( ) Kähler X ( ),. Floer -Oh- - [6]. X Fano *, X ( = (C ) N ) W : X C ( ) (X,W). X = P, W (y) =y + Q/y. Q P. Φ:X R N, Δ=Φ(X). u Int Δ, Lagrange L(u) =

Σχετικά έγγραφα
([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-

Discriminantal arrangement

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 Kontsevich-Kuperberg-Thurston ( ) Kontsevich-Kuperberg-Thurston Kontsevich Chern-Simons E. Witten Chern-

[I2], [IK1], [IK2], [AI], [AIK], [INA], [IN], [IK2], [IA1], [I3], [IKP], [BIK], [IA2], [KB]

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).



ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:

Α Ρ Ι Θ Μ Ο Σ : 6.913


Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

ADE. 1 Introduction. (Ryo Fujita) Lie. U q (Lg) U(Lg) Dynkin. Dynkin. Dynkin. 4 A n (n Z 1 ), B n (n Z 2 ), C n (n Z 2 ), D n (n Z 4 )

11 Drinfeld. k( ) = A/( ) A K. [Hat1, Hat2] k M > 0. Γ 1 (M) = γ SL 2 (Z) f : H C. ( ) az + b = (cz + d) k f(z) ( z H, γ = cz + d Γ 1 (M))

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

Adachi-Tamura [4] [5] Gérard- Laba Adachi [1] 1

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

( ) 1.1. (2 ),,.,.,.,,,,,.,,,,.,,., K, K.

Higher spin gauge theories and their CFT duals

Single-value extension property for anti-diagonal operator matrices and their square

ΔΗΜΟΣΙΕΥΣΕΙΣ σε περιοδικά με κριτές

L p approach to free boundary problems of the Navier-Stokes equation

f O(U) (f n ) O(Ω) f f n ; L (K) 0(n )

apj1 SSGA* hapla P6 _1G hao1 1Lh_PSu AL..AhAo1 *PJ"AL hp_a*a

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul p q -φ. p q

Advanced Multidimensional NMR-I


Παρασκευή 1 Νοεμβρίου 2013 Ασκηση 1. Λύση. Παρατήρηση. Ασκηση 2. Λύση.

MABUCHI AND AUBIN-YAU FUNCTIONALS OVER COMPLEX THREE-FOLDS arxiv: v1 [math.dg] 27 Mar 2010

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Monotonicity theorems for analytic functions centered at infinity. Proc. Amer. Math. Soc. (to appear). Growth theorems for holomorphic functions

= g(x e, Y e ) = g e (X, Y ) = g(x, Y )(e), = d(l (gα) 1 L g ) α u, d(l (gα) 1 L g ) α v

Jean Pierre Serre. Géométrie Algébrique et Géométrie Analytique (GAGA) Annales de l institut Fourier, Tome 6 (1956), p

1 What is CFT? 1. 3 Strange duality conjecture (G) Geometric strange duality conjecture... 5

page: 2 (2.1) n + 1 n {n} N 0, 1, 2

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

2.1

!#$%!& '($) *#+,),# - '($) # -.!, '$%!%#$($) # - '& %#$/0#!#%! % '$%!%#$/0#!#%! % '#%3$-0 4 '$%3#-!#, '5&)!,#$-, '65!.#%

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

Nonlinear problem with subcritical exponent in Sobolev space

= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

( )( ) ( )( ) 2. Chapter 3 Exercise Solutions EX3.1. Transistor biased in the saturation region

n+1 v x x 3 u2 1 + u2 2 1 ) + 1 (u 1, u 2 ) = 1 v2 1 ) (v 1, v 2 ) =

An Essay on A Statistical Theory of Turbulence

arxiv: v1 [math.dg] 31 Jan 2009

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

ΑΘΑΝΑΣΙΟΣ Ι. ΠΑΠΙΣΤΑΣ

! "# " #!$ &'( )'&* $ ##!$2 $ $$ 829 #-#-$&2 %( $8&2(9 #."/-0"$23#(&&#

u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R


Πεπερασμένες διαφορές για την ελλειπτική εξίσωση στις δύο διαστάσεις

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Some generalization of Cauchy s and Wilson s functional equations on abelian groups

γάμος PRICELIST 2013 KENTΡΙΚΗ ΣΕΛΙΔΑ Δημιουργικό Διαστάσεις Κόστος Δημιουργικό Διαστάσεις Κόστος Run-of-site Δημιουργικό Διαστάσεις Κόστος

V. Finite Element Method. 5.1 Introduction to Finite Element Method

A Simple Proof for the Generalized Frankel Conjecture

5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.

Coupling strategies for compressible - low Mach number flows

CDMA. Performance Analysis of Chaotic Spread Spectrum CDMA Systems. LI Xiao - chao, GUO Dong - hui, ZENG Quan, WU Bo - xi RESEARCH & DEVELOPMENT

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας

Im-e-Øn-s I-hn tum. Fw.-F-kv. ta-t\m

1 Fuchs. Fuchs. Gauss (1.1) (α) n := α(α + 1) (α + n 1) Bessel Riemann. [MUI], [WW] Gauss. (1.2) x(1 x) d2 u dx 2 + ( γ (α + β + 1)x ) du


An explicit formula for the Webster torsion of a pseudo-hermitian manifold and its application to torsion-free hypersurfaces

Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ

y(k) + a 1 y(k 1) = b 1 u(k 1), (1) website:

Γενικός ρυθμός μεταβολής οικονομικά ενεργού πληθυσμού χρονών - σύνολο

Minimal Surfaces PDE as a Monge Ampère Type Equation

#%" )*& ##+," $ -,!./" %#/%0! %,!

PHASE TRANSITIONS IN QED THROUGH THE SCHWINGER DYSON FORMALISM

arxiv: v1 [math-ph] 4 Jun 2016

Sho Matsumoto Graduate School of Mathematics, Nagoya University. Tomoyuki Shirai Institute of Mathematics for Industry, Kyushu University

100x W=0.1 W=

A summation formula ramified with hypergeometric function and involving recurrence relation

Parallel displacements of directions on the Grassmann-like manifold of centered planes

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

Utkin Walcott & Zak ¼

-! " #!$ %& ' %( #! )! ' 2003

Classical Theory (3): Thermostatics of Continuous Systems with External Forces

Adaptive compensation control for a piezoelectric actuator exhibiting rate-dependent hysteresis Y. Ueda, F. Fujii (Yamaguchi Univ.

Μοντέρνα Θεωρία Ελέγχου

Eects of Gas-Surface Interaction Model in Hypersonic Rareed Gas Flow

ADVANCES IN MECHANICS Jan. 25, Newton ( ) ,., Newton. , Euler, d Alembert. Lagrange,, , Hamilton ( )

IUTeich. [Pano] (2) IUTeich

OILGEAR TAIFENG. (mm) (mm) (mm) (kg)! 048,065& SAE B 2/4 Bolt 100& SAE C 2 Bolt

A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems


arxiv: v2 [math.qa] 19 Jan 2018

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations


(10/ /2007) 2012.

Prey-Taxis Holling-Tanner

( ) ( ) ( ) ( ) ( ) 槡 槡 槡 ( ) 槡 槡 槡 槡 ( ) ( )

High order interpolation function for surface contact problem

Curran et al.,**. Davies et al ,**, ,***,**/

Differential forms and the de Rham cohomology - Part I

Transcript:

Floer Cohomologes of Non-torus Fbers of the Gelfand-Cetln System (X, ω) 2N. X N Φ=(ϕ,...,ϕ N ):X R N, Posson, Φ. Φ, Arnold-Louvlle Largange. Φ (u) = T N, ω Φ (u) =0.. Gelfand-Cetln, Gullemn-Sternberg [9] F = GL(n, C)/P. Gelfand-Cetln, Δ=Φ(F ) Gelfand-Cetln,, Δ Lagrange,., Lagrange Floer. Lagrange Floer, Lagrange Morse, Lagrange Hamltonan sotopy., Floer., Kähler X (23740055). 97

( ) Kähler X ( ),. Floer -Oh- - [6]. X Fano *, X ( = (C ) N ) W : X C ( ) (X,W). X = P, W (y) =y + Q/y. Q P. Φ:X R N, Δ=Φ(X). u Int Δ, Lagrange L(u) =Φ (u),. * 2 () L(u) u Int Δ PO(u, x) = H (L(u); R/2πZ) = Int Δ (R/2πZ) N v:(d 2, D 2 ) (X,L(u)) ( ) exp v ( ω hol x v( D 2 ) ) () D 2, W (y). hol x ( v( D 2 ) ), x H (L(u); R/2πZ) L(u) U() v( D 2 ) L(u). () PO, Lagrange L(u) b H (L(u); R/2πZ) (L(u),b), Floer. () X QH(X) Jacob Jac(PO) = C[y ±,...,y± N ]/( PO/ y ; =,...,N). (v), c (X) QH(X). * X Chern c (X) =c (TX), K X Rcc Kähler. *2,. ample. 98

[6] [7]., (), () X dm H (X; Q), Floer (L(u),b) dm H (X)., Gelfand-Cetln., Gvental [8], Batyrev, Cocan-Fontanne, Km, van Straten [] ( - - [0]). (), Floer Lagrange.,, dm H (F ). - -Xong [3] Retsch [] (C ) N,., Gelfand-Cetln., 3 Fl(3) C 4 2 Grassmann Gr(2, 4), Floer., Floer Lagrange dm H (F ). ( ). 2 Gelfand-Cetln u(n) n n Hermte, F = GL(n, C)/P λ =dag(λ,...,λ n ) O λ u(n). O λ λ,...,λ n Hermte. x O λ k =,...,n, x (k) x k k. x (k) Hermte, λ (k) (x) λ(k) 2 (x) λ(k) k (x) 99

. k =,...,n, n(n )/2 (λ (k) ) k n. λ λ 2 λ 3 λ n λ n λ (n ) λ (n ) 2 λ (n ) n λ (n 2) λ (n 2) n 2 (2) λ (). λ, F, (2) λ (k). λ (k) N =dm C F. Gelfand-Cetln λ (k). Φ=(λ (k) ),k : F R N 2. (Gullemn-Sternberg [9]). Φ F (Kostant-Krllov )., u Int Δ L(u) =Φ (u) Lagrange. Δ=Φ(F ) (2). Δ Gelfand-Cetln. 2.2 (Fl(3) ). λ,λ 2 > 0, Fl(3) λ =dag(λ, 0, λ 2 )., Gelfand-Cetln, 4 u 0 =(0, 0, 0) ( ). L 0 =Φ (u 0 ) L 0 = 0 0 z 0 0 z 2 u(3) z z 2 λ λ 2 z 2 + z 2 2 = λ λ 2 3 S 3 = SU(2) Lagrange. 00

λ () λ (2) λ (2) 2 Fl(3) Gelfand-Cetln. 2.3 (Gr(2, 4) ). λ>0, Gr(2, 4) λ =dag(λ, λ, λ, λ), Gelfand-Cetln Δ λ λ (3) 2 λ λ (2) λ (2) 2 λ () 4., λ () = λ (2) = λ (2) 2 = λ (2) 2 Δ. (t, t, t, t) L t =Φ (t, t, t, t) {( ) ti L t = 2 λ2 t 2 P λ2 t 2 P } u(4) ( t)i 2 P U(2) U(2) Lagrange. 3 Floer, -Oh- - [4] Floer. T, { } Λ 0 = a T λ a C, λ 0, lm λ = = 0

Novkov. Λ +,Λ. (X, ω) Lagrange L ( ), L, L H (L;Λ 0 ) A m k : H (L;Λ 0 ) k H (L;Λ 0 ), k =0,, 2,... ([4, Theorem A]). m : H (L) H (L), m 2 : H (L) H (L) H (L), m k (k 3). m m =0, m HF(L, L;Λ 0 )=Kerm / Im m L Floer. m m 0, Floer. b H (L;Λ + )( b H (L;Λ 0 )) A {m b k } k0. Floer m b m b (x) = k,l m k+l+ (b,...,b,x,b,...,b). }{{}}{{} k l. b Maurer-Cartan m k (b,...,b) 0 mod PD([L]) (3) k=0 m b m b =0., PD([L]) [L] Poncaré., m b HF((L, b), (L, b); Λ 0 )=Kerm b / Im m b (L, b) Floer. (3) weak boundng cochan, M weak (L). () PO, m k (b,...,b)=po(b) PD([L]) k=0 M weak (L). 02

, Cho-Oh [2, Secton 5], -Oh- - [5, Proposton 3.2, Theorem 3.4] Lagrange. Gelfand-Cetln Φ:F Δ Lagrange,.,. λ (k) θ (k) u =(u (k) ),k Int Δ L(u), b = (,k) I x (k) dθ (k) H (L(u); Λ 0 ) x =(x (k) ) (,k) I Λ N 0, H (L(u); Λ 0 ) Λ N 0. y (k) = e x(k) T u(k) Q j = T λ n j,, j =,...,r+,,. 3. ([0, Theorem 0.]). u Int Δ, H (L(u); Λ 0 ) M weak (L(u)). u Int Δ H (L(u); Λ 0 ) = Int Δ Λ N 0 PO(u, x) = (,k) I ( y (k+) y (k) ) + y(k) y (k+) +., λ (k+) = λ nj y (k+) = Q j. 3.2. 3 Fl(3), PO = Q y + y Q 2 + Q 2 y 2 + y 2 Q 3 + y y 3 + y 3 y 2. dm H (Fl(3)) = 6., Floer (L(u),b) 6. 3.3. Grassmann Gr(2, 4), λ = λ 2 >λ 3 = λ 4, PO = Q y 2 + y 2 y + y y 3 + y 3 Q 3 + y 2 y 4 + y 4 y 3 03

, 4. Floer (L(u),b) 4., dmh (Gr(2, 4)) = 6, 2. 2.3 U(2)., Fl(3) Lagrange S 3 L 0. H (L 0 )=0, Floer m. 2.2, Fl(3) dag(λ, 0,λ 2 ). 3.4. L 0 Fl(3) Novkov Λ 0 Floer HF(L 0,L 0 ;Λ 0 ) = Λ 0 /T mn{λ,λ 2 } Λ 0., Novkov Λ Floer : HF(L 0,L 0 ;Λ)=0. Fl(3), Λ Floer Lagrange Δ. Gr(2, 4) U(2) L t ( λ <t<λ). 2.3. 3.5. b H (L t ;Λ 0 /2π Z) = Λ 0 /2π Z, (L t,b) Floer HF((L t,b), (L t,b); Λ 0 ) = { H (L 0 ;Λ 0 ) t =0 b = ±π /2, (Λ 0 /T mn{λ t,λ+t} Λ 0 ) 2., Novkov Λ Floer. HF((L t,b), (L t,b); Λ) = { H (L 0 ;Λ) t =0 b = ±π /2, 0, Λ Floer (L, b), Gelfand-Cetln 6=dmH (Gr(2, 4)). 04

[] V. Batyrev, I. Cocan-Fontanne, B. Km, and D. van Straten, Mrror symmetry and torc degeneratons of partal flag manfolds, Acta Math. 84 (2000), no., 39. [2] C.-H. Cho and Y.-G. Oh, Floer cohomology and dsc nstantons of Lagrangan torus fbers n Fano torc manfolds, Asan J. Math. 0 (2006), 773 84. [3] T, Eguch, K. Hor, and C-S. Xong, Gravtatonal quantum cohomology, Internat. J. Modern Phys. A 2 (997), no. 9, 743.782. [4] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangan Intersecton Floer theory Anomaly and obstructons, Part I and Part II, AMS/IP Studes n Advanced Mathematcs, 46, 2009. [5] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangan Floer theory on compact torc manfolds I, Duke Math. J. 5 (200), no., 23.74. [6] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangan Floer theory and mrror symmetry on compact torc manfolds, arxv:009.648. [7] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangan Floer theory on compact torc manfolds: survey, In Surveys n dfferental geometry. Vol. XVII, 229 298, Surv. Dffer. Geom., 7, Int. Press, Boston, MA (202). [8] A. Gvental, Statonary phase ntegrals, quantum Toda lattces, flag manfolds and the mrror conjecture, Topcs n sngularty theory, 03 5, Amer. Math. Soc. Transl. Ser. 2, 80, Amer. Math. Soc., Provdence, RI, 997. [9] V. Gullemn and S. Sternberg, The Gelfand-Cetln system and quantzaton of the complex flag manfolds, J. Funct. Annal. 52 (983), 06 28. [0] T. Nshnou, Y. Nohara, and K. Ueda, Torc degeneratons of Gelfand-Cetln systems and potental functons, Adv. Math. 224, 648 706 (200). [] K. Retsch, A mrror symmetrc constructon of qht (G/P ) (q), Adv. Math. 27 (2008), no. 6, 240 2442. 05