esimae for 1.6 ogeher wih 1.2 gives ha ω L q C1 2 11 q. From R ω ij dy =, R y k ω ij dy = R y k i a j j a i dy = R δ kj a i δ ki a j dy = ad R ω hj u h dy = R h u j j u h u h dy = R u j udy =, 1.6 is represeed by ω ij = G,xy α G,xy ω α ij ydy 2.2 α 1 j Gs,xy j Gs,xω hi u h s,ydyds i Gs,xy i Gs,xω hj u h s,ydyds. From he mea value heorem, he firs ad he secod erms are covered o G,xy 1 ad = α 1 /2 α G,xy α ω ij ydy = α =2 j Gs,xy j Gs,xω hi u h s,ydyds R 1 y j Gs,xλyω hi u h s,ydλdyds R /2 j Gs,xy j Gs,xω hi u h s,ydyds, α G,xλy λy α ω ij ydλdy respecively. The hird erm also is covered o he similar form. Hece, by he Hausdorf-Youg iequaliy ad he decay of he Gauss kerel, ωij L q C 2 11 q 1 x 2 ω ij L 1 2.3 C C /2 /2 s 2 11 q 1 x ω hi s L 1 x ω hj s L 1 u h s L ds s 1 2 For k 1, we see from 2.2 ha x k ω ij = 2.4 α =2 y x /2 ωhi s L q ωhj s L q y x /2 1 uh s L ds. G,xy α G,xy x α k ω ij ydy α 1 x k α G,xλy λy α ω ij ydλdy

8 β =1 β =1 y x /2 y x /2 j Gs,xy j Gs,x x k ω hi u h s,ydyds y x /2 1 x k β j Gs,xλyy β ω hi u h s,ydλdyds i Gs,xy i Gs,x x k ω hj u h s,ydyds y x /2 1 x k β i Gs,xλyy β ω hj u h s,ydλdyds. Applyig he mea value heorem o he firs erm wih k = 1, we have ha G,xy α G,xy x ω α ij ydy y x /2 α 1 L q C G L q x 2 ω L ij 1 C 2 11 q 1 2 x 2 ω L ij 1. For k 1, his erm fulfills ha G,xy α G,xy x α k ω ij ydy y x /2 α 1 L q C G L q x G L q x k ω ij L 1 C 2 11 q x k ω ij L 1. The secod erm of 2.4 saisfies ha 1 x k α G,xλy λy α ω ij ydλdy y x /2 L q C 2 11 q 1k 2 x 2 ω L ij 1. We remark ha, whe k = 1, his orm is esimaed by C 2 11 q 1 1 2. By usig 1.2, we see for he hird ad he fourh erms of 2.4 ha j Gs,xy j Gs,x x k ω hi u h s,ydyds C C C y x /2 /2 /2 /2 s 2 11 q 1 2 x k ω hi u h s L 1 dsc s 2 11 q 1 21s 2 1 2 x k ω hi s L 1 ds s 1 21s 2 1 2 x k ω hi s L q ds /2 L q s 1 2 x k ω hi u h s L q ds ad C C y x /2 /2 /2 C 1 x k β j Gs,xλyy β ω hi u h s,ydλdyds s 2 11 q 1k 2 x ωhi u h s L 1 dsc s 2 11 q 1k 21s 2 1 2 x ωhi s L 1 ds /2 s 1k 21s 2 1 2 x ωhi s L q ds, /2 L q s 1k 2 x ωhi u h s L q ds

respecively. We rea he fifh ad he las erms of 2.4 by he similar argume, he we obai ha x k ω ij L q x C 2 11 q 1 1k 2 2 ω L ij 1 x k ω L ij 1 C 2 11 q 1k 2 x 2 ω L ij 1 /2 x C s 2 11 q 1 21s 2 2 1 k ω hi s L 1 x k ω hj s L ds 1 2.5 C C C /2 /2 /2 x s 1 21s 2 2 1 k ω hi s L q x k ω hj s L ds q s 2 11 q 1k 21s 2 1 2 s 1k 21s 2 1 2 x ω hi s L 1 x ω hjs L 1 ds x ω hi s L q x ω hjs L q ds. Whe k = q = 1, sice he sigulariy of he secod erm a = is removable, he Grawall esimae says ha x ω L 1 for >, ad x ω ij L 1 C11 2 x ω ij L 1 x 2 ω L ij 1 i,j=1 C sup <σ< h,i,j=1 i,j=1 x ω hi σ L 1 x ω hjσ L 1 s 1 21s 2 1 2ds. Thus we coclude ha x ω L 1 C1 1 2 ad cofirm 2.1 from 2.3. We use his esimae io 2.5 wih k = 1 ad 1 q, he 2 11 q x ωij /2 L q C11 2 C 2 11 q s 2 11 q 1 21s 2 1 ds where i,j=1 A q,k = CA q,1 s 1 2 1s 2 1 2 ds, /2 sup <σ< h,i=1 σ 2 11 q x k ω hi σ L. q Hece x ω L q C 2 11 q 1 1 2. Similarly 2.5 wih his esimae leads ha x k ω L 1 C1 1k 2 for k 2. Applyig hose esimaes io 2.5 wih k 2 ad 1 q, we see ha 2 11 q x k ω ij /2 L q C11k 2 C 2 11 q s 2 11 q 1 21s 2 3 2 k 2ds i,j=1 /2 C 2 11 q s 2 11 q 1k 21s 2 1 dsc 2 11 q s 1k 2s 2 11 q 1s 2 1 ds CA q,k /2 s 1 2 1s 2 1 2 ds /2 9 ad he x k ω L q C 2 11 q 1 1k 2. Thisproposiioadhedecaypropery1.2 guaraeehaω m1, U m, U T m, US m adi m for1 m are well-defied. They also lead 1.9. Moreover, we see ha K m, V m, V T m, Ṽ m, Ṽ T m ad J m employed i our mai resuls also are well-defied. However J m eeds a special reame see he las seeces i his secio. We cofirm he Escobedo-Zuazua ype esimae for ω.

1 Proposiio 2.2. Le 1 q, 1 m, ω L 1 L q ad x m2 ω L 1. The m1 ω Ω p C 2 11 q m 2 1 21 1 2L m, L q where Ω p ad L m are defied by 1.11 ad 1.19, respecively. p=2 Proof. This proposiio is show by he same procedure as i [7]. Reader may skip his seece. Employig similar argume as i he proof of Proposiio 2.1, we see ha 2.6 m1 ω ij Ω ij;p p=2 = G,xy m1 α = j Gs,xy i Gs,xy α G y ω α ij ydy m 2l β = m 2l β = l β j G,x s l y ω β hi u h s,ydyds l β i G,x s l y ω β hj u h s,ydyds. The esimae for he firs erm is sraighforward. For N = max{l Z 2l m}1, he secod erm is covered o m l j Gs,xy β j G,x s l y ω β hi u h s,ydyds = = /2 m 2l= /2 /2 m /2 j Gs,xy 2l β = m 2l= l j G,xy l! j Gs,xy 1 l j G,xy s ω l hi u h s,ydyds l! m2l β = m 2l β =1 l β j G,x y s β l ω hi u h s,ydyds l β j G,x s l y ω β hi u h s,ydyds N jgλs,xy λ N1 s N ω hi u h s,ydλdyds N! /2 1 l β j G,xλy λ m2l s l y β ω hi u h s,ydλdyds 2l= β =m12l /2 j Gs,xy m 2l β =1 l β j G,x s l y ω β hi u h s,ydyds. Hece, by he Hausdorf-Youg iequaliy, 1.2 ad 2.1, we have ha m l j Gs,xy β j G,x s l y ω β hi u h s,ydyds C 2 11 q N1 2 /2 C 2 11 q m 2 1 m 2l= 2l β = s N ω hi u h s L 1 ds /2 L q s l y m12l ω hi u h s L 1 dsc s 1 2 ωhi u h s L q ds /2

C m 2l β =1 C 2 11 q N1 2 C /2 2 11 q l β 2 1 2 /2 /2 s l y β ω hi u h s L 1 ds /2 1s 2 3 2 N dsc 2 11 q m 2 1 1s 2 1m 2 ds s 1 2s 2 11 q m 2 1 dsc m 2l β =1 2 11 q l β 2 1 2 /2 s 2 3 2 l β 2 ds 11 C 2 11 q m 2 1 L m. Similar reame provides he esimae for he las erm o 2.6. Now we see ha 2.7 I m,xdx = for 3 m 2 ad >. Ideed, for m = 3, if we assume R I hj;3,xdx for some 1 h,j, he ω hj u h I hj;3,xdx = I hj;3,xdx = 2 3 2 I hj;3 1,xdx. O he oher had 1.2 ad Proposiios 1.1, 2.1 ad 2.2 say ha ω hj u h I hj;3,xdx ωhj u h I hj;3 L = o 2 3 2 as. They are coradicory. Iducively, if R I hj;m,xdx, he m ω hk u h I hj;p,xdx = I hj;m,xdx = 2 m 2 I hj;m 1,xdx. However ω hk u h m I hj;p,xdx ω hk u h m I hj;p L 1 = o 2 m 2 as. Therefore I hj;m,xdx = for ay 1 h,j. We prepare he followig weighed esimae. Proposiio 2.3. Le 1 m, 1 x m1 ω L 1, 1 q ad µ m1. The m1 ω x µ Ω p C 2 11 q m 2 1 2 µ 2 1 m 2 1 2 µ 2 1 1 2L m, p=2 L q where Ω p ad L m are defied by 1.11 ad 1.19, respecively. Proof. Proposiio 2.1 ad he defiiio of Ω p immediaely gives m1 ω x µ Ω p C 2 11 q 1µ 2 1 m 2 1 2 µ 2 p=2 L q We firsly choose µ = m1. We rea he righ had side of 2.6. The firs erm is separaed o m1 α G G,xy y ω α ij ydy α = = G,xy y x /2 α =m2 y x /2 1 m1 α = α G,xy α ω ij ydy α G,xλy λ m1 y α ω ij ydλdy..

12 The x m1 m1 G,xy α = α G y ω α ij ydy L q G m1 C L q x m1 ω L ij 1 x α α G L q x m1 α x α ω L ij 1 C α =m2 α = x m1 α G L x α ω L q ij 1 C 2 11 q 1 1 2 2. For he secod erm of 2.6, we spli he domai, o 2.8 Q 1 =,/2] {y y > x /2}, Q 2 =, {y y x /2}, Q 3 = /2, {y y > x /2}, Q 4 = Q 2, Q 5 = Q 1 Q 3. The where ρ k = j Gs,xy Q k m 2l= m 2l β = j Gs,xy Q k The Taylor heorem leads ha /2 ρ 1 = ad ρ 2 = l β j G,x s l y ω β hi u h s,ydyds = ρ 1 ρ 5, m 2l= m2l l j G,xy l! y > x /2 y x /2 1 1 l j G,xy s ω l hi u h s,ydyds, k = 1,2,3, l! β = l β j G,x y s β l ω hi u h s,ydyds, k = 4,5. N jgλs,xy λ N1 s N ω hi u h s,ydλdyds N! N jgλs,xy λ N1 s N ω hi u h s,ydλdyds N! for N = max{l Z 2l m}1. Hece, from 1.2 ad Proposiio 2.1, ad x m1 ρ 1 /2 L q C s 2 11 q N1 2s N x m1 ω hi u h s L 1 ds C /2 s 2 11 q N1 2s N 1s 1m 2 ds C 2 11 q 1 2 m 2 x m1 ρ 2 /2 L q C s 2 11 q N 2 m 2 s N ω hi u h s L 1 ds C C /2 /2 C s N 2 m 2 s N ω hi u h s L q ds s 2 11 q N 2 m 2 s N 1s 2 3 2 ds /2 s N 2 m 2 s N 1s 2 11 q 2 3 2ds C 2 11 q 1 1 2 m 2 L m.

By 1.2 ad Proposiio 2.1, we have ha x m1 ρ 3 L q C Sice we obai ha C C /2 s 1 2 m 2l= /2 y m1 ω hi u h s L q ds 2 11 q l1 2 /2 s 1 2s 2 11 q 1s 1m 2 dsc s l y m1 ω hi u h s L 1 ds m 2l= C 2 11 q 1 1 2 m 2 C 2 11 q 1 1 2 2. x m1 ρ 4 = The las erm fulfills ha m 2l= β =m2l1 y x /2 1 λ m2l s l y β ω hi u h s,ydλdyds, x m1 ρ 4 L q C 2 11 q 1 2 2 x m1 ρ 5 m L q C C 2l= m 2l= 2 11 q l1 2 /2 x m1 l β j G,xλy C 2 11 q 1 2 2L m. s l 1s 2 1lm 2 ds 2 11 q 1 2 l s l y m1 ω hi u h s L 1 ds 13 s l 1s 1m 2 ds m 2 11 q 1 2 l s l 1s 1m 2 ds C 2 11 q 1 1 2 2. 2l= The las erm of 2.6 is reaed by he similar esimaes. Therefore we ge he desired esimae wih µ = m1. The couplig of his ad Proposiio 2.2 complees he proof. Proposiio 2.3 ever give far field asympoics of ω sice x µ Ω p L q is iegrable for ay large µ. This proposiio is prepared o prove our mai asserios. The above iequaliies lead for 1 m ad 1 q ha m2 ω L m hku h I hk;p ω hk L q uh U h;i Uh;i T L q 2.9 C 2 11 q 2 m 2 m ωhk i=1 m2i p=2 i=1 Ω L hk;p Uh;i U T q h;i C 2 11 q 2 m 2 1 1 1 2L m. L Upo he codiio x m1 ω L 1, we have for µ m1 ha m2 L ω x µ hk u h I hk;p x µ m ω L hk q u h h;i Uh;i q i=1u T L m m2i x µ ω hk Ω L hk;p Uh;i U T h;i L i=1 p=2 q 1µ 2 1 1µ 2 1 1 2L m.

14 We relieve he sigulariy a = by usig he Mikowski iequaliy ogeher wih 1.2, Proposiio 2.1 ad 1.13, he 2.1 Sice ω x µ hk u h m2 I hk;p L q C 2 11 q 2 m 2 1µ 21 1 2L m. m1 m2 ω hk u h I hk;p I hk;m2 1 = ω hk u h I hk;p 1 I hk;m2 λdλ, I hk;p,x = p 2 1 I hk;p 1, 1 2x, ad I hk;p 1,x L q for 1 q, we see ha m1 ω x µ hk u h I hk;p I hk;m2 1 C 2 11 q 2 m 2 1 2 µ 2 1 2 m 2 1 2 µ 2 L q 1 1 L m. Those iequaliies play impora role i he proof of our asserios. Moreover hey guaraee ha U m, Um T ad Um S for 1 m are well-defied i L 1 L, ad 1.17 holds. We show ha J m is well-defied. Ideed, by he similar calculus as i he proof of Proposiio 2.2, he firs erm of J m is represeed by /2 = m R k R j Gs,xy 1 2l= β =m12l 1 /2 m 2l β =1 m 2l β = l β R k R j G,x s l y I β hk;m2 s,ydyds N R k R j Gλs,xy λ N1 s N I hk;m2 s,ydλdyds N! /2 1 l β R k R j G,xλy λ m2l s l y β I hk;m2 s,ydλdyds R k R j Gs,xλy yi hk;m2 s,ydλdyds l β R k R j G,x /2 s l y β I hk;m2 s,ydyds, where N = max{l Z 2l m}1. Here we used 2.7. Hece, by 1.12, we see for 1 q ha m l R k R j Gs,xy β R k R j G,x s l y I β hk;m2 s,ydyds C C /2 /2 2l β = s 2 11 q N s 2 m 2 1N dsc 2 11 q 2 m 2 1 2 s 1 2 s 2 11 q 2 m 2 1 2dsC m 2l β =1 2 11 q l β 2 /2 /2 s 1 2ds s 2 m 2 1l β 2 ds. L q The righ had side is iegrable for ay fixed >. The secod erm of J m is reaed i he similar way. Therefore J m also is well-defied i L 1 L. The decay properies 1.14 are comig from he scalig propery of hose fucios. The esimaes 1.15 ad 1.16 are sraighforward. 3. Proof of mai resuls I his secio, we firsly prove Theorem 1.5. This proof also show Proposiio 2.3 3.1, ad 3.3 wih m = immediaely gives his proposiio.

Proof of Theorem 1.5. Firsly, we derive he asympoic expasio. Sice ω hk u h dx =, u deoed by 1.7 is expaded o 15 3.1 where r, = r 1, = r 2, = r 3, = u j = U j;m Uj;m S r,r 1, r 2, r 3,, m=1 R k 1/2 G ω kj k, 2l β =1 1 α = R k R j Gs,xy ω hk u h s,ydyds, Gs,xy l β G 2l β = α R k 1/2 G 2l β = y α ω kj ydy, l β R k R j G,x s l y β l β G,x s l y ω β hj u h s,ydyds, s l y β ω hj u h s,ydyds. Moreover, from 1.13, r,,...,r 3, are spli o r, = r 1, = α =2 k, U S j;1 r 1,1, r 2, = α R k 1/2 G R k R j Gs,xy 2l β =1k, 2l β =1 2l β =1 r 2,1, l r 3, = β G 2l β =1 Gs,xy l β G,x l β G,x =V j;1 r 3,1, l β R k R j G,x y α ω kj ydy r,1, 1 2l β = 1 2l β = l β R k R j G,x s l y I β hk;3 s,ydyds s l 1s 2 3 2 β 2 ds 1 l y β I hk;3 1,ydy l β G,x s l y I β hj;3 s,ydyds s l y β ω hj u h s,yi hj;3 1s,ydyds s l 1s 2 3 2 β 2 ds 1 l y β I hj;3 1,ydy s l y β I hj;3 s,ydydsr 3,1 where r,1 = R k 1/2 G ω kj 2 α = α R k 1/2 G y α ω kj ydy,

16 r 1,1 = r 2,1 = r 3,1 = Therefore k, 2l β =1 2l β =1 R k R j Gs,xy 1 2l β = l β R k R j G,x s l y β ω hk u h I hk;3 s,ydyds, 1 l Gs,xy β G,x s l y ω β hj u h I hj;3 s,ydyds l β G l β G,x 2l β = s l y β ω hj u h s,yi hj;3 1s,ydyds, s l y β ω hj u h I hj;3 s,ydyds. r, r 3, = K j;1 U j;1 U S j;1 V j;1 J j;1 r,1 r 3,1. We repea his procedure, he r 1,1 = 2l β =2k, Uj;2 S r 2,1 = where k, r 1,2, 2l β =2 2l β =2 2l β =1 r 1,2 = r 2,2 = l β R k R j G R k R j Gs,xy l β G l β G s l 1s 2 2 β 2 ds 1 l y β I hk;4 1,ydy 2 2l β = s l 1s 2 2 β 2 ds I hj;4 1s,y dyds Gs,xy 2 1 2 l β G k, 2l β =2 2 2l β = l β R k R j G,x s l y I β hk;4 s,ydyds 1 l y β I hj;4 1,ydy s l y β ω hj u h s,yi hj;3 s,y l β G,x s l y β hj;4 s,ydyds I 1 l y β I hj;4 1,ydy r 2,2, R k R j Gs,xy 2 2l β = l β R k R j G,x s l y β ω hk u h I hk;3 I hk;4 s,ydyds, l β G s l y β ω hj u h s,yi hj;3 s,y I hj;4 1s,y dyds

Gs,xy 2 2l β = ω hj u h I hj;3 I hj;4 s,ydyds 2l β =1 2l β =1 l β G l β G l β G,x s l y β s l y β ω hj u h I hj;3 I hj;4 s,ydyds s l 1s 2 3 2 β 1 l y β I hj;3 1,ydy. 2 s 2 3 2 β 2 ds 17 For he las erm, 1.13 leads ha r 3,1 = 2l β =1 2 2 1l β 2 l β G 22l β 1 l y β I hj;4 1,ydy r 3,2, where r 3,2 = 2l β =1 l β G s l y β ω hj u h I hj;3 I hj;4 s,ydyds. Therefore r,1 r 3,1 =K j;2 U j;2 U S j;2 V j;2 J j;2 r,2 r 3,2. We expad he firs erm of r 2,2, he, from 1.13, = = 2l β =2 2l β =2 2l β =2 2l β =2 2l β =2 2l β =2 2l β =2 l β G l β G l β G l β G 2 1 2 l β G l β G l β G s l y β ω hj u h s,yi hj;3 s,yi hj;4 1s,y dyds s l y β I hj;5 s,ydyds s l y β I hj;4 1s,yI hj;4 s,y dyds s l y β ω hj u h 5 I hj;p s,ydyds 1 l y β I hj;5 1,ydy s l 1s 2 2 β 2 s 2 2 β 2 s l y β ω hj u h ds 5 I hj;p s,ydyds. 1 l y β I hj;4 1,ydy

18 For he secod erm of r 2,2, we see 2 Gs,xy = = 2l β =3 2l β =3 2l β =3 2l β =3 l β G Gs,xy l β G l β G Gs,xy Gs,xy l β G For he hird erm of r 2,2, 2l β =1 = 2l β =1 2l β =1 2l β =2 2l β = l β G,x s l y β 3 2l β = ω hj u h ω hj u h 4 I hj;p s,ydyds 4 I hj;p s,ydyds l β G,x s l y β ω hj u h s l 1s 2 5 2 β 2 ds l β G 3 2l β = 3 2l β = s l y β 4 I hj;p s,ydyds 1 l y β I hj;5 1,ydy ω hj u h s,y 4 l β G,x s l y β hj;5 s,ydyds I I hj;p s,yi hj;5 1s,y dyds l β G,x 5 s l y β ω hj u h I hj;p s,ydyds 4 s l y β ω hj u h s,y I hj;p s,yi hj;5 1s,y dyds. 1 l β G l β G s l y β ω hj u h 4 I hj;p s,ydyds 1 l y β I hj;5 1,ydy s l y β ω hj u h The las erm of r 2,2 is Ṽj;3. Hece 2 1 2 l r 2,2 = β G 1 l y β I hj;5 1,ydy 2l β =3 2l β =3 2l β =1 l β G l β G Gs,xy 1 l β G s l 1s 2 5 2 β 2 ds 3 2l β = s l y β 5 I hj;p s,ydyds. 1 l y β I hj;5 1,ydy ω hj u h s,y 4 l β G,x s l y β hj;5 s,ydyds I 1 l y β I hj;5 1,ydy Ṽ j;3 r 2,3, I hj;p s,yi hj;5 1s,y dyds

19 where r 2,3 = Similarly, 2 2l β =1 2l β =2 r 1,2 = 2l β =3 l β G Gs,xy l β G l β G 2l β =3k, k, r 1,3, s l y β ω hj u h s,y 4 I hj;p s,y I hj;5 1s,y s,ydyds 3 l β G,x 5 s l y β ω hj u h I hj;p s,ydyds 2l β = 5 s l y β ω hj u h I hj;p s,ydyds s l 1s 2 2 β 2 s 2 2 β 2 ds 1 l y β I hj;4 1,ydy. l β R k R j G R k R j Gs,xy s l 1s 2 5 2 β 2 ds 1 l y β I hk;5 1,ydy Uj;3 S 3 2l β = l β R k R j G,x s l y I β hk;5 s,ydyds where r 1,3 = k, ω hk u h R k R j Gs,xy 5 I hk;p s,ydyds. 3 2l β = l β R k R j G,x s l y β A las, from 1.13, r 3,2 = 2l β =1 2 2 3 2 l β 2 l β G 32l β 1 l y β I hj,5 1,ydy r 3,3, where r 3,3 = 2l β =1 l β G s l y β ω hj u h 5 I hj,p s,ydyds. Thus r,2 r 3,2 =K j;3 U j;3 U S j;3 V j;3 J j;3 Ṽj;3 r,3 r 3,3. Geerally, for 1 m, le r,m = m1 R k 1/2 G ω kj α = α R k 1/2 G y α ω kj ydy,

2 r 1,m = r 2,m = r 3,m = k, 2l β =m R k R j Gs,xy m 2l β = m2 ω hk u h I hk;p s,ydyds, l β G s l y β ω hj u h s,y 2l β = l β R k R j G,x s l y β m1 I hj;m2 1s,y dyds m l Gs,xy β G,x s l y β ω hj u h m1 2l β =1 2l β =m1 2l β =1 m2 l β G I hj;p s,ydyds l β G s l y β 1 l y β I hj;m1 1,ydy, l β G I hj;p s,y m2 ω hj u h I hj;p s,ydyds s l 1s 2 m 2 1 2 β 2 s 2 m 2 1 2 β 2 ds s l y β m2 ω hj u h I hj;p s,ydyds, he, for 1 m 1, 3.2 r,m r 3,m =K j;m1 U j;m1 U S j;m1 V j;m1 J j;3 Ṽj;m1 r,m1 r 3,m1. We already cofirmed i for m = 1 ad 2. Iducively, for 3 m 1, we expad r 2,m, he, for he firs ad he secod erms, we see from 1.13 ha = = 2l β =m l β G s l y β ω hj u h s,y m1 I hj;p s,y I hj;m2 1s,y dyds l β G s l y β I hj;m3 s,ydyds l β G s l y β I hj;m2 1s,yI hj;m2 s,ydyds 2l β =m 2l β =m 2l β =m 2l β =m l β G 2 1 2 l β G s l y β m3 ω hj u h I hj;p s,ydyds 1 l y β I hj;m3 1,ydy

ad = 2l β =m 2l β =m 2l β =m1 2l β =m1 2l β =m1 l β G l β G Gs,xy l β G l β G s l 1s 2 m 2 1 β 2 s 2 m 2 1 β 2 ds m 2l β = s l y β m3 ω hj u h I hj;p s,ydyds l β G,x s l y β ω hj u h s l 1s 2 m 2 3 2 β 2 ds I hj;m3 1s,y dyds m1 Gs,xy 2l β = m1 Gs,xy l β G 2l β = I hj;m3 1s,y dyds. s l y β ω hj u h s,y I hj;m2 1,ydy m2 I hj;p s,ydyds 1 l y β I hj;m3 1,ydy m2 I hj;p s,y l β G,x s l y β hj;m3 s,ydyds I l β G,x s l y β ω hj u h s l y β ω hj u h s,y m2 m3 I hj;p s,y I hj;p s,ydyds 21 For he hird erm of r 2,m, we have ha = = m1 2l β =1 m1 2l β =1 m1 2l β =1 m1 2l β =1 m1 2l β =1 l β G l β G l β G s l y β 2 2 m 2 1 2 l β 2 l β G m12l β l β G m2 ω hj u h I hj;p s,ydyds s l y β I hj;m3 s,ydyds m3 s l y β ω hj u h I hj;p s,ydyds j 1 l y β I hj;m3 1,ydy m3 s l y β ω hj u h I hj;p s,ydyds. The las erm of r 2,m is Ṽj;m1. The oher erms r 1,m ad r 3,m are expaded as r 1,m = 2l β =m1k, U S j;m1 l β R k R j G j s l 1s 2 m 2 3 2 β 2 ds 1 l y β I hk;m3 1,ydy

22 k, r 1,m1 m1 R k R j Gs,xy 2l β = l β R k R j G,x s l y I β hk;m3 s,ydyds ad r 3,m = 2l β =1 2 2 m 2 1 2 l β 2 l β G m12l β 1 l y β I hj;m3 1,ydy r 3,m1, respecively. Hece we coclude 3.2 ad u j = m Uj,k Uj,k m S K j,k V j,k J j,k r,m r 3,m m Ṽ j,k k=3 for 1 m. Nex, we show ha 3.3 x µ r,m L q x µ r 3,m L q = o 2 11 q 2 m 2 µ 2 as for q = 1 ad µ m1, ad for 1 < q ad µ m. For some posiive fucio R = R wih R = o 1/2 as, r,m is spli as r,m = Thus α =m2 α =m1 α =m1 α =2 m1 α =2 y x /2 x µ r,m L 1 CR y mi x /2,R 1 R< y x /2 1 α R k 1/2 G,x 1 α R k 1/2 G C C α R k 1/2 G,xλy λ m1 y α ω kj ydλdy α R k 1/2 G,xλy λ m y α ω kj ydλdy R< y x /2 y α ω kj ydy α R k 1/2 G,xλy λy α ω kj ydλdy α =m2 α =m1 m1 α =2 y x /2 y α ω kj ydy. x µ α R k 1/2 G L x m1 ω L 1 kj 1 x µ α R k 1/2 G L 1 y >R y α ω kj y dy x α 2 α R k 1/2 G L x µ2 α x α ω L 1 kj 1

23 for µ m1. Similarly, sice r,m = α =m2 α =m1 α =m1 α =1 m1 α =1 y x /2 y mi x /2,R 1 R< y x /2 1 α R k 1/2 G 1 α R k 1/2 G we have for 1 < q ad µ m ha x µ r,m L q CR C C α R k 1/2 G,xλy λ m1 y α ω kj ydλdy α R k 1/2 G,xλy λ m y α ω kj ydλdy R< y x /2 y α ω kj ydy α R k 1/2 G,xλy y α ω kj ydλdy α =m2 α =m1 m1 α =1 y x /2 y α ω kj ydy, x µ α R k 1/2 G L q x m1 ω L kj 1 x µ α R k 1/2 G L q y >R y m1 ω kj y dy x α 1 α R k 1/2 G L q x µ1 α x α ω L kj 1. Therefore x µ r,m L q = o 2 11 q 2 m 2 µ 2 as for q = 1 ad µ m1, ad for 1 < q ad µ m. Nex we derive 3.3 for r 1,m,...,r 3,m. We show his for large µ for a sar. We employ Q 1,...,Q 5 defied by 2.8, he r 1,m = r 1,1,m r 1,5,m, where r 1,i,m = k, m Q i 2l= k, m R k R j Gs,xy Le N = max{l Z 2l m}1, he r 1,1,m = k, Q i ω hk u h 2l= m2 l R k R j G,xy l! /2 lr kr j G,xy s l l! I hk;p s,ydyds, i = 1,2,3, m2l β = m2 l β R k R j G,x y β s ω l hk u h I hk;p s,ydyds, i = 4,5. y x /2 1 N R k R j Gλs,xy λ N1 N! m2 s ω N hk u h I hk;p s,ydλdyds.

24 Thus, by 2.1, C C Similarly, x µ r 1,1,m L q k, /2 1 /2 1 N R k R j Gλs L q λn1 s N x ω µ hk u h m2 λs 2 11 q N λ N1 s 2 m 2 1µ 2 N 1s 1 2 Lm sdλds C 2 11 q 2 m 2 1 2 µ 2L m. r 1,2,m = k, y x /2 1 NR kr j Gλs,xy λ N1 N! m2 s ω N hk u h I hk;p s,ydλdyds. Sice 2N 4 < µ < 2N whe q = 1 ad m2 < µ m1, x µ r 1,2,m L 1 C C k, 1 1 x µ N R kr j Gλs L 1 λn1 s ω N hk u h m2 I hk;p s L 1 R dλds I hk;p s L 1 R dλds λs Nµ 2λ N1 s 2 m 2 1N 1s 1 2L m sdλds C 2 m 2 1 2 µ 2L m. Here we remark ha, sice N µ 2 > 2, λsnµ 2 is iegrable i s,λ,,1. Ideed, for a > 2, Whe a 1, /2 1 λs a dλds = 1a 1 1/2 1 1λs a dλds. 1 1/2 1 The las erm saisfies 1 1/2 Whe a = 1, 1 1/2 1 1λs a dλds = 1 1 s 1s1a ds 2 1λs 1 dλds = 1 1/2 1 1/2 1 s = 1 1a 1/2 1 1s log2 λ a dλds = 1 1a 1 1/2 1 1/2 1 s 1s1a ds 1 11s 1a ds s. 1s 1a ds = 2 [ 1s 2a ] 1 2a 1/2 = 2 1 1 2a 2 2a. 1 1 dλ 1 s 1s λ ds = 1/2 log1s 1 ds 2 log1sds = log21. s 1/2

For 1 < q, we choose some q 1 ad q 2 wih 1 1 q = 1 q 1 1 q 2 ad 1 < q 1 < 1, he for m1 µ m, we see ha x µ r 1,2,m L q /2 1 C x µ N R kr j Gλs m2 L q λn1 s ω N hk u h I hk;p s L 1 R dλds C k, C k, /2 /2 1 C 1 /2 1 x µ N R k R j Gλs L q 1 λn1 s ω N hk u h λs 2 11 q Nµ 2λ N1 s 2 m 2 1N 1s 1 2 Lm sdλds m2 λs 2 1 1 q 1 N µ 2 λ N1 s 2 1 1 q 2 2 m 2 1N 1s 1 2 Lm sdλds C 2 11 q 2 m 2 1 2 µ 2L m. I hk;p s L q 2R dλds Here we ca choose q 1 such ha 2 1 1 q 1 N µ 2 > 2, hus λs 2 1 1 q 1 N µ 2 is iegrable i s,λ /2,,1. Moreover r 1,3,m = k, /2 y > x /2 1 m R k R j Gλs,xydλs m2 ω hk u h I hk;p s,ydyds. 2l=2 R l k R j G,xy s l l! 25 Hece x µ r 1,3,m L 1 C C /2 /2 s s 1 m R k R j Gλs L 1 dλ ω x µ hk u h 1 λs 1 dλ m2 2l=2 2l=2 I hk;p s L 1 R ds s l l R k R j G L 1 s l s l 2 m 2 1µ 21s 1 2L m sds = o 2 m 2 µ 2 as. For 1 < q, we choose q 1 ad q 2 such ha 1 1 q = 1 q 1 1 q 2 ad 1 2 < 1 q 1 < 1, he x µ r 1,3,m L q C /2 m C l R kr j G L q 2l= C /2 R k R j Gs L q 1 ω x µ hk u h /2 m2 m2 s l x ω µ hk u h I hk;p s L 1 R ds s 2 1 1 q 1 s 2 1 1 q 2 2 m 2 1µ 2 1s 1 2L m sds m 2l= 2 11 q l /2 C 2 11 q 2 m 2 µ 21 1 2L m. s 2 m 2 1lµ 21s 1 2L m sds I hk;p s L q 2R ds

26 From he Taylor heorem, Hece m r 1,4,m = 2l= β =m2l1k, x µ r 1,4,m m L q C y x /2 1 l β R k R j G,xλy m2 s l y ω β hk u h I hk;p s,ydλdyds. 2l= β =m2l1k, x µ l β R k R j G L q m2 s l y ω β hk u h I hk;p s L 1 R ds C 2 11 q 2 m 2 1 2 µ 2 s 1 2 1s 1 2 Lm sds C 2 11 q 2 m 2 1 2 µ 2L m log2. The las erm of r 1,m is represeed for l 1 = 1 ad 2 ha 3.4 r 1,5,m = m k, y > x /2 β =l 1 1 m2 ω hk u h I hk;p s,ydyds 2l=2 k, y > x /2 β R k R j G,xλy β! l R k R j G,xy m2 s ω l hk u h I hk;p s,ydyds. l! m2l β = y β λ l1 dλ m β R k R j G,x β! β =l 1 l β R k R j G,x y β y β We employ 3.4 wih l 1 = 1 for he case 1 < q ad m1 < µ m, he x µ r 1,5,m L q C C m β =1k, m 2l=2 m2l β = C 2 11 q 1 2 C m 2l=2 x β 1 β R k R j G L q ω x µ1 hk u h k, 2 11 q l m2 x β l β R k R j G L q sl x ω µ hk u h s 2 m 2 1 2 µ 21s 1 2L m sds I hk;p s L 1 R ds m2 s 2 m 2 1lµ 2 1s 1 2 Lm sds = o 2 11 q 2 m 2 µ 2 I hk;p s L 1 R ds

27 as. For m2 < µ m1, we use 3.4 wih l 1 = 2, he x µ r 1,5,m L 1 C C m β =2k, m 2l=2 m2l β = x β 2 β R k R j G L 1 ω x µ2 hk u h k, C 1 s 2 m 2 µ 21s 1 2L m sdsc = o 2 m 2 µ 2 m2 x β l β R k R j G L 1 sl x ω µ hk u h m 2l=2 I hk;p s L 1 R ds m2 I hk;p s L 1 R ds l s 2 m 2 1lµ 21s 1 2L m sds as. We esimae he secod erm of r 2,m by he same way. The reame for he oher erms of r 2,m ad r 3,m is sraighforward. A he las we show 3.3 wih µ =. The esimae for r,m is already derived, ad 2.1 reas r 3,m. For N = max{l Z 2l m}1, r 1,m = k, m /2 1 2l= β =m2l1k, /2 m 2l β =1 N m2 R k R j Gλs,xy λ N1 dλs ω N hk u h I hk;p s,ydyds N! /2 l β R k R j G,xλy m2 s l y ω β hk u h I hk;p s,ydyds 1 y R k R j Gs,xλydλ ω hk u h l β R k R j G,x /2 s l y β λ m2l dλ m2 I hk;p s,ydyds m2 ω hk u h I hk;p s,ydyds. Hece r 1,m /2 L q C s 2 11 q N s 2 m 2 1N 1s 1 2L m sds C 2 11 q 2 m 2 1 2 C C /2 m 2l β =1 /2 s 1 2 1s 1 2 Lm sds s 1 2 s 2 11 q 2 m 2 1 21s 1 2 Lm sds 2 11 q l β 2 /2 C 2 11 q 2 m 2 1 2L m log2 s 2 m 2 1l β 2 1s 1 2L m sds

28 for 1 q. We apply he similar esimae o he secod erm of r 2,m, he 2.1 gives ha r 2,m L q R C 2 11 q 2 m 2 C m1 2l β =1 C 2 11 q 2 m 2 1 2 s 1 21s 1 L m sdsc 2 11 q 2 m 2 1 2L m log2 2 11 q l β 2 2l β =m1 C 2 11 q 2 m 2 1 2L m log2 s 2 m 2 1l β 2 1s 1 2 Lm sds s l 1s 2 m 2 1 2 β 2 s 2 m 2 1 2 β 2 ds for 1 q. Therefore we obai 3.3 wih µ =. The Hölder iequaliy complees he proof. Nex, we show Theorem 1.3. Proof of Theorem 1.3. From 3.1, we expad u as u j = Uj;m Uj;m T r, r 1, r 2, r 3, r 4,, m=1 where r,,...,r 3, are defied as i he proof of Theorem 1.5, ad r 4, = U S j;m Uj;m T l = β R k R j G m=1 2l β =1k, Moreover, we expad r 1, ad r 4,, he, from 1.13, r 1, = k, Uj;1 T k,2l β =1 R k R j Gs,xy l β R k R j G,x r 1,1 r1,1 T, l r 4, = β R k R j G where 2l β =1k, r1,1 T = US j;1 UT j;1 l = β R k R j G,x r 4,1 = 2l β =1k, 2l β =1k, l β R k R j G 1 2l β = s l y β ω hk u h s,ydyds. l β R k R j G,x s l y I β hk;3 s,ydyds s l 1s 2 3 2 β 2 ds 1 l y β I hk;3 1,ydy s l y β I hk;3 s,ydydsr 4,1, s l y β ω hk u h s,yi hk;3 1s,ydyds, s l y β ω hk u h s,yi hk;3 s,ydyds. The oher erms r,,r 2, ad r 3, are reaed as i he proof of Theorem 1.5, hece we see for 1 m ha 3.5 u j = m Uj,k U T j,k m Kj,k V j,k V T j,k J j,k m r,m r 1,m r T 1,m r 2,mr 3,m r 4,m, k=3 Ṽ T j,k

29 where r T 1,m =U S j;mu T j;m r 4,m = m1 2l β =1k, 2l β =m1k, 2l β =1k, l β R k R j G l β R k R j G 1 l y β I hk;m1 1,ydy, l β R k R j G s l y β m2 ω hk u h I hk;p s,ydyds s l 1s 2 m 2 1 2 β 2 s 2 m 2 1 2 β 2 ds s l y β Ideed, for 1 m 1, he firs erm of r1,m T is spli o Uj;m S UT j;m l = β R k R j G = 2l β =mk, s l y β ω hk u h s,y m2 ω hk u h I hk;p s,ydyds. m1 I hk;m2 1s,y dyds 2 1 2 l β R k R j G 1 l y β I hk;m3 1,ydy 2l β =mk, 2l β =mk, 2l β =mk, l β R k R j G l β R k R j G We spli he secod erm of r T 1,m, he = m1 2l β =1k, m1 2l β =1k, m1 2l β =1k, I hk;p s,y s l 1s 2 m 2 1 β 2 s 2 m 2 1 β 2 ds I hk;m2 1,ydy l β R k R j G s l y β s l y β m3 ω hk u h I hk;p s,ydyds. m2 ω hk u h I hk;p s,ydyds 2 2 m 2 1 2 l β 2 l β R k R j G 1 l y β I hk;m3 1,ydy m12l β l β R k R j G The las erm of r1,m T is Ṽ j;m1 T. Moreover, from 1.13, r 4,m = 2l β =1k, r 4,m1. m3 s l y β ω hk u h I hk;p s,ydyds. 2 2 m 2 1 2 l β 2 l β R k R j G m12l β j 1 l y β I hk;m3 1,ydy The oher erms are reaed i he similar way as i he proof of Theorem 1.5. Thus r,m r T 1,m r 1,m r 4,m =K j;m1 U j;m1 U T j;m1 V j;m1 V T j;m1 ṼT j;m1 J j;m1 r,m1 r T 1,m1 r 1,m1 r 4,m1

3 for 1 m 1, ad 3.5 holds. Similar esimaes for r 2,m ad r 3,m as i he proof of Theorem 1.5 provide ha r T 1,m L q r4,m L q = o 2 11 q 2 m 2 as for 1 q. We already reaed he oher erms r,m,...,r 3,m i he proof of Theorem 1.5. Therefore we complee he proof. Refereces [1] Amrouche, C., Giraul, V., Schobek, M.E., Poiwise decay of soluios ad of higher derivaives o Navier-Sokes equaios, SIAM J. Mah. Aal. 31 2, 74 753. [2] Bradolese, L., Space-ime decay of Navier-Sokes flows ivaria uder roaios, Mah. A. 329 24, 685 76 [3] Bradolese, L., Vigero, F., New asympoic profiles of osaioary soluios of he Navier-Sokes sysem, J. Mah. Pures Appl. 88 27, 64 86. [4] Bradolese, L., Karch, G., Far field asympoics of soluios o covecio equaio wih aomalous diffusio, J. Evol. Equ. 8 28, 37 326. [5] Carpio, A., Large-ime behavior i icompressible Navier-Sokes equaio, SIAM J. Mah. Aal. 27 1996, 449 475. [6] Choe, H.J, Ji, B.J., Weighed esimae of he asympoic profiles of he Navier-Sokes flow i, J. Mah. Aal. Appl. 344 28, 353 366. [7] Escobedo, M., Zuazua, E., Large ime behavior for covecio-diffusio equaio i, J. Fuc. Aal., 1 1991, 119 161. doi:1.116/22-123691915-e [8] Farwig, R., Kozoo, H., Sohr, H., Crieria of local i ime regulariy of he Navier-Sokes equaios beyod Serri s codiio, Parabolic ad Navier-Sokes equaios, Par 1, 175 184, Baach Ceer Publ., 81, Par1, Polish Acad. Sci. Is. Mah., Warsaw, 28. [9] Fujigaki, Y., Miyakawa, T., Asympoic profiles of osaioary icompressible Navier-Sokes flows i he whole space, SIAM J. Mah. Aal. 33 21, 523 544. [1] Fujia, H., Kao, T., O he Navier-Sokes iiial value problem. I., Arch. Raioal Mech. Aal. 16 1964, 269 315. [11] Giga, Y., Miyakawa, T., Navier-Sokes flow i R 3 wih measures as iiial voriciy ad Morrey spaces, Comm. Parial Differeial Equaios 14 1989, 577 618. [12] Giga, Y., Miyakawa, T., Osada, H., Two-dimesioal Navier-Sokes flow wih measures as iiial voriciy, Arch. Raioal Mech. Aal. 14 1988, 223 25. [13] Ishige, K., Kawakami, T., Kobayashi, K., Asympoics for a oliear iegral equaio wih a geeralized hea kerel, J. Evol. Equ. 14 214, 749 777. [14] Kao, T., Srog L p -soluios of he Navier-Sokes equaio i R m, wih applicaios o weak soluios, Mah. Z. 187 1984, 471 48. [15] Kozoo, H., Global L -soluio ad is decay propery for he Navier-Sokes equaios i half-space, J. Differeial Equaios 79 1989, 79 88. [16] Kozoo, H., Ogawa, T., Taiuchi, Y., The criical Sobolev iequaliies i Besov spaces ad regulariy crierio o some semi-liear evoluio equaios, Mah. Z. 242 22, 251-278. [17] Kukavica, I., Reis, E., Asympoic expasio for soluios of he Navier-Sokes equaios wih poeial forces, J. Differeial Equaios 25 211, 67 622. [18] Lerey, Sur le mouveme d u liquide visqueux emplissa l espace, Aca Mah. 63 1934, 193 248. [19] Miyakawa, T., Applicaio of Hardy space echiques o he ime-decay problem for icompressible Navier-Sokes flows i, Fukcial. Ekvac. 41 1998, 383 434. [2] Miyakawa, T., Noes o space-ime decay properies of osaioary icompressible Navier-Sokes flows i, Fukcial. Ekvac. 45 22, 271 289. [21] Okabe, T., Space-ime asympoics of he wo dimesioal Navier-Sokes flow i he whole space, J. Differeial Equaios 264 218, 728 754. [22] Schobek, M.E., Large ime behavior of soluios o he Navier-Sokes equaios, Comm. Parial Differeial Equaios 11 1986, 733 763. [23] Schobek, M.E., Lower bouds of raes of decay for soluios o he Navier-Sokes equaios, J. Amer. Mah. Soc. 4 1991, 423 449. [24] Weissler, F.B., The Navier-Sokes iiial value problem i L p, Arch. Raioal Mech. Aal. 74 198, 219 23. [25] Wieger, M., Decay resuls for weak soluios of he Navier-Sokes equaios o, J. Lodo Mah. Soc. 2 35 1987, 33 313. [26] Wieger, M., Decay of he L -orm of soluios of Navier-Sokes equaios i ubouded domais, Mahemaical problems for Navier-Sokes equaios, Aca Appl. Mah. 37 1994, 215 219. [27] Yamamoo, M., Asympoic expasio of soluios o he oliear dissipaive equaio wih he aomalous diffusio, J. Mah. Aal. Appl. 427 215, 127 169.