Radians/Arc+Length+++! Converting++Between++Radians++and++Degrees+

Σχετικά έγγραφα
Chapter 6 BLM Answers

TRIGONOMETRY:+2.1++Degrees+&+Radians+ Definitions:* 1*degree*/* ** * 1*radian* * * *

Trigonometry 1.TRIGONOMETRIC RATIOS

ΤΡΟΠΟΣ ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ (INTERPOL ATION)

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

f (x + h) f (x) h f (x) = lim h 0 f (z) f (x) z x df (x) dx, df dy dx,

1999 by CRC Press LLC

Review Exercises for Chapter 7

CRASH COURSE IN PRECALCULUS

Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

% APPM$1235$Final$Exam$$Fall$2016$

Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Section 8.3 Trigonometric Equations

Γιάνναρος Μιχάλης. 9x 2 t 2 7dx 3) 1 x 3. x 4 1 x 2 dx. 10x. x 2 x dx. 1 + x 2. cos 2 xdx. 1) tan xdx 2) cot xdx 3) cos 3 xdx.

ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)

If we restrict the domain of y = sin x to [ π 2, π 2

Solution to Review Problems for Midterm III

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Trigonometric Formula Sheet

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

MATH 150 Pre-Calculus

ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets

Sampling Basics (1B) Young Won Lim 9/21/13

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

PARTIAL NOTES for 6.1 Trigonometric Identities

Trigonometry Functions (5B) Young Won Lim 7/24/14

MathCity.org Merging man and maths

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Γενικά Μαθηματικά Ι. Ενότητα 2: Τριγωνομετρικές, Εκθετικές και Σύνθετες Συναρτήσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Spherical Coordinates

1 Σύντομη επανάληψη βασικών εννοιών

Inverse trigonometric functions & General Solution of Trigonometric Equations

Differentiation exercise show differential equation

Homework#13 Trigonometry Honors Study Guide for Final Test#3

Principles of Mathematics 12 Answer Key, Contents 185

is like multiplying by the conversion factor of. Dividing by 2π gives you the

Γραμμική Διαφορική Εξίσωση 2 ου βαθμού

Leaving Certificate Applied Maths Higher Level Answers

ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ 1(ΑΝΑΛΥΣΗ)

Διαφορικά Αόριστα Ολοκληρώµατα Κανόνες Ολοκλήρωσης. Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης

Μία σύντομη εισαγωγή στην Τριγωνομετρία με Ενδεικτικές Ασκήσεις

Formulario di Trigonometria

Areas and Lengths in Polar Coordinates

cos ϑ sin ϑ sin ϑ cos ϑ

3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΕΠΙΣΤΗΜΟΝΙΚΟΥΣ ΥΠΟΛΟΓΙΣΜΟΥΣ

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

Ι ΤΕΛΕΣΤΕΣ, ΤΑΥΤΟΤΗΤΕΣ, ΠΑΡΑΓΩΓΟΙ, ΣΕΙΡΕΣ, ΙΑΦΟΡΟΙ ΤΥΠΟΙ

Rectangular Polar Parametric

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

Areas and Lengths in Polar Coordinates

Lifting Entry (continued)

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

DIFFERENTIAL_CALCULUS

Section 7.6 Double and Half Angle Formulas

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

List MF20. List of Formulae and Statistical Tables. Cambridge Pre-U Mathematics (9794) and Further Mathematics (9795)

Εξαναγκασµένες φθίνουσες ταλαντώσεις

Matrices and Determinants

Άσκηση 05: Ψηφιακά Φίλτρα τύπου Κτένας. (Comb filters)

Ανάπυξη ενός αυτοματοποιημένου συστήματος διαχείρησης δικτύων τεχνητών δορυφόρων

Το πρόβληµα της σκέδασης

1 GRAMMIKES DIAFORIKES EXISWSEIS DEUTERAS TAXHS

HMY 102 Ανάλυση Ηλεκτρικών Κυκλωμάτων

4.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y ln x 2 x. y ln 1 x 2. y x 2 e x2. x 1 x 2. x 2 x 3. x 5 2. y x 3.

Differential equations

3 }t. (1) (f + g) = f + g, (f g) = f g. (f g) = f g + fg, ( f g ) = f g fg g 2. (2) [f(g(x))] = f (g(x)) g (x) (3) d. = nv dx.

Chapter 7 Analytic Trigonometry

Στήριξη Στρωσιγενούς Πετρώματος πέριξ σήραγγας

10.0 C N = = = electrons C/electron C/electron. ( N m 2 /C 2 )( C) 2 (0.050 m) 2.

1. Κατασκευάστε ένα διάνυσμα με στοιχεία τους ζυγούς αριθμούς μεταξύ του 31 και 75

Διαφορικές Εξισώσεις.

Κ. Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής Παράγωγος. x ορίζεται ως

Homework 8 Model Solution Section

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

Αρχίζουµε µε την µη συµµετρική µορφή του απειρόβαθου κβαντικού πηγαδιού δυναµικού, το οποίο εκτείνεται από 0 έως L.

Μέθοδος προσδιορισμού συντελεστών Euler

ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΗ ΧΗΜΕΙΑ Ι ΘΕΜΑΤΑ B Σεπτέμβριος 2008

7. TRIGONOMETRIC RATIOS, IDENTITIES AND EQUATIONS 1. INTRODUCTION 2. TRIGONOMETRIC FUNCTIONS (CIRCULAR FUNCTIONS)

1 Formulas. (%i1) kill(all); (%o0) done. (%i1) numer:false; (%o1) false. (%i2) drdt1: epsilon*x*l/(alpha*mu)*sin(x*theta); (%o2) ε x sin( θ x)

Μέθοδοι ολοκλήρωσης. Ολοκληρωτικός Λογισμός μιας μεταβλητής Ι

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Lecture 5 Plane Stress Transformation Equations

Εργαστήριο Δομημένος Προγραμματισμός (C#) Τμήμα Μηχανολογίας Νικόλαος Ζ. Ζάχαρης Καθηγητής Εφαρμογών

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Web page: Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία

4.5 SUMMARY OF CURVE SKETCHING. Click here for answers. Click here for solutions. y cos x sin x. x 2 x 3 4. x 1 x y x 3 x

Basic Formulas. 8. sin(x) = cos(x π 2 ) 9. sin 2 (x) =1 cos 2 (x) 10. sin(2x) = 2 sin(x)cos(x) 11. cos(2x) =2cos 2 (x) tan(x) = 1 cos(2x)

Q 40 th International Physics Olympiad, Merida, Mexico, July 2009

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Transcript:

Radians/ArcLength ConvertingBetweenRadiansandDegrees Anglemeasurementcanbeexpressedinboth & Dependingonthecircumstance,itmaybenecessarytoconvertbetweenthetwounits ofangularmeasurement. Since2#=360,thefollowingequationscanbedetermined: ConvertingfromRadians'toDegrees' ConvertingfromDegrees'toRadians' ExactValue ApproximateValue Ex1:Convert todegrees Ex2:Convert240 toradians Ex3:Covert0.85radtodegrees.Roundtothenearesttenth. GeneralFormofCoterminalAngles Anygivenanglehasaninfinitenumberofanglescoterminalwithit,sinceeachtimeyoumake onfullrotationformtheterminalarm,youarrivebackatthesameterminalarm.angles coterminalwithanyanglecanbedescribedusingtheexpressions: Ex1: a) Expresstheanglescoterminalwith110 ingeneralform.identifytheanglescoterminal thatsatisfythedomaink720 <720 For'DegreesFor'Radians ± 360 ± 2

b)expresstheanglescoterminalwith ingeneralform.identifytheanglescoterminal with 8 inthedomain 4 < 4 3 CalculatingArcLength Therelationshipbetweentheradianmeasureofanangle,thearclength,andthe radiusofacircleisgivenbytheformula: Where: ristheradius ismeasuredinradians ArcLength= Ex1:Rosemarieistakingacourseinindustrialengineering.Foranassignmentsheis designingtheinterfaceofadvdplayer.inherplan,sheincludesadecorativearcbelow theon/offbutton.thearchascentralangle130 inacirclewithradius6.7mm. Determinethelengthofthearctothenearesttenthofamillimeter. Homework #2,4,6,7[abe],8[ad],11[aceg],12[bc],16

4.2$StandardPosition/Co$terminalAngles StandardPosition: AnangleinstandardpositionisanangleonaCartesianplanwithitsvertexatthe originandonearm,calledtheinitialarm,alongthepositivex$$$axis.allanglesare measurebetweentheinitialarmandtherotatingarmcalledtheterminalarm. Whentheterminalarmrotatescounter clockwise:positiveangle Whentheterminalarmrotates clockwise:negativeangle Ex1)Determinethequadrantinwhichtheangle terminates. Ex2)DeterminethequadrantinwhichtheEx3)Determinethequadrantinwhichthe angle terminates.angle# terminates. CoterminalAngles: Sinceanglesinstandardpositioncanbepositive,negative,orhavemultiplerotations aroundthecartesianplane,therewillbecasesinwhichangleswillhaveterminalarmsin thesameposition.

Ex1)Findonepositiveandonenegativeanglethatiscoterminalwith100.Then,finda coterminalanglethatrotatesatleastonetime. Positive Negative Atleastonepositiverotation

TrigonometricRatiosofAnglesinStandardPosition: Ex1)Findthevaluesofcsc,sec,andcotforanangleterminatingatpointP(3,7) Ex2)Findtheexactvaluesofsin,cos,andtanforanangleterminatingatpoint P($2,5)

Lesson&3(&The&Unit&Circle& AcircleontheCartesianplanewithitscenterat theoriginandaradiusof1unitiscalledthe: YoucanderivetheequationoftheunitcirclebyapplyingthePythagoreantheorem. LetP(x,y)representanypointontheunitcircle: Toindicatethethreesidesofthetriangle,adottedverticallineisdrawnfrompointPtothexCaxis.The legsoftherighttrianglearelabeledasxandy. ApplythePythagoreantheoremtotherighttriangle givestheequationoftheunitcircle,whichis: Usingthesidelengthsofxand&yandthehypotenuseof1,theprimarytrigratioscanbe definedasfollows: sin = 1 = cos = 1 = tan = Thereciprocaltrigonometricratioscanbedefinedas: csc = 1 sec = 1 cot =

DefiningSpecialTrianglesintheUnitCircle Together,therearetwospecialtrianglesthatmakeuptheentireunitcircle.Thefirstoneisthe45C45C90triangle withhypotenuse1,andthesecondisthe30c60c90trianglewithhypotenuse1. 45 30 60 sin cos Anglesintheunit circlecorrespondto anglesinthesespecial triangles Thesetrianglescanbeplaced intoall4quadrantsoftheunit Circle.But,tofullycomprehend thebehaviorofthiscirclewe reallyonlyneedtounderstand thebehaviorinqi,andthen applyittoqii,qiii,andqiv. Infact:Almostalloftheangles intheunitcirclearemultiples of30 ( 6 )

TheUnitCircle Usingthedatacollectedfromthespecialtriangleswecanfillintheunitcircle

Findtheexactvaluesof#, #, # ontheunitcircleforthefollowinganglemeasurements Ex1) 4 3 rad Ex2)330 Findtheexactvaluesof, #, # ontheunitcircleforthefollowinganglemeasurements Ex1) radex2) 120

Homework: 1)sin135 A:[ ] 2)csc750 A:[2] 3)sec 5 3 A:[2] 3)cos( 7 4 )A:[ ] Page186:#1[a,c],4,5,10,15

Homework:Page202#1,2,3,4[bd],6,7,9,10[abd],12,13,17[a] Page211#1,2,3[ad],4[ace],5[abdf],6,19,20 MoreTrigonometricRatiosandIntroductiontoTrigonometricEquations Warm6upProblem:Determinetheexactvalueofthefollowingtrigratios a)sin( 300 ) b)sec 6 ApproximateValuesforTrigonometricRatios Youcandetermineapproximatevaluesforsine,cosine,andtangentusingyourgraphingcalculator. MAKESUREYOUAREINTHECORRECTMODEWHENEVALUATINGTRIGRATIOSONYOURCALCULATORS. [RADIANORDEGREE] Somedevicescancomputenegativeangles,howeveryoushoulduseyourknowledgeofreferenceangles andcoterminalanglestocomputenegativeangles. Whencomputingreciprocaltrigratios[secant,cosecant,cotangent]onacalculator,makesuretousethe correctreciprocalrelationship. Ex1)Determinetheapproximatevalueforeachtrigonometricratio.Giveyouranswertofour decimalplaces. a)tan 7 5 b)csc( 70 ) Howcanyoufindthemeasureoftheanglewhenthevalueofthetrigonometricratioisgiven?Usetheinverse trigonometricfunctionkeysonyourdevices. Ex:sin 30 = 0.5 sin 0.5 = 30 sin istheabbreviationforthe inverseofsine Donnot confusethiswith(sin 30 ) whichmeans #,orcsc 30 Thesekeysonlyreturnoneanswer,whenthereareusuallytwo angleswiththesamevalueinafullrotation.youwillneedto applyknowledgeofreferenceanglesandcoterminalangles todetermineallsolutions

Determininganglesgiventhetrigonometricratio Ex2:Determinethemeasuresofallanglesthatsatisfythefollowingratios a) sin θ = 0.879inthedomain0 < 2.Giveanswerstothenearesttenthofaradian b)cos θ = 0.366inthedomain0 θ < 360.Giveexactanswers. b)sec = 2 3 3 inthedomain 2 < 2.Giveexactanswers.

Calculatingtrigonometricratiosforpointsnotontheunitcircle Ex3)ThepointA(64,3)liesontheterminalarmofanangleinstandardposition.Whatistheexact valueofeachtrigonometricratiofor? IntroductiontoTrigonometricEquations Lookattheequationcos = 1,0 < 2.Whataretheexactmeasuresofθ? 2 Howisthisequationrelatedto2 cos 1 = 0? Whatifthedomaingivenwas0 < 360? How$do$you$know$ whether$to$give$ your$answers$in$ degrees$or$radians?$

IntervalNotation Thenotation 0, representstheintervalfrom0to,andisanotherwayofwriting0 θ 0, meansthesameas: θ 0, meansthesameas: Ex1:Solveeachtrigonometricequationinthespecifieddomain. a)5 sin θ 2 = 1 3 sin θ,0 < 2b)3 csc 6 = 0,0 < 360 SolvinganEquationbyFactoring Ex2:Solvefor:tan θ 5 tan θ 4 = 0, 0 θ < 2

GeneralSolutionofaTrigonometricEquation Ex3: a)solveforxovertheinterval0 θ < 2if:sin 1 = 0 b)determinethegeneralsolutionforsin 1 = 0overtherealnumbersifxismeasuredinradians