WORKSHEETS OF CLASS XI- WINTER VACATIONS-2017 WORKSHEET I. Q1. Define, Stress, Strain and Youngs Modulus of Elasticity for a solid.
|
|
- Ξένα Αλεξίου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 WORKSHEETS OF CLASS XI- WINTER VACATIONS-2017 WORKSHEET I Q1. Define, Stress, Strain and Youngs Modulus of Elasticity for a solid. Q2. A steel wire of length 4 m and diameter 5mm is stretched by 5kg-wt. Find the increase in its length, If the Youngs modulus of steel wire is 2.4 x dyne/ cm 2. Q3. The ratio of radii of two wires of the same material is 2 : 1. If these wires are stretched by equal Force, find the ratio of stresses produced in them. Q4. Define youngs modulus of Elasticity, Bulk modulus and Modulus of Rigidity. Q5. A 5 cm cube has its upper face displaced by 0.2 cm by a tangential force of 8 N. Calculate the Shear- -ing Strain, Shearing Stress and Modulus of Rigidity of the material of the wire.
2 WORKSHEET II Q6.Why are the Bridges declared unsafe after long use? Q7.Define Force of Cohesion, Force of Adhesion and Surface Tension of a liquid. Q8.Give reason, why a water drop spreads on a glass surface and a mercury drop do not soread. Q9. Define Surface Energy of a liquid. Why does oil spread on the surface of water? Q10.A rectangular film of liquid is extended from 5cm x 3cm to 6cm x 5cm. If the work done is 3 x10-4 J. Find the Surface tension of the liquid. Q11. Why there is Excess of Pressure on Curved Surface of the liquids? Q12. Define Angle of Contact and write any two factors on which the angle of contact depends.
3 WORKSHEET III Q13.Define Capillarity. Write the formula for liquid rise in the capillarity tube. Q14. How does detergent helps to clean the dirty clothes? Q15. Give reason : (a) Farmers plough their fields after the rains. (b) Hot soup is more tastier than the cold soup. Q16. State and prove the Law of Continuity. Q17. What is Venturimeter? Where it is used? Q18.Explain, why deep water runs calm? Q19. Define Magnus Effect. Explain how it is used in spinning of a cricket ball? Q20. How is the liquid flowing in a non uniform streamlined tube related to the velocity of flow Of the liquid, Area of cross-section of the tube and the pressure inside the tube?
4 Home Science Worksheet 1 Class XI Q1. Answer briefly each of the following: (i) Mention any two reasons for cooking food. (ii) Discuss any two changes that occur in starch during food preparation. (iii) Explain the term Empty Calories (iv) Mention any two psychological changes that occur during adolescene (v) How do peers influence an adolescent?.
5 Home Science Worksheet 2 Class XI Q1 Advertisements an important medium to reach product information to the masses. List one negative and one positive influence it has on consumer.. Q2 Name the vitamins lost during cooking. Q3 Budget play an important role in food selection. Explain... Q4 What is meal planning?
6 Home Science Worksheet 3 Class XI Q1.Write the role of endocrine glands in the physical maturity of adolescents. Q2 What is the importance of hygiene during the process of development of sexual characteristics in adolescents? Q3 Write the latest methods for cooking food.... Q4 Explain the Importance of cooking... Q5 Write the factors of meal planning..
7 jktk jkeeksgu jkw; vdkneh x`g dk;z 2017 d{kk & 11 & fgunh ¼odZ khv 1½ Ukke & & d{kk,oe~ oxz Izk u & fueufyf[kr vorj.k dks i<+dj vur esa fn;s x;s iz'uksa ds laf{kir mrrj fyf[k,a izd`fr dk izd`fr dk ikyu Hkkjr] izd`fr dh lqje; LFkyh Hkkjr] lqje;rk] je.kh;rk ds fy, izfl) Hkkjr,d,slk LFkku gs tgka dh euksje NVk o izkd`frd oshko ls eqx/k gksdj i;zvd ogha dk gksdj jg tkrk gsa tks,d ckj Hkkjr esa vk x;k] pkgs og vkøe.kdkjh gks ;k i;zvd] ;k=h gks ;k O;kikjh] foeqx/k gq, fcuk ugha jg ikrka vkfndky ls gh euq"; dk izd`fr ds lkfk?kfu"b lecu/k jgk gsa izd`fr gh mldk ikyuk jgh gsa vius thou dh izr;sd vko';d olrq mls izd`fr ls gh izkir gksrh gsa e/kqj] jlhys Qy rfkk isv Hkjus ds fy, Hkkstu Hkh mls izd`fr ls gh izkir gksrk gsa dhkh o`{kksa dh Nk;k rys mlus /kwi es a fojke ik;k rks dhkh rki dh vfxu dks 'kkur djus ds fy, o`{kks a dh 'khry c;kj dk vkloknu fd;k rfkk dhkh ism+ksa ds uhps >ksimh Mkydj 'khr o o"kkz ls Lo;a dks cpk;ka bl izdkj fdrus gh :iks a esa o`{k fu%lokfkzhkko ls ekuo ds fe= jgs gsaa,d lttu iq:"k dh Hkkafr og ekuo dy;k.k gsrq mriuu gq, gsaa mudh egkurk n'kkzus gsrq ;g lald`r dk 'yksd n`"vo; gs & ficfur u % Lo;eso u uksnde~] Lo;a u [kknfur Qykfu o`{kk%a /kjk/kjksa o"kzfr ukregsros ijksijkjk; lrka fohkwr;%aa vfkkzr~ ufn;ka viuk ty Lo;a ugha ihrh] o`{k vius Qy Lo;a ugha [kkrsa] ckny vius fy, ugha cjlrsa lttuksa dk tue ijksidkj ds fy, gh gksrk gsa oskkfudksa us Hkh ;g fl) dj fn;k gs o`{k ekuo ds fe= gs] fgrs"kh gsa lw;z ds izdk'k esa o`{k vr;f/kd ek=k es a vkwdlhtu dk fuekz.k djrs gsa ftlls i;kzoj.k 'kq) gksrk gsa LoPN ok;q dk lsou djus ls izk.kh uhjksx jgrs gsa o`{k gesa cgqewy; vks"kf/k;ka] tm+h cwfv;ka iznku djrs gsa rfkk Hkwfe dh mozjk 'kfdr dks c<+krs gsaa Hkw&L[kyu o {kj.k tslh lel;kvksa dk fujkdj.k Hkh o`{kksa }kjk lehko gksrk gs aa o`{kksa es a rks og 'kfdr gs fd bldh gfj;kyh dks gh ns[k tk ldrh gs ftudh 'kkshkk u;ukfhkjke rks gksrh gh gs lkfkgh okfvdk dh e[keyh?kkl es a izkr% uxs a isj pyus ls us=ksa dks n`f"v&ykhk igqaprk gsa o`{k ekuo gh ugha lhkh izkf.k;ksa ds fe= gsa izkr% gksrs gh if{k;ks a dk e/kqj dyjo fdls fiz; ugha yxrk \ if{k;ksa dks vkj; nsusokys o`{k mugsa [kk lkexzh Hkh iznku djrs gsaa i'kq tks ekuo ds fy, mi;ksxh gsa mugsa Hkh pkjk ouksa ls gh izkir gksrk Gsa T;ksa&T;ksa ekuo fodkl djrk x;k mldh lel;k,a Hkh c<+rh xbz vksj mu lel;kvksa dk lek/kku Hkh o`{kksa us fd;ka dhkh Hkkstu cukus gsrq ydm+h nsdj rks dhkh vuu] Qy nsdj] vkokl,oa QuhZpj ds fy, etcwr ydm+h Hkh euq"; us ouks a ls gh izkir dha dksbz Hkh Hkou,slk ugha tgka ydmh dk mi;ksx gh u gqvk gksa lp gs & ;fn ;s lqunj o`{k u gksrs] rks lalkj es a dqn u gksrka thus dk vk/kkj u gksrk] jgus dks
8 ?kjckj u gksrkaa izkphu dky ls gh o`{kks a dk cgqr egro gsa ihiy] rqylh vkfn o`{kksa dh iwtk vkt Hkh ns[kh tk ldrh gsa uhe ds o`{k dh mi;ksfxrk ls rks vkt lhkh ifjfpr gsa vkt euq"; vius LokFkZ es a vu/kk gksdj ouksa dk dvku djrk tk jgk gs ftlls Hkw{kj.k,oe~ ok;q iznw"k.k tslh lel;k,a mb [km+h gqbz gsa okrkoj.k esa v'kqf) vk tkus ls vusd O;kf/;ksa us?kj dj fy;k gsa tyok;q es a uhjlrk o 'kq"drk vk xbz gsa izd`fr gels :B xbz yxrh gs rhkh rks dgha ck<+] dgha lw[kk rks dgha HkwdEi ds :i esa viuk Øks/k fn[kk jgh gsa vr% gesa lpsr gksus dh vko';drk gsa Hkkjr ljdkj us lu~ 1950 ls ou egksrlo dh ;kstuk dk vkjehk fd;k ysfdu ekuo dh psruk ds vhkko es a o`{kkjksi.k dk;z lqy ugha gks ldka gj Hkkjroklh dks ouksa ds laj{k.k,oa o`f) es a lg;ksx nsuk pkfg,a viuh vko';drk gsrq ;fn ge o`{k dkvsa rks mrus gh yxk,a Hkh rhkh ge egkekjh o izd`fr ds dksi ls cp ldrs gsaa 1- i;kzoj.k laj{k.k es a ouksa dk D;k ;ksxnku gs \ HkwL[kyu,oa ok;qiznw"k.k tslh lel;kvksa ls dsls fuivk tk ldrk gs \
9 o`{k /kjk ds Hkw"k.k gs] djrs nwj iznw"k.k gs bl dfku ds vk/kkj ij o`{kksa ds ;ksxnku dk o.kzu dhft,a
10 ou gekjs fe= gs] dsls \ bl fo"k; ij,d laf{kir fucu/k fyf[k,a
11
12 jktk jkeeksgu jkw; vdkneh x`g dk;z 2017 d{kk & 11 & fgunh ¼odZ khv 2½ Ukke & d{kk,oe~ oxz & Izk u & fueufyf[kr okd;ksa dks 'kq) djds fyf[k,a 1- mldk izk.k fudy x;k A - 2- tks ym+dksa us ifjje fd;k os lqy gks x,a - 3- jes'k vksj ujs'k tk jgk gsa - 4- izr;sd O;fDr viuk dke dhft,a - 5- jes'k ijh{kkqy dh burtkj dj gsa - 6- d`i;k djds vius&vius LFkku ij csfb,a - 7- rqegsa rqegkjs dke esa :fp ysuh pkfg,a - 8-,d Qwyksa dh ekyk nsuka - 9- esjs ekrk th fnyyh ls vk, gsaa rsjs dks rks esa {kek ugha d:axka ge vhkh [kkuk ugha [kk,xka
13 - 12- dksu ym+dk vk jgk gs \ esa dqn ik p feuv esa vkå xka dksbz yksx x;s] dksbz vk;sa esa dksbz vksj nqdku ij pyk tkå xka mu ym+ds dk nkslr vk, gsaa tks febkb;k ilun gksa mugsa vki ys yksa njokts ij dqn yksx [km+k gsa gj,d dezpkjh vius fohkkx es a tkrs vksj viuk dke lahkkyrsa og fo}ku ymdh gsa -
14 jktk jkeeksgu jkw; vdkneh khr dkyhu x`g dk;z 2017 d{kk & 11 & fgunh ¼odZ khv 3½ Ukke & d{kk,oe~ oxz & Izk u & fueufyf[kr egkojksa dks okd; es a iz;ksx dhft,a 1- vax&vax <hyk gksuka - 2- v xwbk fn[kkuka - 3- vfm;y VV~VwA - 4- vxj&exj djuka - 5- vdy ekjh tkuka - 6- vius ikao ij dqygkmh ekjuka - 7- viuk myyw lh/kk djuka - 8- va/ks dh ykbha - 9- viuk lk eqag ysdj jg tkuka
15 - 10- va/ksjs?kj dk mtkyka vaxkjs mxyuka vaxkjksa ij isj j[kuka vdy ds?kksm+s nksmkuka viuh f[kpm+h vyx idkuka vius eqag fe;ka fevbw cuuka vax&vax eqldjkuka vklrhu dk lk ia vk p u vkus nsuka vk [k [kqyuka vk [ks cun gksuka -
16 Ques.1 What is Ostwalds Dilution Law. RAJA RAM MOHAN ROY ACADEMY WINTER HOLIDAY HOMEWORK CLASS XI SUBJECT CHEMISTRY WORKSHEET 1 Ques.2 What is a buffer solution. Write the mechanism of the buffer action. Ques.3 What is commom ion effect. State its application in group analysis. Ques.4 Calculate ph of 0.05 M sulphuric acid solution. Ques.5 Explain why a solution of copper chloride is acidic while that of sodium chloride is neutral.
17 RAJA RAM MOHAN ROY ACADEMY WINTER HOLIDAY HOMEWORK CLASS XI SUBJECT CHEMISTRY WORKSHEET 2 Ques.1 Draw all possible isomers of C 4 H 10 O. Ques.2 State two conditions necessary for a compound to show optical isomerism. Ques.3 Write the mechanism of SN1 reaction. Ques.4 What is first law of thermodynamics.
18 Ques.5 What is the meaning of oxidation and reduction reaction. Ques.6 State two types of hydrogen bonding.
19 RAJA RAM MOHAN ROY ACADEMY WINTER HOLIDAY HOMEWORK CLASS XI SUBJECT CHEMISTRY WORKSHEET 3 Ques.1 Define the principle of precipitation. Ques.2 The solubility product of BaSO 4 is 1.5 * Calculate its solubility in pure water. Ques.3 State four postulates of Bohrs atomic model. Ques.4 Define: a) Avagrado s law b)grahams law of diffusion. Ques.5 Calculate the average velocity of CO 2 molecule at STP.
20 CLASS XI COMPUTER APPLICATION WORK SHEET 1 Name:- Class :- XI Section:- Q1. Give minimum two differences between the following. ( Give example for part a) a. append( ) function and concat( ) Function append( ) function concat( ) Function b. charat( ) and setcharat( ) charat( ) Function setcharat( ) Function c. String and StringBuffer String StringBuffer Q2. What is Array? Explain types of arrays Q3. Input a sentence from the user and count the number of times, the words an and and are present in the sentence. Design a class Frequency using the description given below: Class name : Frequency Data members/instance variables :
21 Text : To store the sentence. countand : to store frequency of the word and countan : to store frequency of the word an len : to store length of the string. Member functions: Frequency ( ) : constructor to initialize the instant variables void accept( String n ) : to assign n to text, ehere the value of the parameter n should be in lower case. void checkandfreq( ) : to count frequency of the word and. void checkanfreq( ) : to count frequency of the word an. Void display( ) : to display number of and and an with appropriate messages. Specify the class Frequency giving details of constructor( ), void accept( String n ), void checkandfreq( ), void checkanfreq( ) and void display( ). Also define the main( ) function to create an object and call methods accordingly to enable the task. Q4. Class Arrange contains an array of 100 integer. Some of the member function/ methods of class Arrange are given below: Class Name Data members/instance variables: Num[ ] Member functions/methods: Arrange( ) void readlist( ) void displaylist( ) void selectionsort() selection sort Arrange an array of 100 integers constructor to input 100 integers to display the list of integers sorts the array in ascending order using method Specify the class Arrange giving the details of the constructor and the function void display list(), void selectionsort( ). You assume that the other function are written for you. You do not need to write the main function. CLASS XI COMPUTER APPLICATION WORK SHEET 2 Name:- Class :- XI Section:- Q1. Name the logic gate for the following circuit diagram and draw the truth table. A B
22 Q2. The following is a part of some class which computes and returns the greatest common divisor of any two numbers. There are some places in the code marled by?1?,?2?,?3?,?4? and?5? whisch must be replaced by the function works correctly. int gcd( int a, int b) { int r, while (?1? ) { r =?2? ; b =?3? ; a =?4? ; } if (a = = 0) return?5?; else return - 1; } i. What is the expression or statement at?1? ii. What is the expression or statement at?2? iii. What is the expression or statement at?3? iv. What is the expression or statement at?4? v. What is the expression or statement at?5? Q3. State Demorgans s Law. Disorganize the following :- ( A + C ). ( B + C ) Q4. Verify using truth table if : (A XNOR B XNOR C) = ( A XOR B XOR C)
23 Q5. Show with the help of diagram how an AND gate can be formed with the NOR gate.
24 CLASS XI COMPUTER APPLICATION WORK SHEET 3 Name:- Class :- XI Section:- Q1 Define Full Adder. Draw the truth table and logic circuit for Full Adder. Q2. A class short Word has been defined with the following details: Class name : SortWord Data members/instance variables : txt : stores the word len : stores the length of the word Member functions: Sort Word( ) : Default constructor void readtxt( ) : to accept the word in lower case void sorttxt( ) : to sort the word in alphabetical order of character using bubble sort technique and display it. void changetxt() : to change the case of vowels in the word to UPPER case (for e.g. school becomes school) void disp() : to display the changed string Specify the class SortWord giving details of constructor, void readtxt( ), void sorttx t( ) and void changtxt( )and void disp(). Also define the main() functionto creat an object and call function accordingly to enable the task.
25 A magic number in which the eventual sum of digits of the number is equal to 1. For example, 172 = = = 1 Then 172 is a magic number. Q3. Design a class Magic to check if a given number is a magic number. Some of the members of the class are given below: Class name : Magic Data members/instance variables : n : stores the number Member function : Magic() : constructor to assign 0to n void getnum(int nn) : to assign the parameter value to the number, n=nn Int Sum_of _digits(int) : returns the sum of all the digits of a number. void ismagic() : checks if the given number is a magic number by calling the function Sum _of _digits (int) and displays appropriate message. Specify the class Magic giving the details of the constructor, void getnum(int), int Sum-of digits(int)and void is magic(). Also define the main function to create an object and call methods accordingly to enable the task.
26 WINTER S HOLIDAY HOME WORK-DEC-JAN 2018 FOR CLASS XI (Mathematics) Instruction :- if the solution is lengthy then it can be solved on another sheet and can be attached to the worksheet. Work sheet no 1 Q :1- Differentiate w. r. t. x (i) y =,. (ii) y =, (iii) cosec (5x + 7 )
27 (iv) Q :2- Differentiate w. r. t. x, (i). 5 (ii) ( (iii). Work sheet no -2 Q :1- The weight of 50 apples were recorded as given below. Calculate the weight to the nearest gram, by step deviation method.
28 Weight in grams Number of apples Q :2- Find the value of p if the mean of the following distribution is 7.5 X F P 8 4 Q :3- The mean of the following frequency distribution is 57.6 and the number of observations is 50. Find the missing frequencies f 1 and f 2. Class frequency 7 f 1 12 f Q:4- Mean of 25 0bservations was found to be But later it was found that 96 was misread as 69. Find the correct mean.
29 Q:5-Find the mean deviation from the mean for the following data : 38,70,48, 40, 42,55, 63,46,54,44 Q:6-Find the variance and standard deviation of the following data : x f Work Sheet no - 3 Q:1-If cot A =, find the value of 3 cos A +5 sin A, where A lies in the first quadrant. Ans Q:2-If cos 120 = find the values of sin 120 and tan 120. Ans- Q:3-Prove that sec (-1680 ). Sin 330 = -1 Ans
30 Q:4-If tan 25 =a, Prove that =. Ans- Q:5- Prove that = 2 sec θ. Ans- Q:6- Show that tan 75 = = 2 +. Hence deduce that tan 75 t 7 = 4 60 Ans- Q:7-Prove that sin (n+1)x sin(n+2)x + cos(n+1)x cos(n+2)x = cos x. Ans-
31 Q:8- If A + B + C = π, and cos A = cos B cos C, show that 2 cot B cot C = 1. Ans- Q:9-Show that = 3, given that tan α = ta β Ans- Q:10-Show that cos 10 + cos cos 130 = 0 Ans-
32 RAJA RAM MOHAN ROY ACADEMY CLASS: 11 C, 11D SUB: ECONOMICS WORKSHEET : 1 1. Define demand. 2. What is the difference between complementary goods and substitute goods? 3. Define joint demand. 4. Explain any two determinants of demand. 5. How does income of the consumer affect the demand of inexpensive goods? 6. What is cross price effect? 7. Enlist any four factors affecting demand. 8. Define market demand. 9. What is the difference between ex ante and ex post demand? 10. Explain the meaning of derived demand with the help of an example.
33 RAJA RAM MOHAN ROY ACADEMY CLASS: 11 C, 11D SUB: ECONOMICS WORKSHEET : 2 1. Explain any two reasons of economic reforms. 2. Define liberalization. 3. Give two main features of socialism. 4. What do you mean by human capital formation? 5. What is the difference between absolute and relative poverty? 6. Define sustainable development. 7. What is production possibility curve? State its two characteristics What is the difference between goods market and factor market? 9. Give two benefits of organic farming in India. 10. What is human development index?
34 RAJA RAM MOHAN ROY ACADEMY CLASS: 11 C, 11D SUB: ECONOMICS WORKSHEET : 3 Q1.Calculate the mean, median and mode for the following data. Marks(less than) No of students Q2. Calculate the mean deviation from mean from the following data. Marks No of students Q3. Find out the standard deviation from the following data. Class interval frequency Q4. Calculate the correlation coefficient between the height of father and height of son from the given data. Height of father(in inches) Height of son(in inches) Q5. Find out the coefficient of rank correlation from the following. X Y
35 Q6. From the following data, calculate the price index numbers for 2016 with 2006 as base by i) Laspeyre s method ii) paashe s method iii) fisher s ideal method Commodity price quantity price quantity A B C D
36 WORK SHEET-1 ACCOUNTS- XI Answer the following questions: Q1 What do you mean by capital?. Q2 What is a journal? Q3 What do you mean by ledger? Ans Q4 Why is the journal called book of prime entry or book of original entry? Q5 Why is the ledger called as the book of final entry? Q6 What is journalising? Q7 What is meant by accounting cycle? Q8 Define depreciation? Ans Q9 Explain the meaning of following terms:
37 a. Creditors b. Debtors Q10 Name the asset which never depreciate. Answer the following questions: WORK SHEET-2 ACCOUNTS- XI Q1 What is a trial balance? Q2 Is agreement of trial balance a conclusive proof that books of accounts are correct? Q3 What is closing stock? Q4 What is revenue expenditure?
38 Q5 What is a current asset? Q6 What is a fixed asset? Q7 What is a current liabilities? Q8 What is prepaid expense? Q9 What is outstanding expense? Q10 What is an accrued income?
39 WORK SHEET-3 ACCOUNTS- XI Answer the following questions: Q1 What is income received in advance? Q2 Explain the following terms : (i) Capital (ii)profit(iii) Debtors (iv) Fictitious Assets (v) Intangible Assets (vi) Event Q3 Distinguish between expenses and losses. Q4 Distinguish between fixed assets and current assets. Q5 What is meant by goods traded in?
40 Q6. Give two examples of external liability. Q7 Name the parties to a Bill of Exchange. Ans Q8 Define Bills of exchange. Ans Q9 Distinguish between reducing balance method and straight line method of depreciation. Q10. Learn and write the format of Balance Sheet and Statement of Profit/Loss Account of a Joint Stock Company.
41 RAJA RAM MOHAN ROY ACADEMY CLASS: 11 C, 11D SUB: COMMERCE WORKSHEET : 1 1. What is meant by trading on equity? 2. Explain the difference between capitalization and capital structure. 3. Define working capital. 4. Define capital gearing. 5. What is meant by circulating capital? 6. Enlist any four sources of finance for a partnership firm. 7. Discuss the need and importance of business finance for a business. 8. Explain any two factors affecting the fixed capital requirement of a business organization. 9. Explain any two factors affecting the capital structure of a business organization. 10. Explain any two factors affecting the working capital requirement of a business organization.
42 RAJA RAM MOHAN ROY ACADEMY CLASS: 11 C, 11D SUB: COMMERCE WORKSHEET : 2 1. What is a hybrid security? 2. Define equity shares. 3. Define preference shares. 4. What is meant by a debenture? 5. Define retained earnings. 6. Define sweat equity shares. 7. Define bonus shares. 8. Define right shares. 9. What is meant by ESOP? 10. Define convertible preference shares.
43 RAJA RAM MOHAN ROY ACADEMY CLASS: 11 C, 11D SUB: COMMERCE WORKSHEET : 3 1. Define redeemable preference shares. 2. Define participating preference shares. 3. Define cumulative preference shares. 4. Define secured debentures. 5. Define naked debentures. 6. Define bearer debentures. 7. What is meant by factoring? 8. Define public deposits. 9. Expand the terms: ICICI, UTI 10. Expand the terms : IDBI, IFCI
44 WORKSHEET FOR WINTER BREAK CLASS XI BIOLOGY Define the following terms 1. Adipose tissue 2. Cartilage 3. Bone 4. Maxilla 5. Labrum 6. Lipase 7. Propulsion 8. Enzymes 9. Alveoli 10. Gills Answer the following questions: DRAW a well labelled diagram.vertical section of a tooth.compound Stomach of a ruminant Skeletal muscles
45 Define the following terms Peristalsis Bile juice Assimilation WORKSHEET FOR WINTER BREAK CLASS XI BIOLOGY Answer the following questions: What are the different functions of blood. Explain the different mouth parts of a cockroach with the help of a diagram. How does respiration take place in a fish. Draw a well labelled diagram to explain it.
46 HOLIDAY HOME WORK (ENGLISH LITERATURE) CLASS : XI WORKSHEET NO. : 1 1. Learn any one poem out of these in your syllabus. 2. Read all the stories from the book prescribed to be able to understand them. HOLIDAY HOME WORK (ENGLISH LITERATURE) CLASS : XI WORKSHEET NO. : 2 1. The opening scene of the play `Tempest has a taste of tragic-comedy. Discuss. 2. Write about the conspiracy hatched by Antonio. WORKSHEET NO. : 3 HOLIDAY HOME WORK (ENGLISH) CLASS : XI 1. Go for a nature walk for few days in the morning time and write about your experiences. (Hints : Sights, people, things, natural objects) sounds (nature and humans). Your feelings. 2. Visit an old age home/orphanage and write your experience
Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O
Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)
Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)
[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Potential Dividers. 46 minutes. 46 marks. Page 1 of 11
Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin.
Q1.(a) Figure 1 shows how the entropy of a molecular substance X varies with temperature. Figure 1 T / K (i) Explain, in terms of molecules, why the entropy is zero when the temperature is zero Kelvin.
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011
Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Code Breaker. TEACHER s NOTES
TEACHER s NOTES Time: 50 minutes Learning Outcomes: To relate the genetic code to the assembly of proteins To summarize factors that lead to different types of mutations To distinguish among positive,
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is
Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Enthalpy data for the reacting species are given in the table below. The activation energy decreases when the temperature is increased.
Q1.This question is about the reaction given below. O(g) + H 2O(g) O 2(g) + H 2(g) Enthalpy data for the reacting species are given in the table below. Substance O(g) H 2O(g) O 2(g) H 2(g) ΔH / kj mol
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Nuclear Physics 5. Name: Date: 8 (1)
Name: Date: Nuclear Physics 5. A sample of radioactive carbon-4 decays into a stable isotope of nitrogen. As the carbon-4 decays, the rate at which the amount of nitrogen is produced A. decreases linearly
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006
ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/26 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι το 1 εκτός αν ορίζεται διαφορετικά στη διατύπωση
UNIVERSITY OF CALIFORNIA. EECS 150 Fall ) You are implementing an 4:1 Multiplexer that has the following specifications:
UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences EECS 150 Fall 2001 Prof. Subramanian Midterm II 1) You are implementing an 4:1 Multiplexer that has the following specifications:
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Lecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
Block Ciphers Modes. Ramki Thurimella
Block Ciphers Modes Ramki Thurimella Only Encryption I.e. messages could be modified Should not assume that nonsensical messages do no harm Always must be combined with authentication 2 Padding Must be
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is
Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους
MathCity.org Merging man and maths
MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)
Instruction Execution Times
1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Assalamu `alaikum wr. wb.
LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump
If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
Trigonometry 1.TRIGONOMETRIC RATIOS
Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y
*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)
C3 past papers 009 to 01 physicsandmathstutor.comthis paper: January 009 If you don't find enough space in this booklet for your working for a question, then pleasecuse some loose-leaf paper and glue it
Quadratic Expressions
Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Trigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:
UDZ Swirl diffuser Swirl diffuser UDZ, which is intended for installation in a ventilation duct, can be used in premises with a large volume, for example factory premises, storage areas, superstores, halls,
If we restrict the domain of y = sin x to [ π 2, π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ξένη Ορολογία. Ενότητα 5 : Financial Ratios
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ξένη Ορολογία Ενότητα 5 : Financial Ratios Ευαγγελία Κουτσογιάννη Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν
Living and Nonliving Created by: Maria Okraska
Living and Nonliving Created by: Maria Okraska http://enchantingclassroom.blogspot.com Living Living things grow, change, and reproduce. They need air, water, food, and a place to live in order to survive.
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται
Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes
Centre No. Candidate No. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced Thursday 11 June 2009 Morning Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations
//.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with
(C) 2010 Pearson Education, Inc. All rights reserved.
Connectionless transmission with datagrams. Connection-oriented transmission is like the telephone system You dial and are given a connection to the telephone of fthe person with whom you wish to communicate.
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram?
HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? The point on the horizontal axis such that of the area under the histogram lies to the left of that point (and to the right) What
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Επιβλέπουσα Καθηγήτρια: ΣΟΦΙΑ ΑΡΑΒΟΥ ΠΑΠΑΔΑΤΟΥ
EΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟ ΤΕΧΝΟΛΟΓΙΚΟ ΙΔΡΥΜΑ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ Ταχ. Δ/νση : Λεωφ. Αντ.Τρίτση, Αργοστόλι Κεφαλληνίας Τ.Κ. 28 100 τηλ. : 26710-27311 fax : 26710-27312
Advanced Subsidiary Unit 1: Understanding and Written Response
Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes
22 .5 Real consumption.5 Real residential investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.5 Real house prices.5 Real fixed investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.3 Inflation
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2010 ΜΑΘΗΜΑ: ΛΟΓΙΣΤΙΚΗ ΗΜΕΡΟΜΗΝΙΑ ΚΑΙ ΩΡΑ ΕΞΕΤΑΣΗΣ: Παρασκευή 4 Ιουνίου 2010 07:30
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
CE 530 Molecular Simulation
C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE)
EPL 603 TOPICS IN SOFTWARE ENGINEERING Lab 5: Component Adaptation Environment (COPE) Performing Static Analysis 1 Class Name: The fully qualified name of the specific class Type: The type of the class
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 133: ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΕΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΑΣΤΗΡΙΟ 3 Javadoc Tutorial
ΕΡΓΑΣΤΗΡΙΟ 3 Javadoc Tutorial Introduction Το Javadoc είναι ένα εργαλείο που παράγει αρχεία html (παρόμοιο με τις σελίδες στη διεύθυνση http://docs.oracle.com/javase/8/docs/api/index.html) από τα σχόλια
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
Notes on the Open Economy
Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Α. Διαβάστε τις ειδήσεις και εν συνεχεία σημειώστε. Οπτική γωνία είδησης 1:.
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Α 2 ειδήσεις από ελληνικές εφημερίδες: 1. Τα Νέα, 13-4-2010, Σε ανθρώπινο λάθος αποδίδουν τη συντριβή του αεροσκάφους, http://www.tanea.gr/default.asp?pid=2&artid=4569526&ct=2 2. Τα Νέα,
( ) 2 and compare to M.
Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8
F-TF Sum and Difference angle
F-TF Sum and Difference angle formulas Alignments to Content Standards: F-TF.C.9 Task In this task, you will show how all of the sum and difference angle formulas can be derived from a single formula when
Chapter 7 Transformations of Stress and Strain
Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
Calculating the propagation delay of coaxial cable
Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΣΥΓΚΡΑΤΗΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΟΡΙΣΜΕΝΩΝ ΠΡΟΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΣΥΝΔΕΣΜΩΝ ΑΚΡΙΒΕΙΑΣ
PRESENTATION TITLE PRESENTATION SUBTITLE
COURSE TUTORS : Advanced Materials Processing : D. Mataras, C. Galiotis PRESENTATION TITLE PRESENTATION SUBTITLE A. Student Outline 2 What is my material and why is it interesting? My Application Detailed