1 Conformal transformations in 2d

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1 Conformal transformations in 2d"

Transcript

1 Conformal transformations in d A. Conformal transformations of the coordinates leave the metric tensor invariant up to a scale: g µνx ) Λx)g µν x) In two dimensions: Concerning the change of metric tensor elements for a conformal transformation x wx): ) ) w g µν µ w ν g αβ x α x β one gets conditions for the conformal transformation: ) w 0 ) w 0 ) w ) w + + x 0 x x 0 x and ) ) ) ) w 0 w w 0 w + 0 x x x 0 x 0 These are the Cauchy-Riemann equations for a holomorphic function: w 0 x 0 or for an anti-holomorphic function: w 0 x 0 w x, w x 0 w x, w x 0 Writing above conditions in terms of complex variables one arrives at the explicit formulae: z x 0 + ix, z x 0 ix, w0 x w0 x z 0 i ), z 0 + i ), f w 0 + iw, f w 0 iw fz) 0 or f z) 0 Conclusion: In two dimensions local conformal transformations are realized by holomorphic functions fz). Conformal transformations that can be defined globally on the complex plane have the form: fz) az + b cz + d with ad bc

2 They form SL, C) group. B. Conformal map from a cylinder to the complex plane ξ z e ξ e τ+iσ The Euclidean time infinities are mapped to zero and the point in infinity: τ ± z 0,, equal time z const, time reversal: τ τ : z z, time translations τ τ + a : z e a z - dilatations The free massless scalar. Action S 4π propagator -point function) d z Φz, z) Φz, z) - solution of the equation: Φz, z)φw, w) 4πδ ) z w) Φz, z)φw, w) ln z w ) -point function of derivatives: z Φz, z) w Φw, w) z w) z Φz, z) w Φw, w) z w) From classical equation of motion Φ 0 it follows that the derivatives of scalar field are holomorphic and anti-holomorphic fields. We use notation: Φz, z) φz), Φz, z) φ z)

3 energy-momentum tensor is defined in terms of the action: δs d d x T µν µ ɛ ν From the Noether s theorem it has the form: T µν g µν L + L µ Φ) ν Φ Using g µν 0 0, g µν 0 / / 0, z z, z z T z z L Φ Φ π Φ Φ T zz L Φ Φ π Φ Φ T z z L Φ Φ L 0, T zz 0 The two non-vanishing components are the holomorphic and the anti-holomorphic one: T z) 4πT zz πt z z, T z) 4πT z z πt zz This suggest the definition of holomorphic field anti-holomorphic T z) analogously) T z) : φz) φz) : lim [ φz) φw) φz) φw) ] ) w z where : : stands for normal ordering Operator Product Expansions OPEs) with T z) Using definition ) and Wick theorem we can compute T z) φw) : φz) φz) : φw) φw) z w) + φw) z w) + reg. T z) : e iαφw, w) : α / z w) : eiαφw, w) : + z w) w : e iαφw, w) : +reg. 3

4 . The energy-momentum tensor as the generator of conformal transformations.. Conditions for the energy-momentum tensor According to Noether s theorem to every continuous symmetry of a field theory corresponds a conserved current and thus the conserved charge. The conserved current associated with conformal symmetry is given by energy-momentum tensor: j µ T µν ɛ ν, µ j µ 0 special case of translations ɛ µ const implies continuity equation: 0 µ T µν ɛ ν ) µ T µν )ɛ ν µ T µν 0 case of ɛ µ x) 0 µ T µν ɛ ν ) µ T µν )ɛ ν + T µν µ ɛ ν T µν µ ɛ ν + ν ɛ µ ) T µν δg µν where we use relation for δg µν : δg µν g µν g µν xα x µ x β x ν g αβ g µν δ α µ µ ɛ α )δ β ν ν ɛ β ) g αβ g µν µ ɛ ν + ν ɛ µ ) For conformal transformations: δg µν λx)g µν the conservation law implies traceless of energy-momentum tensor: µ j µ 0 T µν λx)g µν T µ µ λx) 0 in complex coordinates the traceless of energy-momentum tensor together with the continuity equation give conditions for components of tensor: T zz 0, T z z 0, T z z T zz 0 Conclusion: Non-vanishing components of the energy-momentum tensor are holomorphic and anti-holomorphic functions: T zz T z), T z z T z) 4

5 .. Conserved charge Since the current j µ T µν ɛ ν exists a conserved charge: associated with the conformal symmetry is preserved there Q dx j 0 at x 0 const It is the generator of symmetry transformations for an operator A: δa [Q, A], where we have equal-times commutator. In complex coordinates x 0 const z const, so dx with convention that integral contours are clockwise. Then the conserved charge ) Q T z)ɛz) + d z T z) ɛ z) πi Thus the variation of a field δϕ [Q, ϕ] is given by commutators: d z δ ɛ, ɛ ϕw, w) [T z)ɛz), ϕw, w)] + [T z) ɛ z), ϕw, w)] 3) πi πi The variation of the derivative of free scalar field to compute we need OPE T z) φw)): δ ɛ φ) w) { } w πi T z)ɛz) φw) φw) w πi ɛz) z w) + φw) z w) ɛw) φw) + ɛw) φw) We can compare this with the transformation rule for scalar field: w w + ɛw), Φw, w) Φw + ɛ, w + ɛ) Φw, w) + ɛw) Φw, w) + ɛ w) Φw, w) φw) φw) + ɛw) φw) + ɛw) φw) Appendix: The equal time commutators and radial ordering We consider an operator in the form of integral with contour enclosing zero A πi az). The commutator: [A, bw)] lim z w z > w πi az)bw) z < w where radial ordering: az)bw) if z > w, Raz)bw)) bw)az) if z < w 5 ) πi bw)az) w πi Raz)bw))

6 For B dw bw) πi [A, B] πi πi az )bz ) πi πi bz )az ) 0 πi z πi Raz )bz ))..3 Conformal transformations of energy-momentum tensor infinitesimal variation We need to know the OPE: T z)t w) 4 δ ɛ T w) w T z)ɛz)t w) 4) πi / T w) T w) : φz) φz) : : φw) φw) : + + z w) 4 z w) z w + reg. The variation of T z) has the form: [ ] / T w) T w) δ ɛ T w) + + πi z w) 4 z w) z w ɛw) + T w) ɛw) + ɛw) T z) w for a finite transformation z wz) We write the tensor in the form: T z) φz lim + δ ) φz δ ) + δ ) δ 0 The derivative φ transforms as ) ) dw φ w) z φz) w ) w φ w) w Thus the tensor transforms as T z) [w lim ) z + δ δ 0 )w) z δ ) wφ wz + δ )) wφ wz δ )) + δ ] ) ] [w lim ) z + δ δ 0 )w) z δ ) : w φ w) w φ w) : wz + δ ) wz + δ δ )) w ) z) ) [ T w) + w ) lim z + δ )w) z δ ) ] δ 0 wz + δ ) wz δ )) δ w ) z) ) [ T w) + w 3) w 3 ) w ) ]. ) w ) and finally T w) ) dw [T z) ] Sw, z) 6

7 where the last term is the Schwarzian derivative Sw, z) z w) z w) 3zw) 3 ) zw) It vanishes for global conformal transformations and satisfies the following relation ) dw Su, z) Sw, z) + Su, w), which assure that the result of two successive transformations z w u coincides with the result of the single transformation z u: ) du T u) [T w) ] dw Su, w) ) [ dw ) du [T z) ] ] dw Sw, z) Su, w) ) du [T z) ] Su, z) It can be showed that the Schwarzian derivative is the only possible addition to the tensor transformation law that has these two properties. In general the Schwarzian derivative can be multiplied by an arbitrary factor: ) dw [ T w) T z) c ] Sw, z) The parameter c is called the central charge. For the free scalar theory c. The infinitesimal version of the transformation law above reads: T z + ɛ) T z) + ɛz) T z) ɛz)) T z) c ) 3 ɛz), what coincides with 4) for the following OPE of two tensors: T z)t w) c/ T w) T w) + + z w) 4 z w) z w..4 Modes of energy-momentum tensor + reg. 5) We define modes of energy-momentum tensor: T z) n Z T z) n Z z n L n, L n πi z n Ln, Ln πi z n+ T z), d z z n+ T z). 6) 7

8 Writing a general infinitesimal conformal transformation in the form z z + ɛz) z + n Z ɛ n z n+ we get the relation between conserved charge Q ɛ and modes L n : Q ɛ ɛz)t z) ɛ n z n+ T z) πi πi n n ɛ n L n The modes L n are generators of infinitesimal conformal transformations. They satisfy the following commutation relations: dw [L n, L m ] πi πi zm+ w n+ dw 0 πi wn+ w πi zm+ T z)t w) ) dw c/ T w) T w) 0 πi wn+ w πi zm+ + + z w) 4 z w) z w + reg. n m) L n+m + c nn ) δ n+m,0 This is the Virasoro algebra with central charge c. The modes L n are called Virasoro generators. Analogously for the anti-holomorphic tensor T z) we have: [ L n, L m ] n m) L n+m + c nn ) δ n+m,0 [ Ln, L m ] 0.3 Canonical quantization We consider the field defined on a cylinder of circumference L: Φx + L, t) Φx, t). The fourier mode expansion: The free field Lagrangian in terms of Fourier modes: The momentum conjugate to ϕ n : Φx, t) n ϕ n t) L 8π [ L ϕ n ϕ n 8π n e πinx/l ϕ n t) dx e πinx/l Φx, t) dx [ t Φ) x Φ) ] ) πn ϕ n ϕ n] L π n L ϕ n L 4π ϕ n 8

9 The Hamiltonian has the form π L n [ n ) ] π n π n + ϕn ϕ n In canonical quantization we replace ϕ n, π n by operators and impose canonical commutation rules: [ϕ n, π m ] iδ mn, [ϕ n, ϕ m ] [π n, π m ] 0 Define the raising and lowering operators in terms of ã n, ã n ϕ n ϕ n, π n π n ): ã n ) n n ϕ n + iπ n so that i n ã n if n > 0, a n i n ã n if n < 0 i n ã n if n > 0, ā n i n ã n if n < 0 The zero mode will be treated separately. The commutation relation satisfied by raising and lowering creation and annihilation) operators: [a n, a m ] nδ n+m, [a n, ā m ] 0 [ā n, ā m ] nδ n+m The Hamiltonian written in terms of above operators takes the form: H π L π 0 + π a n a n + ā n ā n ) L The mode expansion of the free field: Φx, 0) ϕ 0 + i n 0 n 0 n a n ā n )e πinx/l The evolution of operators ϕ 0, a n, a n follows from the Hamiltonian: ȧ n i[h, a n ] i π L na n a n t) a n 0) e πint/l, ā n t) ā n 0) e πint/l ϕ 0 t) ϕ 0 + 4π L π 0t, The mode expansion of the field in arbitrary time in terms of creation and annihilation operators: Φx, t) ϕ 0 + 4π L π 0t + i n 0 n a n e πinx t)/l ā n e πinx+t)/l ) 9

10 Now we go to Euclidean space-time t iτ) and transform to complex plane: z e πτ ix)/l, z e πτ+ix)/l The free scalar field takes the form: Φz, z) ϕ 0 i π 0 lnz z) + i n 0 n a n z n + ā n z n ) 7) The derivative z Φz, z) is the holomorphic field with the following mode expansion: Introducing the operators we can include the zero mode in the sum: i φz) π 0 z + a n z n n 0 a 0 ā 0 π 0 i φz) n Z a n z n 8) Fock space The Fock space is built on the -parameter family of vacua α - the eigenstate of π 0 such that: a n α ā n α 0 n > 0), a 0 α ā 0 α α α The modes a n, ā n are annihilation operators for n > 0 and creation operators for n < 0. The elements of Fock space F α are obtained by the action of creation operators on the vacuum state α : a n a n... ā m ā m... α n i, m j 0) 9) The vacuum states with different eigenvalues α can be obtained from the one with α 0 by the action of so called vertex operator V z, z) e iαφz, z) : α lim z, z 0 eiαφz, z) 0 Indeed, the state is the eigenstate of π 0 to eigenvalue α and it is annihilated by annihilation operators: 0

11 . π 0 e iαφz, z) 0 αe iαφz, z) 0 In order to see this we can compute commutator [π 0, e iαφz, z) ] e iαφz, z) [π 0, iαφz, z)] iαe iαφz, z) [π 0, ϕ 0 ] αe iαφz, z) where we have used relations [B, e A ] e A [B, A], [π 0, ϕ 0 ] i.. a n α 0 for n > 0: [a n, e iαφz, z) ] e iαφz, z) [a n, iα Φz, z)] iαe iαφz, z) [a n, n αzn e iαφz, z) [a n, a n ] αz n αe iαφz, z) Acting on vacuum state in the limit z, z 0: lim [a n, e iαφz, z) ] 0 0 z, z 0 modes of energy-momentum tensor and a n operators T z) : φz) φz) : n,m Z z n m : a n a m : Relation between modes of energy-momentum tensor L n and a n : T z) p ) i a n z n ] n z p L p L p a p n a n n 0), n The L 0 generator: L 0 n>0 a n a n + a 0. Without normal ordering in definition of T z) there would be an additional infinite term coming from commutator [a n, a n ] n. The anti-holomorphic modes: L p ā p n ā n n 0), L0 ā n ā n + ā 0 n>0 n One can check that the Hamiltonian can be written as H π L0 + L L ) 0

12 The Fock vacuum is the eigenstate of L 0 to eigenvalue α /: ) L 0 α a n a n + a 0 α α α n>0 An arbitrary state of the form 9) is the eigenstate of L 0, L 0 : L 0 a n a n... ā m ā m α... α + j L 0 a n a n... ā m ā m... α α + j what can be deduced from the following commutators: [L 0, a k ] ka k, [L 0, ā k ] 0. j n j ) j m j ) α α The Fock space builded on the vacuum state α can be written as a tensor products of left and right Fock spaces generated by left a n and right ā n. The space of all states is a sum or integral) over all possible parameters α: H dα F α F α.4 Normal ordered exponents E α z, z) : e iαϕ 0+αϕ <z)+αϕ < z) z z) απ 0 e αϕ>z) αϕ> z) where ϕ < z) n>0 n a n z n, ϕ > z) n a n z n, n>0.4. Exchange relations We will need the commutator: [ϕ > z), ϕ < w)] [ n>0 For the exponents we have n>0 n a n z n, m>0 n w z )n ln m a m w m ] w ) z e αϕ>z) e βϕ<w) e βϕ<w) e αϕ>z) e αβ[ϕ>z),ϕ<w)] n,m>0 nm z n w m [a n, a m ] w z ) αβ e βϕ <w) e αϕ>z) 0)

13 where we use the Hausdorff formula e A e B e B e A e [A,B] Using this relation we can compute also z z) απ 0 e iβϕ 0 e iβϕ 0 z z) απ 0 z z) iαβ[π 0,ϕ 0 ] e iβϕ 0 z z) απ 0 z z) αβ ).4. OPE of two exponents We can compute the OPE of two ordered exponents by ordering their product: E α z, z)e β w, w) e iαϕ 0+αϕ <z)+αϕ < z) z z) απ 0 e αϕ>z) αϕ> z) e iβϕ 0+βϕ <w)+βϕ < w) w w) βπ 0 βϕ>w) βϕ> w) e w ) αβ w z z z z) απ 0 e iβϕ 0 e αϕ>z) αϕ> z)) w w) βπ 0 βϕ>w) βϕ> w) e ) αβ w z ) αβ e iαϕ 0 +αϕ <z)+αϕ < z) βϕ<w)+βϕ< e w)) ) αβ z z) αβ e iαϕ 0 e ) iβϕ 0 e αϕ<z)+αϕ< z) βϕ<w)+βϕ< w) e w z z z) απ 0 ) e αϕ>z) αϕ> z) w w) βπ 0 βϕ>w) βϕ> w) e z w) αβ z w) αβ e iα+β)ϕ 0 e αϕ<z)+αϕ< z) βϕ<w)+βϕ< w) e z z) απ 0 w w) βπ 0 αϕ>z) αϕ> z) βϕ>w) βϕ> w) e z w) αβ z w) αβ E α+β w, w) +... where we used first the relations for exchanging exponents 0) and then ). One can also compute the OPE of two exponents using Wick theorem: E α z, z)e β w, w) : e iαφz, z) : : e iαφw, w) : : n0 iαφz, z))n n! : : m0 exp αβ < Φz, z)φw, w) >) : e iαφz, z) e iαφw, w) : z w) αβ : e iαφz, z) e iαφw, w) : iαφz, z))m m! :.4.3 -point function E α z, z)e β w, w) z w) αβ z w) αβ e iα+β)ϕ 0 e αϕ<z)+αϕ< z) βϕ<w)+βϕ< w) e z z) απ 0 w w) βπ 0 e αϕ>z) αϕ> z) βϕ>w) βϕ> w) z w) αβ z w) αβ δ α, β z w) α z w) α δ α, β 3

14 The condition on momentum eigenvalues α + β 0 follows from the fact that operator e iµϕ 0 shifts the momentum of the π 0 eigenstate: π 0 e iµϕ 0 α e iµϕ 0 [π 0, iµϕ 0 ] α + e iµϕ 0 π 0 α µ + α)e iµϕ 0 α point function E α 3 z 3, z 3 )E α z, z )E α z, z ) z z ) α α z z ) α α E α 3 z 3, z 3 )e iα +α )ϕ 0 e α ϕ <z )+α ϕ < z ) e α ϕ <z )+α ϕ < z ) z z ) α π 0 z z ) α π 0 e α ϕ >z ) α ϕ > z ) α ϕ >z ) α ϕ > z ) z z ) α α z z ) α α z 3 z ) α 3α z 3 z ) α 3α z 3 z ) α 3α z 3 z ) α 3α e iα +α +α 3 )ϕ 0 e α 3ϕ <z 3 )+α 3 ϕ < z 3 ) e α ϕ <z )+α ϕ < z ) e α ϕ <z )+α ϕ < z ) z 3 z 3 ) α 3π 0 z z ) α π 0 z z ) α π 0 e α 3ϕ >z 3 ) α 3 ϕ > z 3 ) α ϕ >z ) α ϕ > z ) α ϕ >z ) α ϕ > z ) z z ) α α z z ) α α z 3 z ) α 3α z 3 z ) α 3α z 3 z ) α 3α z 3 z ) α 3α δ α +α +α 3,0 where we used the formula for OPE of two exponents and once again exchanging relations 0), ): e α 3ϕ >z 3 ) e α ϕ <z ) e α ϕ <z ) z ) α3 α z ) α3 α e α ϕ <z ) e α ϕ <z ) e α 3ϕ >z 3 ) z 3 z 3 z 3 z 3 ) α 3π 0 e iα +α )ϕ 0 e iα +α )ϕ 0 z 3 z 3 ) α 3π 0 z z) α 3α +α ) In general n-point function: E α 3 z n, z n )... E α z, z )E α z, z ) i>jz i z j ) α iα j z i z j ) α iα j δ α +α +...+α n,0.4.5 Transformation law for normal ordered exponents Knowing OPE T z)e α w, ) we can compute variation of the field under the infinitesimal transformation: δ ɛ, ɛ E α w, w) w w πi ɛz)t z)eα w, w) + w [ α πi ɛz) / z w) Eα w, w) + 4 πi ɛ z) T z)e α w, w) z w) we α w, w) ]

15 + w [ ] πi ɛ z) α / z w) Eα w, w) + z w) w E α w, w) α Eα w, w) ɛw) + ɛw) E α w, w) + α Eα w, w) ɛ w) + ɛ w) E α w, w) This corresponds to the following global transformation law z wz), z w z)): E α w, w) w z ) α ) α w E α z, z) ) z where α and α are called the holomorphic and antiholomorphic conformal weights. For the field E α z, z) they are equal: In general α α α L 0 + L 0 ) φ, α + α ) φ, λ φ,, L 0 L 0 ) φ, α α ) φ, s φ, where λ is the scaling dimension and s is the spin of a field. Thus the conformal weights are defined by λ + s), λ s)..4.6 Correlation functions from symmetry The -point correlation function We will transform the fields to 0 and. The first step is to perform transformation z i z i z. The derivatives in ) are trivial and we get: E α z, z )E α z, z ) E α z z, z z )E α 0, 0) For the next transformation we choose fz) z/z z ) z z. The derivative: ) z f z) dfz) z z ) z), f 0) z z ), f z z ) lim a 0 a The correlation function transforms as follows note that we express the r.h.s of ) and thus we have [f 0)] [f z z )] ): E α z, z )E α z, z ) E α z z, z z )E α 0, 0) lim a,ā 0 a ā z z ) z z ) z z ) z z ) E α, )E α 0, 0) 5 E α a, ā )Eα 0, 0)

16 where the field at infinity is defined by the limit: The 3-point correlation function E α, ) lim z 0 z z) E α /z, / z) We will fix 3 locations of the fields using global conformal transformations. In the first step we set one location equal to 0: z i z i z E α 3 z 3, z 3 )E α z, z )E α z, z ) E α 3 z 3, z 3 )E α z, z )E α 0, 0) where z ij z i z j. Next transformation fix the second location: z i z z E α 3 z 3, z 3 )E α z, z )E α 0, 0) z z ) 3+ + ) E α 3 z3, z ) 3 E α, )E α 0, 0) z z Using the last transformation we want to send the third location to infinity, but the locations 0 or have to stay safe. We choose the following function: fa, w) We define a R such that: w + a w), f a, w) w fa, w) fa R, w 3 ) R, then f a R, w 3 ) where w 3 z 3 z. The other two derivatives: In the R limit: thus f a R, 0) + a + a w)) + a R + a R w 3 )) R + a w3 R ) + a R, f a R, ) + a R lim fa R, w 3 ) fa, w 3 ) a w 3 ), R a w 3 z 3 z z, a + z 3 + z 3 z 3 z 3 z 3 So the multiplicative factor corresponding to derivatives reads: ) lim f a R, w 3 )) 3 f a R, )) f a R, 0)) R 3 lim + a R, R R, R w3 ) 3+ ) ) 3 ) 3 + ) lim R z3 z3 3 R, R z z 3 6

17 And finally the 3-point function: E α 3 z 3, z 3 )E α z, z )E α 0, 0) z z ) 3+ + ) E α 3 z3 z, z 3 z ) E α, )E α 0, 0) lim z z ) 3+ + ) z z ) 3 z 3 z 3 ) 3 ) z 3 z 3 ) 3 ) R, R R 3 E α 3 R, R)E α, )E α 0, 0) z z ) 3 ) z 3 z 3 ) 3 ) z 3 z 3 ) 3 ) E α 3, )E α, )E α 0, 0) The 3-point functions of the exponents in standard locations is just a delta function - it is non-zero when the parameters satisfy conservation rule: E α 3, )E α, )E α 0, 0) δ α +α +α 3,0 Using the conservation rule one can rewrite: 3 ) α 3 α α ) α + α ) α α ) α α We can check that the derived formula for the 3-point function is the same as the one calculated in the last subsection..5 Twisted boundary conditions.5. Mode expansion The free field Lagrangian dx [ t Φ) x Φ) ] 8π Consider a different variant of the free scalar theory: we assume antiperiodic boundary conditions on the cylinder: Φx + L, t) Φx, t) The fourier mode expansion: Φx, t) e πikx/l ϕ k t) ϕ k t) L The mode expansion of the free field: k Z+ Φz, z) i k Z+ dx e πikx/l Φx, t) k a k z k + ā k z k ) 7

18 .5. Fock space There is no zero mode, we have only one vacuum state: a k σ 0 0, k N The Fock space is composed from states created from the vacuum state: a n k... a nm k m σ 0 0, k N The inner product is defined by the standard conditions: The space of states: a k a k, σ 0 σ 0. H F σ0 F σ0.5.3 Conformal weight of the vacuum state Vacuum expectation values From mode expansion of the free field one gets: σ 0 φz) φw) σ 0 n σ 0 a n a m σ 0 z n w m and for the derivative: w n,m Z+ n N w z ) n w w z z w/z w z/w + w/z z w σ 0 φz) φw) σ 0 z w) The vacuum expectation value of the energy-momentum tensor: σ 0 T z) σ 0 [ σ lim 0 φz + ɛ) φz) σ 0 + ɛ ] ɛ 0 6z The zero mode of the energy momentum tensor: σ 0 L 0 σ 0 z σ 0 T z) σ 0 πi 6 We have just calculated the conformal weight of the vacuum state σ 0 : L 0 σ 0 6 σ 0 The modes of energy momentum tensor reads: L 0 a k a k + 6, L n k N+ k Z+ a n k a k 8

19 3 Free fermion 3. Definition The action of free fermion theory: S 4π d xψ γ 0 γ µ µ Ψ where the Dirac matrices γ µ satisfy algebra: {γ µ, γ ν } g µν. Writing the action in terms of spinor components Ψ ψ, ψ) one has: S π The classical equations of motion read d x ψ ψ + ψ ψ ) ψ 0, ψ 0 and the solutions are holomorphic ψz) and antiholomorphic ψ z). Propagator is a solution of the equation ψz)ψw) πδ ) z w) Using the following representation of the delta function: one gets The same for ψ: After differentiation: δ ) z w) π z w ψz)ψw) z w ψ z) ψ w) z w ψz) ψw) z w) Energy-momentum tensor From Noether s theorem: T µν g µν L + L µ Φ) ν Φ 9

20 T z z L Φ Φ π ψ ψ T zz L Φ Φ ψ ψ π T z z L Φ Φ L π ψ ψ, T zz ψ ψ π The nondiagonal components vanish if the classical equations of motion are satisfied. The holomorphic and anti-holomorphic components have the following : T z) πt zz πt z z, T z) πt z z zz πt T z) : ψz) ψz) : lim [ψz) ψw) ψz) ψw) ] 3) w z OPEs From Wick s theorem we can calculate the singular terms in OPE: T z)ψw) : ψz) ψz) : ψw) ψw) z w) + ψw) z w + reg where one has to remember about the minus sign appearing when two fermion fields change order here: contraction of ψz) and ψw)). The conformal weight of the free fermion field is. The OPE of T z): T z)t w) 4 : ψz) ψz) : : ψw) ψw) : 4 T w) T z) + + z w) 4 z w) z w Comparing with the general formula 5) we can see that the central charge of the free fermion theory c. transformation law for ψz) For infinitesimal transformation w z + ɛ: δ ɛ ψ w) ɛz)t z)ψw) πi w ψw) ɛw) + ɛw) ψw) w πi ɛz) ψw) z w) + ψw) ) z w The general form: ψ w) ) dw ψz) 4) 0

21 3. Canonical quantization on a cylinder 3.. On a cylinder The mode expansion ψx) π L b k e πikx/l where the operators b k satisfy anticommutation relations k {b p, b q } δ p+q,0 There are two types of boundary conditions: ψx + πl) ψx), Ramond R), ψx + πl) ψx), Neveu Schwarz NS) The modes k depend on the case: k Z for periodic case R) k Z + for antiperiodic case NS) The Hamiltonian The time-dependent field: H π L k>0 k b k b k + k>0 k b k bk ) + E On the complex plane ψx, t) π L We map the cylinder onto the complex plane: b k e πkτ ix)/l e πτ ix)/l e πξ/l z The free fermion field transforms according to the law 4): ψ pl z) k ) L ψcyl z) dξ πz ψ cylz) Thus the mode expansion of the field on the plane: ψz) k b k z k

22 Because of the factor coming from the transformation law, the meaning of the two types of boundary conditions has changed as z is encycling the origin one has ψe πi z) ψz), Ramond R), ψe πi z) ψz), Neveu Schwarz NS) The NS fields are periodic, while the fields of R type are antiperiodic double valued on the complex plane). Space of states in NS sector Since there in no zero mode, the NS vacuum state is unique: b k 0 NS 0, k N + The space of states is composed of the tensor product of the left and right Fock spaces: H F NS F NS F NS Space of states in R sector In the R sector there is a zero mode b 0 which isn t present in the Hamiltonian. It leads to a degeneracy of vacuum: both states +, b 0 + are annihilated by the operators b k with k > 0. Double action of the zero-mode operator can be read off from anticommutation relation: b 0. We choose the following normalization: b 0 + R R, b n + R 0, n N The space of states is a tensor product of the left and right Fock spaces: H F R F R F R -point function in NS sector From the mode expansion: 0 ψz)ψw) 0 NS 0 b p b q 0 NS z p w q z p w p z p,q Z+ w z n0 ) n z w/z z w p N

23 -point function in R sector + ψz)ψw) + R + b p b q + R z p w q zw + z p w p 3..3 Virasoro generators p,q Z Modes of the energy-momentum tensor: ) zw + w ) p z/w + w/z z z w p T z) : ψz) ψz) : q + ) z p z q 3 : bp b q : q + ) z n : b n q b q : p,q We can compute the vacuum expectation values of the energy-momentum tensor in both sectors: 0 T z) 0 NS [ 0 lim ψz + ɛ) ψz) 0 ɛ 0 NS ɛ ] 0 + T z) + R [ + lim ψz + ɛ) ψz) + ɛ 0 R ɛ ] 6z This equations imply that the conformal weights are equal to zero and for the NS and R 6 vacuum respectively. Thus the zero mode of the energy momentum tensor reads: n,q L 0 k>0 k b k b k NS : k Z + ) p L 0 k>0 k b k b k + 6 R : k Z) The Virasoro generators can be written in the following form: L n q + ) : b n qb q :, q where the summation index q runs through half-integers in NS case and integers in R case. 3

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Symmetric Stress-Energy Tensor

Symmetric Stress-Energy Tensor Chapter 3 Symmetric Stress-Energy ensor We noticed that Noether s conserved currents are arbitrary up to the addition of a divergence-less field. Exploiting this freedom the canonical stress-energy tensor

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Orbital angular momentum and the spherical harmonics

Orbital angular momentum and the spherical harmonics Orbital angular momentum and the spherical harmonics March 8, 03 Orbital angular momentum We compare our result on representations of rotations with our previous experience of angular momentum, defined

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ. PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D

Διαβάστε περισσότερα

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar Homework 3 Solutions 3.1: U(1) symmetry for complex scalar 1 3.: Two complex scalars The Lagrangian for two complex scalar fields is given by, L µ φ 1 µ φ 1 m φ 1φ 1 + µ φ µ φ m φ φ (1) This can be written

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3 Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Dirac Matrices and Lorentz Spinors

Dirac Matrices and Lorentz Spinors Dirac Matrices and Lorentz Spinors Background: In 3D, the spinor j = 1 representation of the Spin3) rotation group is constructed from the Pauli matrices σ x, σ y, and σ k, which obey both commutation

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 s Free graviton Hamiltonian Show that the free graviton action we discussed in class (before making it gauge- and Lorentzinvariant), S 0 = α d 4 x µ h ij µ h ij, () yields the correct free Hamiltonian

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k! Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

Tutorial problem set 6,

Tutorial problem set 6, GENERAL RELATIVITY Tutorial problem set 6, 01.11.2013. SOLUTIONS PROBLEM 1 Killing vectors. a Show that the commutator of two Killing vectors is a Killing vector. Show that a linear combination with constant

Διαβάστε περισσότερα

The semiclassical Garding inequality

The semiclassical Garding inequality The semiclassical Garding inequality We give a proof of the semiclassical Garding inequality (Theorem 4.1 using as the only black box the Calderon-Vaillancourt Theorem. 1 Anti-Wick quantization For (q,

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Homework 4 Solutions Weyl or Chiral representation for γ-matrices. Phys624 Dirac Equation Homework 4

Homework 4 Solutions Weyl or Chiral representation for γ-matrices. Phys624 Dirac Equation Homework 4 Homework 4 Solutions 4.1 - Weyl or Chiral representation for γ-matrices 4.1.1: Anti-commutation relations We can write out the γ µ matrices as where ( ) 0 σ γ µ µ = σ µ 0 σ µ = (1, σ), σ µ = (1 2, σ) The

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Lecture 10 - Representation Theory III: Theory of Weights

Lecture 10 - Representation Theory III: Theory of Weights Lecture 10 - Representation Theory III: Theory of Weights February 18, 2012 1 Terminology One assumes a base = {α i } i has been chosen. Then a weight Λ with non-negative integral Dynkin coefficients Λ

Διαβάστε περισσότερα

THE ENERGY-MOMENTUM TENSOR IN CLASSICAL FIELD THEORY

THE ENERGY-MOMENTUM TENSOR IN CLASSICAL FIELD THEORY THE ENERGY-MOMENTUM TENSOR IN CLASSICAL FIELD THEORY Walter Wyss Department of Physics University of Colorado Boulder, CO 80309 (Received 14 July 2005) My friend, Asim Barut, was always interested in classical

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Physics 582, Problem Set 2 Solutions

Physics 582, Problem Set 2 Solutions Physics 582, Problem Set 2 Solutions TAs: Hart Goldman and Ramanjit Sohal Fall 2018 Symmetries and Conservation Laws In this problem set we return to a study of scalar electrodynamics which has the Lagrangian

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Relativistic particle dynamics and deformed symmetry

Relativistic particle dynamics and deformed symmetry Relativistic particle dynamics and deformed Poincare symmetry Department for Theoretical Physics, Ivan Franko Lviv National University XXXIII Max Born Symposium, Wroclaw Outline Lorentz-covariant deformed

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα

Partial Trace and Partial Transpose

Partial Trace and Partial Transpose Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II 8.324 Relativistic Quantum Field Theory II MIT OpenCourseWare Lecture Notes Hong Liu, Fall 200 Lecture 2 3: GENERAL ASPECTS OF QUANTUM ELECTRODYNAMICS 3.: RENORMALIZED LAGRANGIAN Consider the Lagrangian

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα