Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

Σχετικά έγγραφα
CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

1. For each of the following power series, find the interval of convergence and the radius of convergence:

SHORT REVISION. FREE Download Study Package from website: 2 5π (c)sin 15 or sin = = cos 75 or cos ; 12

Polynomial. Nature of roots. Types of quadratic equation. Relations between roots and coefficients. Solution of quadratic equation

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

Oscillatory integrals


Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com

IIT JEE (2013) (Trigonomtery 1) Solutions

α β

Homework 4.1 Solutions Math 5110/6830

SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES

Orthogonal polynomials

Presentation of complex number in Cartesian and polar coordinate system

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Matrices and Determinants

Bessel function for complex variable

B.A. (PROGRAMME) 1 YEAR

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3

Math221: HW# 1 solutions

Homework for 1/27 Due 2/5

Fourier Series. Fourier Series

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Finite Field Problems: Solutions

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

B.A. (PROGRAMME) 1 YEAR

Inverse trigonometric functions & General Solution of Trigonometric Equations

CHAPTER-III HYPERBOLIC HSU-STRUCTURE METRIC MANIFOLD. Estelar

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Trigonometric Formula Sheet

Section 8.3 Trigonometric Equations

LAD Estimation for Time Series Models With Finite and Infinite Variance

Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Solve the difference equation

Trigonometry 1.TRIGONOMETRIC RATIOS

Quadruple Simultaneous Fourier series Equations Involving Heat Polynomials

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

D Alembert s Solution to the Wave Equation

The Simply Typed Lambda Calculus

Example Sheet 3 Solutions

HERMITE-HADAMARD TYPE FRACTIONAL INTEGRAL INEQUALITIES FOR GENERALIZED FUNCTIONS

Lecture 26: Circular domains

Lecture 5: Numerical Integration

Αναγνώριση Προτύπων. Non Parametric

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

4.6 Autoregressive Moving Average Model ARMA(1,1)

CRASH COURSE IN PRECALCULUS

Solutions to Exercise Sheet 5

Homework 3 Solutions

C.S. 430 Assignment 6, Sample Solutions

2 Composition. Invertible Mappings

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Uniform Convergence of Fourier Series Michael Taylor

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

w o = R 1 p. (1) R = p =. = 1

derivation of the Laplacian from rectangular to spherical coordinates

Lifting Entry (continued)

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

The Heisenberg Uncertainty Principle

Παραμετρικές εξισώσεις καμπύλων. ΗΥ111 Απειροστικός Λογισμός ΙΙ

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

What happens when two or more waves overlap in a certain region of space at the same time?

Statistical Inference I Locally most powerful tests

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK

Local Approximation with Kernels

Basic Formulas. 8. sin(x) = cos(x π 2 ) 9. sin 2 (x) =1 cos 2 (x) 10. sin(2x) = 2 sin(x)cos(x) 11. cos(2x) =2cos 2 (x) tan(x) = 1 cos(2x)

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

physicsandmathstutor.com

Ψηφιακή Επεξεργασία Εικόνας

Math 6 SL Probability Distributions Practice Test Mark Scheme

Cyclic or elementary abelian Covers of K 4

PARTIAL NOTES for 6.1 Trigonometric Identities

If we restrict the domain of y = sin x to [ π 2, π 2

Differentiation exercise show differential equation

Transcript:

Fourier Series Periodic uctio A uctio is sid to hve period T i, T where T is ve costt. The ;est vlue o T> is clled the period o. Eg:- Cosider we kow tht, si si si si si... Etc > si hs the periods,,6,.. Dirichlet Coditios Here is the lest vlue The period o si Suppose tht the rbiry uctio i ii iii is well deied d sigle vlued periodic uctio hs oly iite umber o discotiuity hs iite umber o mimum d miimum These coditios re kow s dirichlet coditios.

Fourier series I is periodic uctio d stisctio Dirichlet Coditios, the the uctio c be epded by trigoometric series or iiite series clled Fourier series s b cos si where, d b re clled Fourier coeiciets Euler s Formule or idig Fourier coeiciets I is periodic uctio with period i the itervl c c ie, c, c d i c be represeted i trigoometric series b cos si the c c d c cos d c c db si d c The epressios givig the vlues,, & b re clled Euler s ormule. Note :- I c, the c, c e, Euler s ormule c be writte s

d cos d c b si d c Note :- I c -, the c,c -, Euler s ormule c be writte s d Covergece o Fourier series cos d b si d i The Fourier series o coverges to t ll poits where is cotiuous t the the sum o the Fourier series t is. ii At poit o discotiuity, the series coverges to the verge vlue o the uctio t ed poits. i,e, I is poit o discotiuity o the the vlue o the

Formuls F.S. t is e e si bd si b bcosb b [ ] e e c osbd cosb bsi b b [ ] uvd uv u v u v... where u, u re derivtives v, v re itegrls si A cos B 5 cos A si B 6 cos A si B 7 si A si B 8 Si 9 Cos - cos cos si si -θ -si θ cos -θ cos θ PROBLEMS: Fourier e - s Fourier series i < <. Hece deduce tht the vlue o

5 Further derive series or cosech sol let the Fouries series be where b cos si [ ] d e d e e e cos d e cos d e { cos si } e e cosbd [ cosb bsi b] b

6 e e b si d e si d e { cos si } e b e Substitutig these vlues i, we get e cos si e e cos si Deductio whe poit o cotiuity

7 e cos e e e > e > > e e [ e e ] sih `` `` sih `` > sih `` Q cos ech sih cos ech `` Determie the Fourier series epsio o - i <<. Deduce the sum o the series 6... sol Let the Fourier series be

8 ] si cos [ b d where 6 8 6 6 8 8 8 d d d cos d d cos cos

9 u - u - u - v cos si v cos v si v si cos si cos o b cos d cosd si d u- u - vsi v -cos/ u - v -si/ v cos/

Substitute these vlues i, we get Deductio whe poit o discotiuity cos si cos b cos cos b cos cos 6........

Epd - s Fouier series o period i the itervl <<.Hece deduce the sum o the series sol Let the Fourier series be where [ ]............ > >......... > si cos b d d

cos d u- u -- vcos v si/ u v -cos/ v -si/ si cos si cos b si d si d

u- u -- vsi v -cos/ u v -si/ v cos/ cos si cos b where d si d u vsi v -cos u v -si [ cos si ] [ cos ] [ ] - cos d c

si cos d si si d si si d u u v si si v si si cos cos v si si v cos cos si si `

5 whe, cos d c cos d si d si cos d si d vsi u u v -cos/ v -si/ c o s s i c o s -/ b si d s i s i d { cos cos } cos A B Cos A B { cos cos }

6 v cos cos u u si si v v cos cos si si ` cos cos cos cos b O whe, b si d

7 si si d si d cos d cos d si cos u vcos v si/ u v -cos/ b Hece the Fourier series is b b cos cos si si cos cos si

8 Deductio :- whe / poit o cotiuity cos cos si cos si cos... 5.....5 5.7.....5 5.7 I si si : < < : < < Obti the

9 Fourier series o periodicity sol let the Fourier series be cos si b where d d d si d cos cos cos c o s d [ ] c o s d c o s d / s i c o s d { s i s i } d c o s c o s c o s c o s c o s c o s

cos cos cos cos si si cos cos si si cos cos cos cos cos cos cos

i,e. whe, cos si cos d si d cos

b si d si si d si A si B cos A B cos A B [ cos cos ] d [ cos cos ] d [ Q ] si si [ ] b i whe, b si d s i s i d s i d c o s d s i [ ] b H e c e th e F o u r i e r s e r ie s i s c o s c o s s i

si cos cos cos 6... 5 5 6 Derive the Fourier epsio o cos i o< < d deduce tht Sol Let the Fourier series be b cos si where d cos d si d si d cos [ cos cos ] [ ]

cos cos d si cos d si cos d si si d si si cos cos cos d

5 b si d cos si d cos si d si si d [ Qsi Asi B cos A B cos A B] si cos d cos cos d si si si si b Hece the Fourier series is

6 cos cos Deductio :- Whe Poit o cotiuity cos cos >

7 7 Epd, <<, < < As Fourier series Sol Let the Fourier series be b cos si Where d d cos d

si d 8 cos b Hece the Fourier series is si Homework problems i, Fid the Fourier series o periodicity o or d hece deduce tht - i,... 5 8 Fid the Fourier series o period or the uctio X cos i < <. Epd e i Fourier series i,

9 I -, id the Fourier series o period i the itervl,. Hece deduce tht -, -. 5 7 5 Epd i Fourier series o periodicity o or < <. Eve & odd uctios A uctio is sid to be eve uctio i - The grph is such uctio is symmetric bout y-is

Eg.,, cos, si For :- - - A uctio id sid to be dd uctio i - - The grph o such uctio is symmetric bout the origi.

Note : i I is eve the d d ii I is odd the d Fourier series represettio o i -, Note : I is eve the the Fourier series repesettio or i -, cotis oly costt termdcosie terms ie., cos where d cos d sie terms Note I is odd, the the Fourier series represettio or i -, cotis oly ie., b si whereb si d

Note I is either eve or odd the the Fourier series represettio o i -, is b cos si d cos d Problems :- b si d I i - cos si, show tht Deduce tht the sum o the series 6 Sol : Let the Fourier series be b cos si where d

u v cos u v si / d d d d d cos d d d d cos cos cos cos

u v -cos / v -si / si cos si b si d si d si d si d si d u u v si v -cos / v -si / cos si b Fourier series is cos si

5 Deductio : whe poit o discotiuity Fid the Fourier series o cos where is ot iteger i - < <.Deduce tht sol... cos 6 6 6 6 6 cot

e 6 Give cos Here, - cos- cos > is eve Fourier series be cos where d cos d si si cos cos d [ cos cos cos d cos ] d [ cos [ cos cos ] d cos ] d si [ si cos cos ] d si si cos d