Univerza v Ljubljani, Biotehniška fakulteta, Oddelek za agronomijo Katedra za aplikativno botaniko, ekologijo, fiziologijo rastlin in informatiko Univerzitetni študij KMETIJSTVO:Agronomija Predmet BOTANIKA Šolsko leto 2011/12 Franc Batič
Ekosistemski in ekonomski pomen rastlin Ekosistem: primarni producenti (energetska in snovna povezanost- tok energije, kroţenje snovi) graditelji habitatov (biomi-gozdovi, travišča, puščave...); koeveolucija rastlin in živali (opraševalci cvetov, raznaševalci semen/plodov). Agroekosistemi-od človeka vzdrţevani ekosistemi:rastline so vir hrane (food), krme (fodder) in vlaknin (fibre)-industrijske rastline
Poznavanje krmne vrednosti Poznavanje rastlin (gojene rastlinepoljedelstvo;pleveli, trajna travišča (trave, metuljnice, zeli -terenske vaje) Poznavanje zgradbe rastlin(celica, tkiva, organi; snovna zgradba rastlin-elementna, molekulska) Poznavanje osnovnih procesov v rastlinah (primarni metabolizem, sekundarni metabolizem Osnove razmnoževanja višjih rastlin Vpliv okolja na uspevanje in razširjenost rastlin (v omejenem obsegu)
KRMNA VREDNOST, STRUPENOST, ZDRAVILNOST Zgradba celic, tkiv in organov Pripadnost taksonomskim skupinam (trave, metuljnice, zeli, praprotnice,.. Starosti rastline in fenofaze Agronomski ukrepi (gnojenje, zalivanje, uporaba pesticidov- za gojene rastline) Vplivi okolja: vodni reţim, lastnosti tal, prehranjenost (N!), slanost, osvetljenost, onesnaţenje okolja, nadmorska višina, okuţba z glivami, bakterijami, virusi, škodljivci,,,
V Sloveniji predstavljajo travišča preko 60% kmetijskih površin- vsa so antropogena- nastala z ţivinorejo.
BOTANIKA(=FITOLOGIJA)= VEDA O RASTLINAH
RAZDELITEV ORGANIZMOV RASTLINE ŢIVALI GLIVE (BIOLOGIJA) MIKROORGANIZMI (arheje, bakterije, virusi, mikoplazme
SKUPNE ZNAČINOSTI ŢIVLJENJA (ORGANIZMOV) OSNOVNA ZGRADBA (elementna (makro & mikroelementi), molekulska (polimeri: beljakovine, nukl. kisline, maščobe, polisaharidi, drugi polimeri) BIOSINTEZA ORGANIZACIJA ( celica, biomembrane, organeli; telo-osebek, populacija, zdruţba, ekosistemi; visoka strukturalna in funkcionalna urejenost) VZDRŽEVANJE ENERGETSKEGA STANJA & ZGRADBE, nizka raven entropije; labilen in odprt sistem; tok energije preko trofičnih ravni in dekompozicije RAST, RAZVOJ IN RAZMNOŽEVANJE (razvoj osebka, vrste, sistem;»omne vivum e vivo«(pasteur & Hoffmann 1860) DEDNOST DNK, RNK, (prenos in prevod genetske informacije) VZDRAŽNOST IN ODZIVNOST (čutila, zaznavanje, odziv) EVOLUCIJA (izvor ţivljenja, starost zemlje (cca 4.55 miljard let); cianobakterije: 3 miljarde let; večcelične rastline cca 570 miljonov let; Oparin-Miller 1953; koacervatna hipoteza; monofilija-polifilija; panspermija? GEN (DNK-AVTOREDUPLIKACIJA & REGULACIJA) FEN
RASTLINE (AVTOTROFI) AVTOTROFI (cianobakterije, fotosint. akt. bakterije,lišaji, alge, višje rastline) NAČIN ŽIVLJENJA: fotoavtotrofi: sončna energija (kemotrofija); NAČIN RASTI: rastline: neomejena rast, (glive!) NAČIN PREHRANE: osmotrofija: način sprejema vode in anorganskih spojin; velika zunanja površina (sprejem anorganskih hranil, vode, CO 2, fotosinteza) ZGRADBA TELESA: radialna simetrija; celica, steljka, brst;raunkiarjeve ţivljenske oblike rastlin;, sesilnost; veliki organizmi (drevesa) preteţno iz mrtvih celic; zgradba telesa je kompromis z okoljem ZGRADBA CELIC: kloroplasti, celična stena, vakuola PRESNOVA IN BIOKEM. ZGRADBA: fotosinteza, primarni, sekundarni metabolizem; fotosintezna barvila, celuloza;
HETEROTROFI HETEROTROFI: arheje, bakterije, glive, ţivali, zajedalske rastline NAČIN ŽIVLJENJA: heterotrofi: energija organskih spojin NAČIN RASTI: živali: omejena rast; glive: neomejena rast NAČIN PREHRANE: živali: velika notranja površina; prebava organskih snovi ; glive: izločanje encimov-zunanja prebava ZGRADBA, TELESA: živali:bilateralna simetrija, mobilnost, večja raznolikost v zgradbi telesa (enoceličarji, spuţve, nečlenarji,mnogočlenarji, maločlenarji, strunarji); veliki organizmi preteţno iz ţivih celic: glive: steljčnice; sesilni organizmi; iz ţivih celic ZGRADBA CELIC: živali: ni plastidov, celične stene, vakuol; glive: ni plastidov PRESNOVA IN BIOKEM. ZGRADBA: živali:razgradnja organskih snovi; preteţno primarni metabolizem; glive: razgradnja organskih snovi; primarni in sekundarni metabolizem (višje glive, lišaji!)
Organizacijske stopnje telesa rastlin in gliv: Enoceličarji, steljčnice, brstnice
Shema zgradbe telesa brstnice (sporofit semenke)
RAZDELITEV BOTANIKE MORFOLOGIJA: citologija, histologija, organografija; anatomija FIZIOLOGIJA: presnova, rast in razvoj, regulacija, vzdraţnost, gibanja GENETIKA: zgradba, organizacija in delovanje DNK (ţlahtnjenje rastlin, biotehnologija) SISTEMATIKA (taksonomija:determinacija, nomenklatura, klasifikacija); splošna mikrobiologija lihenologija, mikologija, fikologija,..., aplikativne (uporabne) botanike: kmetijstvo, gozdarstvo, hotikultura, farmakologija,..., paleobotanika, filogenija, etnobotanika,... RASTLINSKA EKOLOGIJA: avtekologija; (GEOBOTANIKA); sinekologija (=fitocenologija) EKOFIZIOLOGIJA EKOBIOKEMIJA EKOTOKSIKOLOGIJA BIOINDIKACIJA FITOGEOGRAFIJA
POVEZAVA BOTANIKE Z DRUGIMI VEDAMI OKOLJSKE VEDE meteorologija geologija, pedologija hidrologija varstvo okolja* (navezava na ekologijo) GOSPODARSKE PANOGE (agronomija (poljedelstvo, hortikultura, ţivinoreja), gozdarstvo, lesarstvo, ţivilstvo DRUŽBA (sicoekonomski, filozofski, estetski vidiki)
CITOLOGIJA 1665 - R.Hook; "cell" - "box" ; celica (ćelija, the cell, la celule, Die Zelle); citologija 1832 - Purkinje - protoplazma 1846- H. von Mohl; Schleiden, Schwan & Purkynie - celična teorija Oblika celic: parenhimi, prozenhimi Velikost: 0,2 m - m; 10-100 m Nastanek: Omnicellula e cellula; Strasburger, B tschli & Fleming Organizacija: protocita; evcita; energida Tipična zgradba: PROTOPLAST; ERGASTIČNE TVORBE
Primeri parenhimatskih celic (parenhim centralnega strţena v steblu koruze in aerenhim v steblu navadnega ločja
Primeri prozenhimatskih celic: sklerenhimska vlakna v steblu lana (prečni in vzdolţni prerez) in prečni prerez trahej.
PROTOCITA: prokariotska celica Bakterije iz skupine spirohet Celična stena bakterij
EVCITA evkariontska celica
EVCITA
ZGRADBA PROTOPLASTA (ţivi del) A) Protoplasma : citoplazma, karioplazma, plastidoplazma (stroma), hondrioplazma (matriks) B) Protoplazemske diferenciacije: kroglaste (globularne), nitaste (fibrilarne),cevaste(tubularne), membranske, sestavljene C)Biomembrane: celična membrana (plazmalema), tonoplast, endomembrane, C) Celični organeli: 1) veliki (avtoreduplikacija, avtoregulacija) : jedro, mitohondriji, plastidi ("plasti") 2) manjši : membranski: diktiosom (Golgijev aparat), endoplazemski retikulum (ER), mikrotelesa: lizosomi, peroksisomi, glioksisomi); nitasti-cevasti: delitveno vreteno, citoskelet (mikrofilamenti/tuboli), bički, migetalke; globularni: ribosomi 3. Vakuola, (celična stena)
ERGASTIČNE TVORBE = APOPLAST (mrtvi del) A) Celična stena B) Vsebina vakuol C) Vključki v plastidih, vakuoli in citoplazmi
PRINCIP ZGRADBE CELICE Kompartimentizacija (razdelitev) celice z membranami na več oddelkov: 1. transport, encimatska dejavnost,... 2. vzdrţevanje energetskega sistema (oksidacijsko redukcijski procesi) 3. omejitev in vzdrţevanje sistema za avtoreduplikacijo in regulacijo presnove.
FIZIKALNA ZGRADBA CELICE TEKOČI DELI: PLAZME IN CELIČNI SOK Fizikalno kemijske lastnosti ( citoplazma (CITOSOL), kario-, plastido (STROMA)-, hondrioplazma (MATRIKS) : - koloidna raztopina; viskoznost, elastičnost, sol(gel - nabrekanje;netopnost; - gibanja (rotacija, cirkulacija, fluktuacija); TRDNI DELI: citoskelet + citpl. diferenciacije, cel. organeli)
ELEMENTNA ZGRADBA CELICE (Mineralna prehrana rastlin) MAKROELEMENTI (makrohranila)>20mgl -1 : 10; 6 biogenih: C,H,O, N, S, P; K, Ca, Mg, Fe; (Si,Na, Cl, Al); 10-0,01% mase rastlin, (C-45%, 0-42%, H -6,5%, N -1, 5%, ostali 5% mase MIKROELEMENTI: < 500μgl -1: ostali: Mn, B,Sr - 10-3, Cu, Ti, Zn,Li, Ba,Br -10-4, F, Rb,Sn, Ni - 10-5, As, Mo, Co, J, Ge, Ph,Hg, Ag, Au, Ra 10-12 uteţnih procentov ESENCIALNI ZA RASTLINE: 16: H, C, O, N,K, Ca,Mg, P, S, Cl, B, Fe, Mn, Zn, Cu, Mo: glede na relativno število atomov, prisotnih v zgradbi rastlin
Sprejem hranil v ionski obliki iz tal v absorbcijski coni korenin; C-sprejemajo kot CO 2, H, O kot H 2 O
POMEN MINERALNE PREHRANE Justus Liebig _ zakon minimuma Harmonična prehrana rastlin (vrsta, starost, rastišče) gnojenje (N,P,K gnojila) in problemi Privzem: tla: ph, vrsta in količina ionov, humus, glina (adsobcija); rastlina: aktivni (ionski kanali, črpalke, prenašalci), pasivni sprejem (WFS, DFS); akumulatorji, indikatorji
MOLEKULSKA ZGRADBA Molekulska zgradba: makromolekule organskih spojin z M ( 10000 organske spojine z manjšo M anorganske spojine, ioni voda
SESTAVA BAKTERIJSKE CELICE Voda 80% Beljakovine (proteini) 10% Nukleinske kisline (DNK, RNK) 3,4% Maščobe (lipidi) 2% Ogljikovi hidrati (polisaharidi) 2% Druge, manjše organske molekule 1,3% Anorganske spojine; ioni 1,3%
POMEN VODE ZA ŢIVLJENJE lastnosti vode (dipol, kohezija, adhezija; anomalija vode -pomen; voda: zgradba; voda: topilo in transportno sredstvo; voda: reagent: fotosinteza, dihanje, hidroliza, kondenzacija voda: regulacija; voda: okolje; prilagoditve na vodno okolje; vodna okolja, kopno;
Lastnosti molekule vode in posledice
Vodni (hidratacijski) ovoj ionov je odvisen od velikosti naboja in premera atoma
POLIMERI MAKROMOLEKULE ORGANSKIH SPOJIN - POLIMERI Zgradba: homopolimeri, heteroplomeri Funkcija: strukturne, informacijske, regulacijske, zaloţne Vrste: beljakovine (proteini, proteidi) maščobe (lipidi, lipoidi) jedrne kisline (DNK, RNK) ogljikovi hidrati (polisaharidi) polimeri v sekundarnem metabolizmu (lignin, suberin, kutin)
DNK deoksirubonukleinska kislina je polinukleozid fosfat
Prikaz prepisa in prevoda dedne informacije iz DNK v beljakovine preko tvorbe RNK
Primeri membranskih lipidov (maščob)
Amiloza in amilopektin sta polisaharida zgrajena iz molekul glukoze
BELJAKOVINE (PROTEINI, PROTEIDI) Funkcija: zgradba (strukturne), uravnavanje (regulacija -encimi), rezervne; Zgradba: - primarna (20 amino kislin) - sekundarna ( -heliks, -zgradba) - terciarna (metionin, cistein, -S-Smostički (globularna zgradba, H -vezi, ionske vezi (+(-), lipofilni privlak, hidrofobni odboj) - kvarterna ( sestava iz več enot) MEJE ŽIVLJENJA - DENATURACIJA BELJAKOVIN (fiksacija, siliranje)
Kvarterna zgradba: RUBISCO 8 kopij velikih in 8 kopij malih podenot Velike podenote sintetizira kloroplast, majhne nastajajo na ribosomih v citoplazmi pod kontrolo jedra in se morajo uvoziti v kloroplast, da se sestavi encim.
INFORMACIJSKE MOLEKULE DNK, RNK deoksi(riboza) + organska baza + H3PO4 = NUKLEOTID DNK, RNK = POLINUKLEOTID (= nukleozid fosfat) organske baze: purini: Adenin, Guanin pirimidini: Citozin, Timin (Uracil v RNK) DNK= dvojna vijačnica; A-T, C-G GENETSKI KOD (GENI); transkribcija, translacija;(jedro, mitohondriji, plastidi; ribosomi)
LIPIDI- MAŠČOBE LIPIDI, LIPOIDI Funkcija : strukturne (membrane), zaloţne (energija; vakuola, elaeoplasti); "regulacijske" (vitamini (E,A,D,..); barvila (karotenoidi), hormoni (ABA, jasmon.k.)) Vrste: LIPIDI: trigliceridi (rezervne) gliko-, fosfo-, sulfo-, (strukturne maščobe; membrane, kutin LIPOIDI: suberin, lignin celična stena,karotenoidi - plastidi
Membranske maščobe
Primer zgradbe membranske maščobe
Moščobna dvoplast v biomembranah
OGLJIKOVI HIDRATI POLISAHARIDI: enostavni in kompleksni sladkorji ( mono, di, oligo, polisaharidi) Funkcije: strukturni: apoplast: celuloza, hemiceluloza, pektini,..., hitin, protoplast: glikolipidi, založni: škrob, glikogen (apoplast); regulacijska vloga sladkorjev
Strukturne formule glukoze in fruktoze
SPOJINE Z MANJŠO MOL. MASO Intermediarni produkti presnove + osmotiki: - mono, di, oligo in (polisaharidi) - di, tri (glutation), oligopeptidi, proste aminske kisline, amini, poliamini - organske kisline (piruvična, jabolčna, ocetna,...), alkoholi, polioli - vitamini, hormoni, drugi sek, metaboliti (fenoli (antociani,..) glikozidi,...) - prenašlci energije (ATP, ADP, AMP), elektronov in protonov (NADP, NAD, FAD)
Primeri organskih spojin z manjšo molekulsko maso, ki jih dobimo v različnih delih celice v različnih koncentracijah.
BIOMEMBRANE Membranske protoplazemske diferenciacije iz maščob, beljakovin in drugih org. spojin Omogočajo obstoj, zgradbo in delovanje celice (celičnih organelov) So gradniki in funkcionalne strukture celice Meje njihovega obstoja so meje obtoja celice in ţivljenja
1. Vodno okolje ţivljenja 2. Lastnosti vode (dipol, kohezija, hidratacija, energetski pomen, topilo, reagent) 3. Lastnosti makromolekul or. spojin: bejakovin, lipidov (hidrofilnost, hidrofobnost 4. Membrane so polpropustne (semipermeabilne) opne (bariere), katerih zgradba in delovanje temeljita na: - amfipatični naravi molekul lipidov (n.p.fosfatidil etanol amin) in večine beljakovin - hidrofobnosti delov molekul fosfolipidov (dvoplasti lipidov; 2x 4-5nm= 8-10nm) - hidrofobnosti delov molekul beljakovin (struktura, encimi, ionski kanali, receptorji - sposobnosti samoureditve makromolekul lipidov in beljakovin ("selfassembly") - propustnosti za majhne molekule (M 100, CO2, H2O, O2, etanol, urea, NH3,..; princip pasivnega transporta; difuzija -osmoza) in relativni nepropustnosti za večje molekule - relativna nepropustnost za polarne in ionizirane snovi (K+, Ca++; transport le preko kanlov ali prenašalcev (saharoza, org, kisline, nukleotidi itd. ; aktivni transport (proti gradientu, poraba ATP) 5. Biomembrane predstavljajo supermolekularno zgradbo makromolekul org. spojin - polimerov, katerih gradnja in višja stopnja ureditve temelji na principu sinteze polimerov: - postopna sinteza iz enostavnih enot (amino kislin, nukleotidov, sladkorjev;..;
PRINCIP ZGRADBE 1. Sinteza membran: lipidi, proteini, polisaharidi 20 amino kislin, 5 aromatskih baz, 2 sladkorja, fosforna k., 3 lipidi ) sinteza po principu kondenzacije (izločanje vode) aktivaciji teh enot (dovajanje energije; ATP!) vezava aktivirane monomere na nosilno molekulo n.p. trna, adenozin dip, uridin difosfat polimerizacija je usmejena; -H, -OH konec, -NH2. -COOH konec, -1, -5,..) (monomeri, nosilci, energija, informacija o zgradbi) 2. Hierarhija urejenosti samourejenost polimerov (beljakovine: primarna, sek., terciarna in karterna zgradba (amino k., kov. vezi, ionske interakcije, H-vezi ( -heliks, - zgradba, van der Waalsove sile hidrofobni efekt; DNK, lipidi) čaperoni (Hsp 60, Hsp70, "heat shock proteini)
PREDSTAVE O ZGRADBI BIOMEMBRAN 1. Model: ena plast lipidov : Overton 1890 (opazovanje sprejema, transporta nepolarnih snovi, lipofilnost membran); Langmuir 1905 (ena plast lipidov na vodi) 2. Model: dvojna plast lipidov: Gorter & Grendel 1927; izračun površine lipidov v membrani z ekstrakcijo in kasneje preračunavanje na osnovi monoplasti na vodi; prvi poskus razumevanja membran na molekularni osnovi - amfipatska narava lipidov - tvorba dvoplasti; v osnovi še danes veljavna predstava
Dvoplast lipidov v membrani se samovzdrţuje v vodnem okolju zaradi lastnosti molekul.
Nadaljevanje 3. Sendvič model - v sredini dvoplast lipidov, na notranji in zunanji plast beljakovin; Davson & Danielli 1938-43; UPOŠTEVATA POMEN BELJAKOVIN! ugotovitve na osnovi permeabilnosti (predvsem nabitih molekul in ionov!!) in el. upornosti; diferencialna propustnost, pomen membranskih beljakovin; dejanska zgradba in organizacija ni bila jasna. 4. "UNIT MEMBRANA"; Robertson 1960; razvoj mikroskopije, poskusi na plazmalemi in membranskih organelih evkariontske celice; spoznanje o podobni zgradbi vseh membran (ime!); "railroad track" izgled pod el. mikroskopom (tračnice); še vedno predstava o kontinuirani beljakovinski plasti; 5. "MODEL TEKOČEGA KRISTALA"; Singer & Nicolson 1972; proučevanja posameznih biomembran - različna zgradba, nestalna zgradba; beljakovine niso neprekinjena plast ampak mozaično razporejene: integralne in periferne; lateralni premiki; spremembe v sestavi, razmerju in poloţaju. 6. Unwin & Hendersonov model 1978: podrobnejše poznavanje zgradbe in vloge membranskih beljakovin (encimi, kanali, receptorji,..); pomen beljakovin in maščob za ohranjanje tečnosti membran v stresnih ramerah, mraz vročina, osmotski šok,...
Dvoplast lipidov predstavlja tekoči del membrane. Molekule maščob se v membrani Premikajo.
iomembrane so tekoči kristal, zgrajen iz dvoplasti lipidov in vanje vključenih proteinov.
Tekoči kristal mebrane je lahko bolj zgoščen-rigiden ali bolj razrahljan, kar vse vpliva na lastnosti in delovanje.
Prikaz vključitve različnih perifernih beljakovin v membrano preko vezav na lipide.
Membrane omogočajo pasivni (A,B) in aktivni transport (C)
Primeri aktivnega transporta s pomočjo protonske črpalke, ki iz citoplazme v celično steno transportira protone in v celico sprejema kalijev ion.
DANAŠNJA PREDSTAVA Univerzalna zgradba biomembran vseh organizmov (lipoproteidni tekoči kristal; maščobe zagotavljajo tečnost, beljakovine transport, encim. dejavnost, receptorno vlogo) in specifičnost posameznih membran; Integriteta membran zagotavlja obstoj in delovanje celice in prilagoditve na stres
Vloga biomembran - kompartimentizacija protoplasta - razdelitev na reakcijske prostore - vzpostavitev koncentracijskih in elektrokemijskih gradientov - transport (osmoza, aktivni transport, pinacitoza, fagocitoza, vezikularni transport) - integracija vzporednih in zaporednih presnovnih procesov - senzibilizacija celice in sposobnost odziva - izbirna polprepustnost (selektivna semipermeabilnost)
VRSTE BIOMEMBRAN Dvojne: zunanje membrane plastidov, mitohondrijev in jedra Enojne: celična membrana (mrenica, opna; plazmalema); membrana vakuole - tonoplast; mebrane endoplazmatskega retikuluma (ER), diktiosomov (Golgijev aparat), mikrotelesc (peroksisomi, glioksisomi, lizosomi); membrane evkariontskih bičkov in migetalk.
Citoplazma Zunanjna jed. membrana Notranja jed. membrana jedro Primer dvojne elementarne membrane: jedrna membrana s poro za transport velikih molekul (RNK, proteini).
Prikaz različnih membran v celici: plazmalema, membrane ER, diktiosoma,..
BIOKEMIČNA ZGRADBA (Singer & Nicolson; Unwin & Henderson) Lipopreteidna zgradba; lipidi: beljakovine; (variira) I. LIPIDI: neprehodni za polarne in nabite molekule; dajejo mebrani tečnost, ki je odvisna od vrste in deleţa lipidov v membrani - FOSFOLIPIDI, GLIKOLIPIDI, STEROLI Fosfolipidi: fosfatidil holin, fosfatidil etanolamin, fosfatidil inositol (v večini membran) Glikolipidi: monogalaktozildiglicerid, digalaktozildiglicerid (v membrani tilakod kloroplasta) Steroli: predvsem v membranah ţivalskih celic - holesterol; stabilizatorji membran, predvsem lipidnega dvosloja; pomen pri visokih in nizkih temperaturah II. PROTEINI: integralni, periferni - katalitični proteini - ENCIMI (n.p. ATPaze; protonske in ionske črpalke) - kanalski proteini: K+, Ca ++ kanali; simport, antiport - prenašalci ("carriers"): prenašalci raznih molekul, n.p saharoze, trioze-p, specifični za posamezne membrane (kloroplast, mitohondrij) - receptorji (G-proteini, receptorji podobni ionskim kanalom, receptorji z encimsko aktivnostjo (fosforilaze, kinaze,...) Ca++ in membrane: stabilizator membran (vezava hidrofilnih delov lipidov in beljakovin
VRSTE MEMBRANSKIH ORGANELOV PLAZMALEMA: CEL. MEMBRANA - enojna membrana; omejuje celico, cca 7nm - transport (vse vrste: osmoza, aktivni, vezikularni, pina in- fagocitoza) - generira membranski potencial (protonske črpalke, K +, Ca ++ kanali) - številni receptorji (odziv na okolje, na zunanje in notranje signale) - encimski sistem za sintezo celuloze - pri prokariontih respiratorna funkcija - ni povezana z ribosomi
Pregled različnih membran v celici: dvojne (jedro, mitohondriji), enojne:plazmalema, ER, diktiosomi, vezikli.
Različne funkcije celične membrane -plazmaleme
Akvaporini so vodni kanali-beljakovinske molekule skozi katere prehaja voda po pricipu osmoze. Najdemo jih v vseh celičnih membranah, ki so propustne za vodo (plazmalema, tonoplast, membrane kloroplasta, mitohondrijev,..
rikaz transporta, ki poteka preko različnih membran v celici.
kvasovka lada rastoča celica povečuje površino svoje membrane z vključevanjem veziklov
V hipertoničnem okolju celica zgubi vodo, protoplast se skrči, plazmalema odstopi od celične stene. Vidne postanejo plazmodezmatske povezave med celicami kot hektijanski trakovi.
Membrane so transduktorji signalov
Prikaz transdukcije svetlobnih signalov, ki potekajo preko membransko vezanih receptorjev fito in kriptokromov.
Membrana se lahko dezintegrira in sprejem kapljico, trni delec ali mehurček. Na sliki je prikazan prenos trdnega delca preko prenašalca v membrani
Membransko vezani receptorji in transportni sistemi so povezani pri prenosu sporočil v celico.
Sistemi endomembran ER Golgijev aparat (diktiosom) Vakuole Mikrotelea: glioksisomi, peroksisomi, lizosomi
Celične membrane sodelujejo v transportu, presnovnih procesih in prenosu signalov.
Prikaz usmerjenega vezikularnega transporta v celici
ER endoplazemski retikulum ER ( endoplazmatski retikulum = znotrajplazemska mreţa) - sistem intracelularnih membranskih kanalov - cistern - vsebuje intracisteralno tekočino, redkejšo od citoplazme - povezan z ribosomi (hrapav, gladek); sinteza beljakovin in njihov transport; sinteza lipidov - znotrajcelični transport - vsebovan v plazmodezmah (medcelični transport) - dinamična tvorba, tvorba odvisna od presnove
Hrapavi ER pod elektronskim mikroskopom
Sinteza proteinov na hrapavem ER
Prikaz sinteze proteinov in njihovega usmerjenega transporta v celici
Tri samostojna mesta sinteze proteinov: citoplazma, kloroplast, mitohondrij
Sinteza trigliceridov v gladkem ER. Nastajanje oleosoma
GOLGIJEV APARAT- DIKTIOSOM - Golgi, 1898-3-7 (20!)cistern: cis, mediane, trans cisterne; oddajajo mehurčke -vezikle - sinteza polisaharidov, eteričnih olj (celična stena, ţlezni izločki), dodelava proteidov - nastanek iz ER, dinamična struktura
Golgijev aparat diktiosom pod elektronskim mikrosskopom.
Prikaz sodelovanja v presnovi med ER in Golgijevim aparatom.
olgijev aparat sestavljajo cis, mediane in trans cisterne, v katerih poteka sinteza olisaharidov, dograditev proteidov. Produkte oddajo v obliki različnih veziklov.
Prikaz sinteze sestavin celične stene v Golgijevem aparatu. Sintezni produkti se kot vsebina mehurčkov vključujejo v cel. steno.
Celuloza se sintetizira v Golgijevem aparatu in se s pomočjo mikrotubolov citoskeleta in encimskega sistema v plazmalemi nalaga v celično steno.
TONOPLAST - membrana vodne vakuole - čvrsta zgradba, vezikularni princip širjenja in krčenja - transportni sistem - osmoregulacija, turgor, skladišče
Vakuole nastajajo z razširitvami ER. V njih se preko različnih transportnih sistemov nalagajo primarni metaboliti, sekundarni metaboliti kot tudi odpadne snovi, odvisno od tipa vakuol.
Prikaz transporta v vakuolo.
Membrana vakuole-tonoplast ima številne protonske črpalke.
MIKROSOMI -Mikrotelesca - 1 m, Brawnovo gibanje; vrste: Membranski: - glioksisomi (sinteza, razgradnja lipidov; semena, zaloţna tkiva) - peroksisomi (presnova glikolata, vod. peroksida; fotosintetska tkiva) - "lizosomi" (reciklaţa cel. struktur) Nemembranski: ribosomi
GLIOKSISOMI - glioksisomi (shranjevanje, razgradnja lipidov- triglicedridov (maščobnih kislin); semena, zaloţna tkiva) Glioksisomi so spercializirani peroksisomi Sinteza zaloţnih maščob poteka v ER: nastanek oleosomov (membranski lipidi nastajajo v ER(evkariontska pot) in v plastidih (prokariotska pot))
Prikaz nastanka glioksisomov iz ER
Membranski organeli si izmenjujejo vmesne produkte presnove, npr. acetil koencim A.
Tvorba trigliceridov v gladkem ER in nastanek oleosomov.
Trigliceridi se shranjujejo v glioksisomih, kjer poteka tudi njihova razgradnja.
Pretvorba trigliceridov v sladkorje (glukoneogeneza) ob sodelovanju glioksisomov, mitohondrijev in citoplazemskih encimov.
PEROKSISOMI - peroksisomi (presnova glikolata, vod. peroksida; fotosintetska tkiva) enomembranski organeli interkonverzija z glioksisomi sodelovanje v presnovi glikolata s plastidi in mitohondriji fotorespiracija
Fotorespiracija-pretvorba glikolata; sodelovanje kloroplasta, peroksisomov in mitohondrijev.
LIZOSOMI Litični organeli Reciklaţa celičnih sestavin Litične vakule Staranje celice in smrt
SFEROSOMI, OLEOSOMI Polmembranski organeli za shranjevanje maščob-oleosomi; nastanek iz ER Sferosomi so kaplice maščob v vodni tekočini Konverzija oleosomov v glioksisome
Nastajanje oleosoma na gladkem ER:sinteza trigliceridov.
RIBOSOMI - 1953, 1955 (sinteza beljakovin), 1958 - = 10-25 nm; paketi RNK - sinteza proteinov; povezava z ER; jedro, citoplazma, plastidi, mitohondriji - vrste: 80 S - evkariontski : 60 (rrnk) + 40 (mrnk); 70 S- prokariontski: 50 +60 enoti - sestava iz 2 podenot (rrnk, mrnk), povezanih z ioni Ca++ in poliamini (spermidin, spermin, putrescin, kadaverin) NEMEMBRANSKI ORGANELI!!
Shema sinteze proteinov
Ribosom- nemembranski organel, zgrajen iz mrnk in rrnk
Shema zgradbe prokariontskega 70 S in evkariontskega 80S ribosoma
CITOSKELET - 1960 odkritje elektronskega mikroskopa; metode fluorescentne mikroskopije - prosoten v celicah evkariontov: MIKROTUBOLI, MIKROFILAMENTI - povezava: cel. stena ( citoskelet) - pomen: citoskelet (ogrodje), usmerjena gibanja, cel. delitev,
MIKROTUBOLI - = 25 nm, dolţina variira - zgradba: protein TUBULIN (M=110.000 D); polaren, povezan z ioni Ca++ in Mg++, katerih koncentracija je odločilna za zgradbo - pomen: usmerjena gibanje kromosomov (DELITVENO VRETENO), cel. organelov, usmerjanje molekul celuloze pri nastanku cel. stene, sestavina bičkov in migetalk.
Izgled citoskeleta pod vrstičnim elektronskim mikroskopom.
Na osnovi zgradbe tubulina lahko analiziramo sorodnost organizmov
Kroglaste molekule tubulina so urejene v cevaste strukture- mikrotubule
Zgradba beljakovine tubulina in ureditev v mikrotubole
Prikaz transporta mikrofibril celuloze na mikrotubolih pri vgrajevanju v celično steno
Mikrotuboli sestavljajo delitveno vreteno pri vseh evkariontih.
Mikrotuboli sodelujejo z mikrofilamenti pri transportu snovi v celici.
Pri delitvi rastlinskih celic tvorijo mikrotuboli pred citokinezo preddelitveni obroč, ki določa mesto nastanka fragmoplasta.v nastajajoči fragmoplast mikrotuboli usmerjajo vezikle.
MIKROFILAMENTI - = 5-7 nm; beljakovina aktin zgradba-preteţno alfa heliks - povezava z mikrotuboli - omogočajo cel. gibanje (gibanje citoplazme, fluktuacijska in ameboidna gibanja
Različne funkcije mikrofilamentov
Beljakovinska zgradba mikrofilamentov fibrilarnih beljakovin
Mikrofilamenti so zgrajeni iz več osnovnih enot nitastih beljakovin.
Izgled mikrofilamentov
MITOHONDRIJI MITOHONDRIJI: 1908-odkritje, 1949 -pomen - v celici 1, ponavadi 100 do več tisoč - = 0,5-1,5 m, dolţina 6-10 m, okroglasti, lečasti, razvejani - vidni s faznim kontrastom, metodami barvanja (janus b zelenilo) - eden izmed energetskih centrov celice; cel. dihanje (oksidativna fosforilacija) - zgradba: PLASTI: dvojna membrana; zunanja enostavna, notranja: kriste, tuboli; matriks (hondrioplazma), DNK, ribosomi - avtoreduplikacija (cepitev), sposobnost regulacije (sinteza beljakovin); dihanje: - oksidativna fosforilacija: Krebsov cikel (matriks- hondriplazma, izgorevanje C-skeltov; sproačšnje CO2, nastajanje ATP, NADH, FADH); dihalne verige (kriste; citohrom oksidaza; nastanek vode, tvorba ATP) - prisotni v vseh ţivih celicah, tudi v vseh gametah in sporah; hipoteza o simbiontskem izvoru.
Zgradba mitohondrija
Različni tipi mitohondrijev (kristatni, tubularni sakularni); zgradba notranje membrane
Mitohondrij pod elektronskim mikroskopom.
Simbiontska teorija o nastanku plastidov in mitohondrijev predpostavlja nastanek teh organelov s fagocitozo prokariontske celice v evkarionstko in privzem energetske funkcije.
CELIČNO DIHANJE Sproščanje energije iz organskih spojin (ogljikovih hidratov, maščob (beljakovin) v ATP Mesta v celici in procesi: 1. mobilizacija zaloţnih snovi (ogljikovi hidrati (škrob): plastidi; maščobe (vakuola, (plastidi)):; beljakovine: vakuola (plastidi); 2. razgradnja polimerov na osnovne enote:
DIHANJE - NADALJEVANJE Škrob: glukoza, maščobe: glicerol, maščobne kisline-beta oksidacija maščob, glukoneogeneza; beljakovine: aminokisline 3. stopnje dihanja: glikoliza (citoplazma), Krebsov cikel, dihalne verige (mitohondriji); alternativni načini sproščanja energije: vrenja, oksidativni pentoze fosfatni cikel
Poenostavljen prikaz celičnega dihanja: glikoliza, Krebsov cikel in dihalne verige.
Glikoliza POTEK GLIKOLIZE
Povezava presnove ogljikovih hidratov v različnih delih celice
Vstop aktivirane ocetne kisline v Krebsov cikel Povezava glikolize in Krebsovega cikla
V matriksu mitohondrijev izgorevajo C- skeleti, večina energije se sprosti ob nastanku vode na notranji membrani mitohondrija v dihalnih verigah.
Krebsov cikel (=cikel citronske kisline) Krebsov cikel ali cikel citronske kisline- izgorevanje C-skeletov; tvorba c-skeletov za druge sinteze.
Dihalne verige na membrani mitohondrija
Sinteza ATP na notranji membrani mitohondrija ob nastanku vode
Sodelovanje organelov pri presnovi maščob
PLASTIDI - značilnost rastlin -energetski centri, centri presnove v evkariontski r. celici (fotosinteza - redukcija CO 2 (NO 3-, SO4 --,...) - steljčnice - alge : 1 tip; brstnice: delitev dela: več tipov: I. Fotosintetsko aktivni kromatofori: kloroplasti (alge: feoplasti, rodoplasti) II. Fotosintetsko nekativni kromatofori: kromoplasti III. Brezbarvni plastidi: levkoplasti (amilo-, elaeoplasti; (pirenoid, plastoglobuli).
Alge imajo v celicah pogosto samo po 1 velik plastid
Kloroplast brstnic je klorofilno zrno
SKUPNE ZNAČILNOSTI V ZGRADBI - dvojna membrana, lipo-proteidna, značilne sestave - lastna DNK (bakterijska!), RNK (70S ribosomi - prokarionti!) - lastna plastidoplazma (=stroma!)
VELIKOST IN OBLIKA Steljčnice (alge): veliki plastidi,različnih oblik, po 1/celico,opravljajo vse funkcije plastidov (kloro,- rodo, feoplasti); več plastidov/celico le najvišje razvite rjave in zelene alge Brstnice(mahovi, praprotnice, semenke): razvoj tkiv in diferenciacija v kloro, kromo in levkoplaste; več plastidov na celico
Nastanek in razmnoţevanje - iz plastidov (cepitev); simbiontska teorija o izvoru; podobnost mitohondrijem; (lastna DNK in RNK!) - specializacija tkiv: vrste plastidov; vsaj po ena vrsta/tip tkiva - gamete in plastidi; - vegetativno razmnoţevanje; genom:plastom - interkonverzije plastidov pri brstnicah: proplastidi ( kloro-, levko- in kromoplasti; levkoplasti (kloroplasti, kromoplasti; kloroplasti (etioplasti (tema), kromoplasti (staranje, razvoj); gerontoplasti): - razmere nastanka: svetloba, poloţaj celic/tkiv v organu; funkcija tkiva; razvoj - starnje tkiv/organov.
LEVKOPLASTI - brezbarvni plastidi brstnic (pirenoidi, plastoglobuli alg) - velja tipična zgradba plastidov; ni barvil; notranja membrana slabše diferencirana (prolamelarno telesce; tuboli; ni tilakoid) - moţnost pretvorbe v kloroplaste - funkcija: - skladišče rezervnih snovi: škrob (amiloplasti; amiloza + amilopektin); škrobna zrna: enostavna (simetrična, asimetrična; okrogla, drugih oblik -vrstna značilnost; poreklo moke); sestavljena; - druge fukcije: zaznavanje teţnosti: škrobna zrna (citoskelet; stato- liti (koreninska čepica, usmerjanje transporta hormonov (usmer- janje rasti); majhni levkoplasti brez zaloţne vloge (epiderm;...), slabo poznana fukcija (morfogeneza?, modra svetloba?); kopičenje maščob -elaeoplasti, beljakovin - proteinoplasti (izjema!) - mesta pojavljanja: škrobna zrna (+ elaeo-, proteinoplasti) - zaloţna tkiva; specializirana (sek. endosperm (alevronska, škrobna plast!), nespecializirana (skorje, strţeni stebel, korenin), sredice listov, parenhimi v lesu);vzgoja kmetijskih rastlin (zaloţni organi, tkiva).
Različni tipi amiloplastov: A asimetrični (krompir); B-dva centra nalaganja škroba; C- simetrični; D- sestavljeni
plod. ovojnica Sem. ovojnica Ostanek nucela Alevronska plast ŠKROBNA PLAST Škrob se zelo pogosto nalaga v zaloţnih tkivih npr. v semenu, v sekundarnem endospermu.
Prava ţita (iz druţine trav) so v svetovnem merilu glavni producenti škroba
Vegetativni zaloţni organi -koreni
Čebule Stebelni gomolji
Vegetativni zaloţni organi koreni, odebeljene nadomestne korenine in podzemni stebeljni gomolji in korenike
KROMOPLASTI -rumeno-, oranţno-, rdeče-, rjavo obarvani plastidi brstnic (cvetovi, plodovi, redko drugi organi); - nastanek: različen (iz proplastidov, kloroplastov), povezan z razvojemstaranjem (dezintegracija tilakoidnih membran, razpad klorofilov) - vrste: tubolarni, lamelarni, kristalinični - vsebnost barvil: karotenoidi ( karoten, violaksantin, lutein; violaksantin (anteraksantin, zeaksantin; kloroplasti (kromoplasti; kromoplasti: cca 70 vrst: n.p. likopen -Lycopersicum esculentum; kapsantin, kapsikorubin - Solanum capsicum; zeaksantin - Zea mays; violaksantin - Viola sp. (tricolor, arvensis, witrockiana, zoysii, riviniana, odorata, itd...), caroten - Daucus carota, itd... - vloga: ekološki pomen (opraševanje -zoofilija, raznašanje plodov - zoohorija); pomen v prehrani (predstopnje vitaminov); za rastline: z razpadom karotenoidov nastajajo nekateri hormoni (ABA,...).
V plodu navadnega šipka (Rosa canina L.) se z zorenjem zeleni kloroplasti spreminjajo v oranţne kromoplaste.
Kromoplasti dajejo rumenooranţno barvo številnim cvetovom na sliki cvet mačehe-viola sp.
KLOROPLASTI -Cormophyta -KLOROFILNA ZRNA (kroglasti, lečasti; več 10-100/celico; -Thallophyta (alge, lišaji) - VELIKI PLASTIDI (različnih oblik, ponavadi 1/celico); KLOROPLASTI, RODOPLASTI, FEOPLASTI - Prokaryota- Cyanobacteria: protocita = funkcionalno kloroplast - funkcije: FOTOSINTEZA, fotosintetsko aktivni kromatofori. + ostali metabolični procesi (sinteza maščob, )
Zgradba kloroplasta- klorofilnega zrna višjih rastlin
ZGRADBA KLOROFILNEGA ZRNA - lečaste oblike; 4-6-10 m, več 10-100/celico, nastanek iz proplastidov; svetloba!; Fe++, - zgradba: velja splošni princip zgradbe plastidov: 2 membrani: zunanja enostavna, notranja močno diferencirana v tilakoidni sistem; plastidoplazma (stroma); DNK, 70S ribosomi (RNK); - posebnosti v zgradbi (fotosinteza): zgradba tilakoidnih membran: - lipoproteidne membrane; uvihki notranje membrane; pomen: povečanje absorbcijske površine za svetlobo, razdelitev notranjosti kloroplasta za ustvarjanje elektrokemičnega in konc. gradienta; - proste tilakoide - stromatarne; zlepljene tilakoide - granularne (grana); - zleplanje tilakoid je v določeni meri od okolja vzpodbujen reverzibilen proces, odvisen največ od jakosti in kvalitete sončnega sevanja; vpliv temperature! - prepustnost membran kloroplasta je zelo različna (zunanja, notranja membrana, membrane prostih in zlepljenih tilakoid; saharoza; Pi; H+,...
Zgradba kloroplasta odseva njegovo funkcijo fotosintezo v prvi vrsti
ULTRASTRUKTURA TILAKOID "unit membrana", tekoči mozaik lipoproteinov; ("freeze etching"); posebnosti: SVETLOBNA FAZA FOTOSINTEZE: ABSORBCIJA SVETLOBE, TRANSFORMACIJE ENERGIJE SEVANJA V ENERGIJO ATP (ENERGETSKO BOGATIH ELEKTRONOV (= el. energija); FOTOLIZA VODE (oksidacija vode); SINTEZA NADPH+H+, ATP
Zlepljene(granularne) in proste (stromatarne) tilakoide
Model prostih in zleplenih ( naloţenih - packed ) tilakoid
FOTOSINTETSKO AKTIVNA BARVILA (PIGMENTI) absorbcija svetlobe, konverzija energije sevanja v el. energijo; zaščita pred radikali, oksidacijo; - GLAVNA BARVILA: KONVERZIJA ENERGIJE (izbitje elektronov): klorofil A (bakterioklorofil); abs. max = 420nm, 660 nm; zelena barva rastlin!!; zgradba, razvoj in pomen zgradbe molekule klorofila a za fotosintezo; bakterioklorofil : abs. max = 800-900nm.
Molekulska zgradba klorofilov a in b ter bakterioklorofila
Zgradba molekule korofila omogoča pretvorbo svetlobne energije v enrgijo elektrona
Absorpcijski spektri fotosinteznih barvil
POMOŢNA BARVILA (ANTENSKI, AKCESORNI PIGMENTI): USMERJANJE SVETLOBE NA kl. a, POMOČ PRI ABSORBCIJI SVETLOBE, ZAŠČITA TILAKOIDNIH MEMBRAN (radikali, oksidacija): - klorofili: klorofil b: abs. max: 460nm; 640 nm; kl. c, d; - karotenoidi (cca 60): karoteni; karoten: abs.max = 450-500 nm; ksantofili: lutein, violaksantin, anteraksantin, zeaksantin, neoksantin ( cca 70!); fukoksantin (alge); feoplasti; (pomen antenskih pigmentov; odvisnost količine od okoljskih razmer - svetloba, stres, dnevno in sezonsko) - fikobilini (fikobiliproteidi): pomoţni pigmenti cianobakterij in alg; fikocijan: moder; abs.max = 600 nm; fikoeritrin: rdeč abs. max = 560 nm; rodoplasti;
Barvila iz skupine karotenoidov
Pomoţna fotosintezna barvila rdečih alg in cianobakterij
Ureditev fotosinteznih barvil v tilakoidnih membranah - ureditev - vezava fot. barvil v tilakoidni membrani; nekovaletne vezi z beljakovinami ( fotosintetski centri: PS I, PSII; Emersonov efekt ("red drop") in antenski kompleksi (LHCP I, LHCP II; vezava pomoţnih fot. barvil in beljakovin);
Zgradba PSII
Zgradba PSI
Model zgradbe fotosinteznih centrov in pripadadajočih antenskih kompleksov
Model zgradbe fotosinteznega centra in antenskih kompleksov pri rdečih algah
Ostali gradniki tilakoid - PREJEMNIKI IN PRENAŠALCI ELEKTRONOV: PS I: feredoksin, citohrom b563; PSII : Q - PQ- kinoniplastokinon; citohrom b559, FeS kompleks, PC-plastocianin; - ENCIMSKI SISTEMI: PSI, PSII: ATP, NADPH+H sintetaza; PSII: sistem za fotolizo vode
Zgradba tilakoidne membrane
ORGANIZACIJA TILAKOIDNIH MEMBRAN Zlepljanje in sproščanje tilakoid stromatarne in granularne tilakoide prilagajanje na svetlobni reţim rastišča (tudi z razmerji med glavnimi in pomiţnimi fotosin. barvili) Zgradba tilakoid odraţa prilagojenost rastlin na potek fotosinteze v normalnih in stresnih razmerah kapaciteto pretvorbe svetlobe
Nalaganje in sproščanje tilakoidnih membran je prilagoditev na svetlobo in druge stre
Povezava PSI in PSII v funkcionalno enoto- fotosintetsko enoto
LIPIDI TILAKOIDNIH MEMBRAN monogalaktozildiacilglicerol, digalaktozildiacilglicerol, sulfolipidi, fosfatidilglicerol, plastocianin, plastokinoni, tokoferol ; Lipidna sestava tudi odraţa prilagoditev kloroplasta na stresne razmere (mraz, vročina, suša); vloga tokoferola V lipidno sfero membran so vključeni karotenoidi!!
ZGRADBA IN ŠTEVILO KLOROPLASTOV - dimorfizem kloroplastov; C3, C4 rastline; senčne- sončne adaptacije na ravni števila kloroplastov, zgradbe tilakoidnih membran (proste/zlepljene tilakoide), razmerja glavnih in pomoţnih barvil (kla/klb; klorofili/karotenoidi, karotenoidi/ksantofili) in ostalih sestavin tilakoid (PSI/PSII),..
Navadne celice mezofila Celice ţilnega ovoja z agranularnimi kloroplasti in delno oplutenelimi cel. stenami Prerez lista C4 rastline (npr. koruze): dimorfizem asimilacijskega parenhima
Dve prostorsko ločeni karboksilaciji pri C 4 rastlinah
Dimorfizem kloroplastov pri C 4 rastlinah: kloroplasti celic ţilnega ovoja nimajo PSII, agranularni kloroplasti.
ZGRADBA STROME - temotna faza fotosinteze: ENCIMI KALVINOVEGA CIKLA, sinteze polisaharidov; redukcije sulfata, nitrata; sistemi za nevtralizacijo radikalov (katalaza, SOD, peroksidaza); RUBISCO; RIBULOZA-BIFOSFAT KARBOKSILAZA; PLATOGLOBULI; ASIMILACIJSKI ŠKROB DNK, 70S ribosomi