6.003: Signals and Systems. Modulation

Σχετικά έγγραφα
6.003: Signals and Systems

6.003: Signals and Systems. Modulation

Lecture 12 Modulation and Sampling

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Γωνίας (Angle Modulation) - 2

3 Frequency Domain Representation of Continuous Signals and Systems

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Γωνίας (Angle Modulation) - 3

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Γωνίας (Angle Modulation) - 1

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Example Sheet 3 Solutions

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

Durbin-Levinson recursive method

Sampling Basics (1B) Young Won Lim 9/21/13

Section 8.3 Trigonometric Equations

Homework 8 Model Solution Section

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Anti-aliasing Prefilter (6B) Young Won Lim 6/8/12

Math221: HW# 1 solutions

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

ω = radians per sec, t = 3 sec

Στεγαστική δήλωση: Σχετικά με τις στεγαστικές υπηρεσίες που λαμβάνετε (Residential statement: About the residential services you get)

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

4.6 Autoregressive Moving Average Model ARMA(1,1)

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

HFC SERIES High Freq. Wound Ceramic Chip Inductors

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Second Order RLC Filters

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Ψηφιακή Επεξεργασία Φωνής

What happens when two or more waves overlap in a certain region of space at the same time?

ΜΕΛΕΤΗ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗ ΙΑΜΟΡΦΩΣΕΩΝ ΣΕ ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ.

Fourier transform of continuous-time signals

CT Correlation (2B) Young Won Lim 8/15/14

Fourier Series. Fourier Series

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Uniform Convergence of Fourier Series Michael Taylor

[1] P Q. Fig. 3.1

Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

Concrete Mathematics Exercises from 30 September 2016

ME 374, System Dynamics Analysis and Design Homework 9: Solution (June 9, 2008) by Jason Frye

Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers

D Alembert s Solution to the Wave Equation

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Can I open a bank account online? Ερώτηση αν μπορείτε να ανοίξετε τραπεζικό λογαριασμό μέσω του ίντερνετ


Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

HMY 220: Σήματα και Συστήματα Ι

Terabyte Technology Ltd

Συστήματα Επικοινωνιών Ι

Second Order Partial Differential Equations

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Forced Pendulum Numerical approach

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 1

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

Κατανοώντας και στηρίζοντας τα παιδιά που πενθούν στο σχολικό πλαίσιο

Spectrum Representation (5A) Young Won Lim 11/3/16

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Newborn Upfront Payment & Newborn Supplement

Calculating the propagation delay of coaxial cable

Matrices and Determinants

7 Present PERFECT Simple. 8 Present PERFECT Continuous. 9 Past PERFECT Simple. 10 Past PERFECT Continuous. 11 Future PERFECT Simple

Lecture 6. Goals: Determine the optimal threshold, filter, signals for a binary communications problem VI-1

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 1

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Balanced Slope Demodulator EEC 112. v o2

LESSON 12 (ΜΑΘΗΜΑ ΔΩΔΕΚΑ) REF : 202/055/32-ADV. 4 February 2014

LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

the total number of electrons passing through the lamp.

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

1 String with massive end-points

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Τηλεπικοινωνιακά Συστήματα Ι

derivation of the Laplacian from rectangular to spherical coordinates

D-Wave D-Wave Systems Inc.

Exercises to Statistics of Material Fatigue No. 5

Πώς μπορεί κανείς να έχει έναν διερμηνέα κατά την επίσκεψή του στον Οικογενειακό του Γιατρό στο Ίσλινγκτον Getting an interpreter when you visit your

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

How to register an account with the Hellenic Community of Sheffield.

Numerical Analysis FMN011

Galatia SIL Keyboard Information

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +

Lifting Entry (continued)

BandPass (4A) Young Won Lim 1/11/14

Block Ciphers Modes. Ramki Thurimella

MathCity.org Merging man and maths

Final Test Grammar. Term C'

Transcript:

6.3: Signals and Sysems Modulaion December 6, 2

Subjec Evaluaions Your feedback is imporan o us! Please give feedback o he saff and fuure 6.3 sudens: hp://web.mi.edu/subjecevaluaion Evaluaions are open unil Friday, December 6, a noon. You will be able o view quaniaive resuls a hp://web.mi.edu/subjecevaluaion/resuls.hml and suden-wrien summaries a hp://hkn.mi.edu/ug sel.php

Communicaions Sysems Signals are no always well mached o he media hrough which we wish o ransmi hem. signal audio video inerne applicaions elephone, radio, phonograph, CD, cell phone, MP3 elevision, cinema, HDTV, DVD coax, wised pair, cable TV, DSL, opical fiber, E/M Modulaion can improve mach based on frequency.

Ampliude Modulaion Ampliude modulaion can be used o mach audio frequencies o radio frequencies. I allows parallel ransmission of muliple channels. x () z () cos w x 2 () z 2 () z() LPF y() cos w 2 cos w c x 3 () z 3 () cos w 3

Superheerodyne Receiver Edwin Howard Armsrong invened he superheerodyne receiver, which made broadcas AM pracical. Edwin Howard Armsrong also invened and paened he regeneraive (posiive feedback) circui for amplifying radio signals (while he was a junior a Columbia Universiy). He also invened wide-band FM.

Ampliude, Phase, and Frequency Modulaion There are many ways o embed a message in a carrier. Ampliude Modulaion (AM) + carrier: y () = ( x() + C ) cos(ω c ) Phase Modulaion (PM): Frequency Modulaion (FM): y 2 () = cos(ω c + kx()) ( y 3 () = cos ω c + k ) x(τ)dτ PM: signal modulaes insananeous phase of he carrier. y 2 () = cos(ω c + kx()) FM: signal modulaes insananeous frequency of carrier. ( ) y 3 () = cos ω c + k x(τ)dτ } {{ } φ() ω i () = ω c + d d φ() = ω c + kx()

Frequency Modulaion Compare AM o FM for x() = cos( ). AM: y () = ( x() + C ) cos(ω c ) = (cos( ) +.) cos(ω c ) FM: y 3 () = cos ( ω c + k x(τ)dτ) = cos(ω c + k sin( )) Advanages of FM: consan power no need o ransmi carrier (unless DC imporan) bandwidh?

Frequency Modulaion Early invesigaors hough ha narrowband FM could have arbirarily narrow bandwidh, allowing more channels han AM. ( ) y 3 () = cos ω c + k x(τ)dτ } {{ } φ() ω i () = ω c + d d φ() = ω c + kx() Small k small bandwidh. Righ?

Frequency Modulaion Early invesigaors hough ha narrowband FM could have arbirarily narrow bandwidh, allowing more channels han AM. Wrong! ( y 3 () = cos ω c + k ) x(τ)dτ ( = cos(ω c ) cos k If k ( hen ) cos k x(τ)dτ ( ) sin k x(τ)dτ k x(τ)dτ ( y 3 () cos(ω c ) sin(ω c ) k ) ( ) x(τ)dτ sin(ω c ) sin k x(τ)dτ ) x(τ)dτ Bandwidh of narrowband FM is he same as ha of AM! (inegraion does no change he highes frequency in he signal)

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. sin( ) cos( sin( ))

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. 2 sin( ) 2 2 cos(2 sin( ))

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. 3 sin( ) 3 3 cos(3 sin( ))

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. 4 sin( ) 4 4 cos(4 sin( ))

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. 5 sin( ) 5 5 cos(5 sin( ))

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. 6 sin( ) 6 6 cos(6 sin( ))

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. 7 sin( ) 7 7 cos(7 sin( ))

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. 8 sin( ) 8 8 cos(8 sin( ))

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. 9 sin( ) 9 9 cos(9 sin( ))

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. sin( ) cos( sin( ))

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. 2 sin( ) 2 2 cos(2 sin( ))

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. 5 sin( ) 5 5 cos(5 sin( ))

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. m sin( ) m m cos(m sin( )) increasing m

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. cos(m sin( )) m = a k k 2 3 4 5 6

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. cos(m sin( )) m = a k k 2 3 4 5 6

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. cos(m sin( )) m = 2 a k k 2 3 4 5 6

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. cos(m sin( )) m = 5 a k k 2 3 4 5 6

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. cos(m sin( )) m = a k k 2 3 4 5 6

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. cos(m sin( )) m = 2 a k k 2 3 4 5 6

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. cos(m sin( )) m = 3 a k k 2 3 4 5 6

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. cos(m sin( )) m = 4 a k k 2 3 4 5 6

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore cos(m sin( )) is periodic in T. cos(m sin( )) m = 5 a k k 2 3 4 5 6

Phase/Frequency Modulaion Fourier ransform of firs par. x() = sin( ) y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω }{{} c ) sin(m sin( ))) ya() Y a (jω) m = 5 ω c ω c ωm ω

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore sin(m sin( )) is periodic in T. m sin( ) m m sin(m sin( )) increasing m increasing m

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore sin(m sin( )) is periodic in T. sin(m sin( )) m = b k k 2 3 4 5 6

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore sin(m sin( )) is periodic in T. sin(m sin( )) m = b k k 2 3 4 5 6

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore sin(m sin( )) is periodic in T. sin(m sin( )) m = 2 b k k 2 3 4 5 6

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore sin(m sin( )) is periodic in T. sin(m sin( )) m = 5 b k k 2 3 4 5 6

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore sin(m sin( )) is periodic in T. sin(m sin( )) m = b k k 2 3 4 5 6

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore sin(m sin( )) is periodic in T. sin(m sin( )) m = 2 b k k 2 3 4 5 6

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore sin(m sin( )) is periodic in T. sin(m sin( )) m = 3 b k k 2 3 4 5 6

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore sin(m sin( )) is periodic in T. sin(m sin( )) m = 4 b k k 2 3 4 5 6

Phase/Frequency Modulaion Find he Fourier ransform of a PM/FM signal. y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω c ) sin(m sin( ))) x() is periodic in T = 2π, herefore sin(m sin( )) is periodic in T. sin(m sin( )) m = 5 b k k 2 3 4 5 6

Phase/Frequency Modulaion Fourier ransform of second par. x() = sin( ) y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω }{{} c ) sin(m sin( ))) }{{} ya() y b () Y b (jω) m = 5 ω c ω c ωm ω

Phase/Frequency Modulaion Fourier ransform. x() = sin( ) y() = cos(ω c + mx()) = cos(ω c + m sin( )) = cos(ω c ) cos(m sin( ))) sin(ω }{{} c ) sin(m sin( ))) }{{} ya() y b () Y (jω) m = 5 ω c ω c ωm ω

Frequency Modulaion Wideband FM is useful because i is robus o noise. AM: y () = (cos( ) +.) cos(ω c ) FM: y 3 () = cos(ω c + m sin( )) FM generaes a redundan signal ha is resilien o addiive noise.

Summary Modulaion is useful for maching signals o media. Examples: commercial radio (AM and FM) Close wih unconvenional applicaion of modulaion in microscopy.

6.3 Microscopy Dennis M. Freeman Sanley S. Hong Jekwan Ryu Michael S. Mermelsein Berhold K. P. Horn

6.3 Model of a Microscope microscope Microscope = low-pass filer

Phase-Modulaed Microscopy microscope