Higgs decay to two gluons

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Higgs decay to two gluons"

Transcript

1 Higgs ecay to two gluons Eleftherios Moschanreou (a) The ecay rate An unstable particle has a probability to ecay to a certain number of final states uring a given time interval. The process of ecaying is escribe by the ecay rate as Γ Number of ecays per unit time N umber of unecaye particles present One of the channels, the scalar Higgs ecays through is h g (two gluons) In the Higgs rest frame, the ecay rate in the neighborhoo of the final momenta p an k is: Γ m A 3 p (π) 3 E p 3 k M(m (π) 3 h p, k) (π) 4 δ (4) (m h p k) E k where M(m h p, k) is the the ecay amplitue, a quantity that escribes the interactions that take place uring the ecay. (b) From the Feynman iagram to the ecay amplitue. The ecay involves a fermion (quark) loop. For each quark there are two possible Feynman iagrams that contribute to the ecay amplitue. For the first iagram. We recognize three vertices an three fermion propagators: Each fermion propagator contributes: i( p + m) p m + iɛ

2 The Higgs-fermion-antifermion (quark-antiquark) vertex contribution to the amplitue is: i m q υ δab υ is the vacuum expectation value for the Higgs an the Kronecker elta ensures color conservation. The gluon-quark-anti quark vertex contribution is: igγ µ t α The iagram contailns a loop momentum l. We nee to intergrate over this loop momentum. So finally the matrix element can be written as: M i m q υ ( ) 4 l (π) T r[ i( l k + m q ) 4 (l k) m q + iɛ ig sγ ν i( l + m q ) l m q + iɛ ig sγ µ i( l + p + m q ) (l + p) m q + iɛ T r[t b t a ] ɛ λ µ (p) where ɛ λ ν (k), ɛ λ µ (p) the polarization vectors of the outcoming gluons. (c) Calculating the ecay amplitue: newline The numerator N of the loop momentum integral contains terms. Using trace technology we can eventually simplify it: T r[n] (i) 5 g s T r[( l k + m q )γ ν ( l + m q )γ µ ( l + p + m q )] i g s T r[( l k + m q ) (γ ν l + γ ν m q )(γ µ l + γµ p + γ µ m q )] i g s T r{( l k + m q ) [γ ν l(γ µ l + γµ p + γ µ m q ) + γ ν m q (γ µ l + γµ p + γ µ m q )]} i g s T r{( l k + m q ) [γ ν lγ µ l + γ ν lγµ p + γ ν lγ µ m q +γ ν m q γ µ l + γ ν m q γ µ p + γ ν m q γ µ m q ]} i g s T r{ l [γ ν lγ µ l + γ ν lγµ p + γ ν lγ µ m q + γ ν m q γ µ l + γ ν m q γ µ p + γ ν m q γ µ m q ] k[γ ν lγ µ l + γ ν lγµ p + γ ν lγ µ m q + γ ν m q γ µ l + γ ν m q γ µ p + γ ν m q γ µ m q ] +m q [γ ν lγ µ l + γ ν lγµ p + γ ν lγ µ m q + γ ν m q γ µ l + γ ν m q γ µ p + γ ν m q γ µ m q ]} To simplify things we rop all the terms with o number of gamma matrices using the property T r[o number of γ s]

3 So T r[n] i gs T r{ lγ ν lγ µ m q + lγ ν m q γ µ l + lγ ν m q γ µ p kγ ν lγ µ m q kγ ν m q γ µ l kγ ν m q γ µ p +m q [γ ν lγ µ l + γ ν lγµ p + γ ν m q γ µ m q ]} Grouping some terms: T r[n] i gs m q T r[ lγ ν { l, γ µ } + { l, γ ν }γ µ p kγ ν { l, γ µ } kγ ν γ µ p +γ ν lγ µ l] + i g s m 3 q T r[γ ν γ µ ] Furthermore using an T r[γ ν γ µ ] 4g µν {γ µ, γ ν } g µν For the first term in the square bracket the calculations yiel: T r[ lγ ν { l, γ µ }] T r[ lγ ν {l α γ α, γ µ }] T r[ lγ ν l α {γ α, γ µ }] T r[ lγ ν l α g αµ ] T r[ lγ ν l µ ] T r[l ρ γ ρ γ ν l µ ] l µ l ρ T r[γ ρ γ ν ] 8l µ l ρ g ρν 8l µ l ν So the trace can now be written: T r[n] i gs m q [8l µ l ν + 8l ν p µ 8k ν l µ + T r[ k α γ α γ ν γ µ p β γ β + γ ν l α γ α γ µ l β γ β ]] +i gs m 3 q 4g µν i gs m q [8l µ l ν + 8l ν p µ 8k ν l µ + T r[ k α p β γ α γ ν γ µ γ β + l α l β γ ν γ α γ µ γ β ]] +i gs m 3 q 4g µν Also an other ientity that shoul be use: T r[γ µ γ ν γ ρ γ σ ] 4(g µν g ρσ g µρ g νσ + g µσ g νρ ) Giving: T r[n] i gs m q [8l µ l ν + 8l ν p µ 8k ν l µ 4k α p β (g αν g µβ g αµ g νβ + g αβ g µν ) +4l α l β (g να g µβ g νµ g αβ + g νβ g µα )] + i gs m 3 q 4g µν i gs m q [8l µ l ν + 8l ν p µ 8k ν l µ 4k ν p µ + 4k µ p ν 4 kp g µν +4l ν l µ 4l g νµ + 4l µ l ν ] + i gs m 3 q 4g µν i gs m q [6l µ l ν + 8l ν p µ 8k ν l µ 4k ν p µ + 4k µ p ν 4 kp g µν 4l g νµ ] +i gs m 3 q 4g µν i gs 4m q [4(l µ l ν l g νµ ) + (l ν p µ k ν l µ ) k ν p µ + k µ p ν + (m kp) g µν ] 3

4 The next task is to treat the enominator: ((l k) m q + iɛ)(l m q + iɛ)((l + p) m q + iɛ) The integration is over l. We see that we have a prouct l l l in terms of powers of l. So we can rewrite the enominator in the form of a quaratic polynomial raise in the thir power. This proceure is calle Feynman parametrization. We start from observing that the integral x x x [xa + ( x)b]. For three terms in the enominator the appro- is easily calculate an is equal with priate formula is: ABC x y z AB x x xy δ(x + y ) [xa + yb]! xyz δ(x + y + z ) [xa + yb + zc] 3 With A ((l k) m q + iɛ), B (l m q + iɛ), C ((l + p) m q + iɛ) : ABC x x,y,z x x,y,z x x,y,z δ(x + y + z ) xyz [xa + yb + zc] 3 δ(x + y + z ) xyz [x((l k) m q + iɛ) + y(l m q + iɛ) + z((l + p) m q + iɛ)] 3 δ(x + y + z ) xyz [(x + y + z)l + xk xlk + zlp + zp (x + y + z)m q + (x + y + z)iɛ)] 3 The elta function imposes the constraint x + y + z so ABC x z x z xz [l + xk + l(zp xk) + zp m q + iɛ)] 3 We complete the square by aing an subtracting the term (zp xk) ABC x x z x x z x x z xz [l + xk + l(zp xk) + (zp xk) (zp xk) + zp m q + iɛ)] 3 xz [(l + zp xk) + xk (zp xk) + zp m q + iɛ)] 3 xz [(l + zp xk) + xk (z p + x k xzpk) + zp m q + iɛ)] 3 4

5 k an p are zero since they express the masses of the gluons which are massless. So the enominator becomes: ABC x x z xz [(l + (zp xk)) + xzkp m q + iɛ)] 3 p + k is the four momentum of the Higgs scalar an p an k are the four momenta of the gluons. Also the square of the four momentum expresses the mass square. So we have (p + k) m h p + k + pk m h pk m h Finally by setting l + (zp xk) l an xzm h m q + iɛ the enominator becomes ABC x x xz [l + )] 3 Going back to the numerator: {}}{ N i gs 4m q [ 4(l µ l ν l g νµ ) + (l ν p µ k ν l µ ) k ν p µ + k µ p ν + (m q kp) g µν ] We will call the term uner the overbrace N(L), enoting the terms of the numerator that contain the loop momentum l. These terms will be shifte to the the new momentum l l + zp xk l l zp + xk N(L) 4(l µ l ν l g νµ ) + (l ν p µ k ν l µ ) 4[(l zp + xk) µ (l zp + xk) ν (l zp + xk) g µν ] +((l zp + xk) ν p µ k ν (l zp + xk) µ ) 4[(l µ zp µ + xk µ )(l ν zp ν + xk ν ) (l + l(xk zp) + x k + z p + xzkp)g µν ] Droping k an p : +[(l ν zp ν + xk ν )p µ k ν (l µ zp µ + xk µ )] 4[(l µ l ν + l µ (xk ν zp ν ) + l ν (xk µ zp µ ) + (xk ν zp ν )(xk µ zp µ ) (l + l(xk zp) xzkp)g µν )] + +(l ν p µ zp ν p µ + xk ν p µ k ν l µ + zk ν p µ xk ν k µ ) To simplify things even more we observe that we have some linear terms with respect to l. For example the term l µ (xk ν zp ν ) insie the integral will be x x x z xz 4 l lµ (xk ν zp ν ) [l + )] 3 5

6 Since the interval of integration is symmetric an the integran is an o function, the integral vanishes. So we can rop all linear (l) terms from the numerator, which now becomes. N(L) 4[(l µ l ν + (xk ν zp ν )(xk µ zp µ )] [l xzkp)g µν ] +( zp ν p µ + xk ν p µ + zk ν p µ xk ν k µ ) 4[(l µ l ν + x k ν k µ zxk ν p µ xzp ν k µ + z p ν p µ ] (l xzkp)g µν ) + ( zp ν p µ + xk ν p µ + zk ν p µ xk ν k µ ) 4l µ l ν l g µν + (4z z)p ν p µ + (4x x)k ν k µ 4xzp ν k µ + (x + z 4zx)k ν p µ + xz m hg µν Now we have everything that we nee to calculate the integral 4 l (π) T r[ i( l k + m q ) 4 (l k) m q + iɛ ig sγ ν i( l + m q ) l m q + iɛ ig sγ µ i( l + p + m q ) (l + p) m q + iɛ ] Which now becomes x xz With pk m h. x xz 4 l (π) 4 ig s4m q { [4lµ l ν l g µν + (4z z)p ν p µ + (4x x)k ν k µ 4xzp ν k µ ] + [l + )] 3 + (x + z 4zx)kν p µ + xz m h gµν k ν p µ + k µ p ν + (m kp) g µν [l + )] 3 } {}}{ 4 l (π) 4 ig s 4m q { [ 4l µ l ν l g µν +(4z z)p ν p µ + (4x x)k ν k µ ] [l + )] 3 [( 4xz)p ν k µ + (x + z 4zx)k ν p µ + (m q + m h + xz m h )gµν ] } [l + )] 3 Lets eal with the terms uner the overbrace, containing l an l µ l ν first. 4 l I(l) (π) ( 8l µ l ν 4 [l + )] l g µν 3 [l + )] ) 3 First the integral 4 l l µ l ν will vanish if µ ν this can be seen through the example (π) 4 [l +)] 3 4 l l l (π) 4 [l + )] 3 l 4 l l[ l l 3 (π) 4 [l + )] 3 ]l The integral in the brackets has an o integran in a symmetric integration interval so it vanishes. So only the terms where µ ν really matter. A tensorial quantity that has the µ ν elements zero is g µν. So assume that l µ l ν is proportional to g µν : l µ l ν λg µν g µν l µ l ν λg µν g µν 6

7 But g µν g µν is equal with, the imension of the space. So λ l. Now the integral I(l) can be written: 4 4 l ( I(l) )gµν l (π) 4 [l + )] 3 To procee we employ the technique calle imensional regularization. First we perform a Wick rotation l il. By oing this we get ri of the minus sign of the Minkowski metric an now 4 l Ω 3 3 l in polare coorinates can be written We start from the -imensional integral (in polar coorinates, D Eukliean) : l i l (π) [l )] i 3 Ω l (π) l l [l )] 3 Note that the factor i came from the replacement l il. Also notice that the sign of has change. The area of a -imensional sphere is Ω π / Γ( /) The secon integral is l + l [l )] 3 l (l (l ) ) [l ] 3 l l ( l ) (l ) l + ) ( l )(l l )(l ( + ) l y ( y + ) y l (l (l ) ) [l ] (l ) + ) ( l )(l l ( l ) ( l + ) l l )(l ( + ) l y y y (y + ) ( y) ( ) ( y) ( ) ( y ) x (x) (x ) x x (x ) + 7

8 Comparing with efinition of the beta function : the last integral can be written: x (x) α (x ) β B(α, β) Γ(α)Γ(β) Γ(α + β) l + l [l )] 3 So the integral we wish to calculate can be written: 4 l ( )l ( 4 (π) [l )] 3 ) ( 4 ) π / Γ( /) Γ( )Γ( + ) Γ(3) Γ( ) Γ( ) Γ(3) Ω l (π) (π) l l [l )] 3 ( 4 ) 4 Γ( ) π / Γ(3) Γ( ) Γ( ) Γ(3) This is potentially ivergent. We nee to examine the behavior in the neighborhoo of 4 which the imension of our Minkowski space. To o so we introuce ε 4. So This gives Γ( ) Γ(ε) ( 4 ) 4 π / Γ( ) Γ(3) Using now the expansion of the Γ function: (4 ) (4π) ( 4π ) Γ( ) Γ(3) ε (4π) ( Γ(ε) ) ε 4π Γ(3) Γ(ε) ε γ + O(ε) the above becomes ε (4π) ( Γ(ε) ) ε 4π Γ(3) ε (4π) (4π γ + O(ε) )ε ε 8

9 where γ the Euler - Mascheroni constant an ( 4π )ε. So 4 l ( )l (π) [l )] 3 ε (4π) [ ε γ + O(ε)] εγ + εo(ε) (4π) Taking the limit ε we see that for 4 the integral oes not iverge an its value i is. 6π The part of the integral in M that oes not contain any l (we enote it as I ): I x xz i g s 4m q 4 l (π) [ [(4z z)p ν p µ + (4x x)k ν k µ + ( 4xz)p ν k µ ] 4 [l + )] 3 [(x + z 4zx)k ν p µ + (m q + m h + xz m h )gµν ] ] [l + )] 3 xz i gs 4m q [(4z z)p ν p µ + (4x x)k ν k µ x +( 4xz)p ν k µ + (x + z 4zx)k ν p µ + (m q m h + xz m h)g µν ] 4 l (π) 4 [l + )] 3 9

10 Lets repeat the calculation for the integral: 4 l (l il) (π) 4 [l + )] 3 Ω 4 l 4 i l (π) 4 [l )] 3 Ω 4 l 4 i l (π) 4 [l )] 3 i π l 3 l 6π 4 [l ] 3 i 6π i 6π [ i 6π [ l l [l ] 3 6π l [l ] + x x + x x 3 ] l [l ] 3 ] (l + )l [l ] 3 i 6π [( x ) + ( x )] 6π [ + ] i 6π This quantity will be multiplie with the polarization vectors of the gluons ɛ λ ν (k), ɛ λ µ (p). But having in min the tranversality of the polarization: p µ ɛ λ µ (p) an k ν ɛ λ ν (k), many terms vanish. The terms that will survive are [( 4xz)p ν k µ + (m q m h + xz m h )gµν ]. So the initial expression of the 6π ecay amplitue M can now be written:

11 M i m υ ( ) i g s 4m q x x ɛ λ µ (p) T r[t b t a ] M i m υ ( ) i g s 4m q ɛ λ µ (p) T r[t b t a ] M m υ g s m q x x [( xz[ igµν 4xz)pνkµ + (m 6π + i q m h + xz m h )gµν ] ] 6π ɛ λ µ (p) T r[t b t a ] M m υ g s m q M m υ g s m q M m q υ g s x x x x M g s υ T r[tb t a ] x x g µν + [( 4xz)p ν k µ + (m q xz[ m h + xz m h )gµν ] ] 6π g µν ( m q + xzm h ) + [( 4xz)pν k µ + (m q xz[ m h + xz m h )gµν ] ] 4π g µν ( xz[ m h + xzm h ) + ( 4xz)pν k µ 4π ( m q + xzm h ) ] ɛ λ µ (p) T r[t b t a ] ( 4xz)[ xz[ m h gµν p ν k µ ] ] ɛ λ 4π m q( xz m µ (p) T r[t b t a ] h ) m q m h gµν p ν k µ 4π m q m h gµν p ν k µ 4π x xz[ 4xz ] xz m h x m q }{{} I( m h m q ) ɛ λ µ (p) ɛ λ µ (p) T r[t b t a ] From the GWS theory of weak interactions we have that υ m W g with g e sin θ W υ m W sin θ W. Also the trace T r[t b t a ]: e. So T r[t b t a ] δαb Plugging υ, g an T r[t b t a ]: M e g s m W sin θ W δαb m h gµν p ν k µ 4π I( m h m q ) ɛ λ µ (p)

12 This is our first achievement, the calculation of the transition amplitue for the first iagram: M λλ αb q e gs 8π m W sin θ W δαb ( m h g µν p ν k µ ) I( m h m q ) ɛ λ µ (p) We nee now to calculate the transition amplitue for the secon iagram. Lets compare an observe the two iagrams: We see that if we change in the first iagram p k, µ ν an λ λ we get the secon iagram. But these three transformations leave invariant the final (boxe) expression of M λλ αb q. So we conclue that the two iagrams contribute equally to the total amplitue M which is the boxe expression. Thus finally M λλ αb q e gs {}}{ 4π m W sin θ W δαb I( m h ) ( m h g µν p ν k µ ) ɛ λ µ (p) m q Now to fin the ecay rate we nee to sum this expression over all possible gluon polarizations λ an λ, over all colors α an b an over all possible intermeiate loop quarks an then square it. To simplify things lets eal first with the tensorial structure uner the overbrace (lets call it T λλ ).

13 T λλ λ,λ ( m h g µν p ν k µ ) ɛ λ µ (p) λ,λ ( m h g µ ν p ν k µ ) ( m h g µ ν p ν k µ ) ɛ λ ν (k) ɛ λ µ (p) ɛ λ (k) ɛ λ µ (p) λ,λ ν [ m4 h 4 gµ ν g µ ν m h gµ ν p ν k µ m h pν k µ g µ ν + p ν k µ p ν k µ ] ɛ λ ν (k) ɛ λ µ (p) ɛ λ (k) ɛ λ µ (p) λ,λ m4 h 4 gµ ν g µ ν λ ν m h gµ ν p ν k µ λ m h pν k µ g µ ν λ +p ν k µ p ν k µ λ ɛ λ µ (p) ɛ λ µ (p) λ ɛ λ ɛ λ µ (p) ɛ λ µ (p) ν (k) ɛ λ (k) λ ɛ λ µ (p) ɛ λ µ (p) ɛ λ µ (p) ɛ λ µ (p) λ λ ɛ λ ɛ λ ν ν (k) ɛ λ (k) ɛ λ ν ν (k) ɛ λ (k) ν ν (k) ɛ λ (k) When we have a sum over the polarization vectors of massless gauge bosons, we can use the replacement originate from War ientity: ɛ λ µ(p) ɛ λ ν (p) g µν λ So the above can be written: T λλ αb m4 h 4 gµ ν g µ ν g µ µ g ν ν m h gµ ν p ν k µ g µ µ g ν ν m h pν k µ g µ ν g µ µ g ν ν + p ν k µ p ν k µ g µ µ g ν ν m4 h 4 4 m h pν k µ g µ ν m h pν k µ g µ ν + p k m 4 h m hpk m 4 h m h m4 h So the total amplitue M λλ αb q (unerline expression) can be square: M e gs 4π m W sin θ W δαb I( m h ) T λλ m q e gs 4 6π 4 m W sin θ W 4 a,b m h δ αb a,b 3 q q ν λ,λ I( m h ) m4 h m q

14 The are 8 gluon colors so the inices a, b {, 8}. Thus: δ αb 8 a,b So finally M e gs 4 m 4 h I( m h ) 6π 4 m W sin θ W m q q Last thing is to go back to the ecay rate formula: Γ 3 p 3 k M(m m h (π) 3 E p (π) 3 h p, k) (π) 4 δ (4) (m h p k) E k In the rest frame of the scalar Higgs the energies of the two (massless) gluons are the same E p E k p k. Also the elta function can be analyze as: δ (4) (m h p k) δ(m h E p E k )δ (3) ( p h p + k) δ(m h p )δ (3) ( p + k) δ[ ( p m h )]δ(3) ( p + k) Using the ientity of the elta function δ[a(x x )] a δ(x x ). We have δ (4) (m h p k) δ( p m h )δ(3) ( p + k) Then Γ becomes: 3 p 3 k Γ m h (π) 3 (π) 3 4 p M(m h p, k) (π) 4 δ( p m h )δ(3) ( p + k) 64m h π M 3 p p δ( p m h ) 64m h π M Ω p p δ( p m h ) p 64m h π M 4π 4

15 The final result for the ecay rate is: Γ M 6m h π e gs 4 m 4 h I( m h ) 6m h π 6π 4 m W sin θ W m q If we introuce the fine structure constant α e 4π α s g s 4π : Γ 4 α α s m 3 h π m W sin θ W q q an its analogue in strong interactions I( m h ) m q Also the form factor implies that the heavier quarks contribute significantly to the ecay rate. So we expect only the top quark to play an important role. I ( m h m q ) x x z xz[ 4xz ] xz m h m q 5

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Tutorial problem set 6,

Tutorial problem set 6, GENERAL RELATIVITY Tutorial problem set 6, 01.11.2013. SOLUTIONS PROBLEM 1 Killing vectors. a Show that the commutator of two Killing vectors is a Killing vector. Show that a linear combination with constant

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Partial Trace and Partial Transpose

Partial Trace and Partial Transpose Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar Homework 3 Solutions 3.1: U(1) symmetry for complex scalar 1 3.: Two complex scalars The Lagrangian for two complex scalar fields is given by, L µ φ 1 µ φ 1 m φ 1φ 1 + µ φ µ φ m φ φ (1) This can be written

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

PHY 396 K/L. Solutions for problem set #12. Problem 1: Note the correct muon decay amplitude. The complex conjugate of this amplitude

PHY 396 K/L. Solutions for problem set #12. Problem 1: Note the correct muon decay amplitude. The complex conjugate of this amplitude PHY 396 K/L. Solutions for problem set #. Problem : Note the correct muon decay amplitude M(µ e ν µ ν e = G F ū(νµ ( γ 5 γ α u(µ ū(e ( γ 5 γ α v( ν e. ( The complex conjugate of this amplitude M = G F

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

Muon & Tau Lifetime. A. George January 18, 2012

Muon & Tau Lifetime. A. George January 18, 2012 Muon & Tau Lifetime A. George January 18, 01 Abstract We derive the expected lifetime of the muon, assuming only the Feynman Rules, Fermi s Golden Rule, the Completeness Relations for Dirac Spinors), and

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ. PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D

Διαβάστε περισσότερα

Quantum Electrodynamics

Quantum Electrodynamics Quantum Electrodynamics Ling-Fong Li Institute Slide_06 QED / 35 Quantum Electrodynamics Lagrangian density for QED, Equations of motion are Quantization Write L= L 0 + L int L = ψ x γ µ i µ ea µ ψ x mψ

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x. Appendix B: Solutions to Problems Problem 1.1 For y a + bx, y 4 when x, hence a 4. When x increases by 4, y increases by 4b, hence b 5 and y 4 + 5x. Problem 1. The plus sign indicates that y increases

Διαβάστε περισσότερα

Geodesic Equations for the Wormhole Metric

Geodesic Equations for the Wormhole Metric Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα