Chap. 13. Exercise A few exercises from Chap. 13. n = 89; c = 2; OC B [p_] = CDF[BinomialDistribution[n, p], c];

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Chap. 13. Exercise A few exercises from Chap. 13. n = 89; c = 2; OC B [p_] = CDF[BinomialDistribution[n, p], c];"

Transcript

1 Cha. 13 A few exercises from Cha. 13 Exercise 13.2 n = 89; c = 2; OC B [_] = CDF[BinomialDistribution[n, ], c]; TableForm[Table[{, OC B []}, {, 0.01, 0.05, 0.01}], TableHeadings {None, {"", "OC B ()"}}] Plot[OC B [], {, 0,.1}, AxesLabel {"", "OC B ()"}] (* OC curve tye B* ) OC B () OC B ()

2 2 Ex-Ca13.nb 1 = 0.05; idealoc[_] = If[ 1, 1, 0]; G1 = Plot[idealOC[], {, 0, 1 }, PlotStyle {RGBColor[0, 1, 0], Thickness[0.008]}, AxesLabel {"", "Ideal P a ()"}, PlotRange {{0, 1}, {0, 1.1}}, DislayFunction Identity]; G2 = Plot[idealOC[], {, 1, 1}, PlotStyle {RGBColor[1, 0, 0], Thickness[0.02]}, PlotStyle Thickness[0.008], PlotRange {{0, 1}, {0, 1.1}}, DislayFunction Identity]; Show[G1, G2, DislayFunction $DislayFunction] Ideal P a () Exercise = 0.01; (* AQL * ) α = 0.05; (* roducer's risk * ) 2 = 0.1; (* LTPD * ) β = 0.10; (* consumer's risk * ) Q[c_, x_] = Quantile[ChiSquareDistribution[2 (c + 1)], x]; N[Q[c, 1 - β], 5] r[c_] = N[Q[c, α], 5] ; i = 0; While r[i] > 2 1, Print "Do not use accetance number c=", i, " because r(c)=", r[i], "> 2 =", 2 ; 1 1 i++ Print "Use accetance number c=", i, " because r(c)=", r[i], " 2 1 =", 2 1 Q[i, 1 - β] n[c_] = Ceiling ; 2 2 Print["Use the samle size n=", n[i]] Do not use accetance number c=0 because r(c)= > 2 1 =10. Do not use accetance number c=1 because r(c)= > 2 1 =10. Use accetance number c=2 because r(c)= =10. Use the samle size n=54

3 Ex-Ca13.nb 3 OC B [_] = CDF[BinomialDistribution[n[i], ], i]; TableForm[Table[{, OC B []}, {, 0.005, 0.15, 0.005}], TableHeadings {None, {"", "OC B ()"}}] G1 = Plot[OC B [], {, 0,.15}, AxesLabel {"", "OC B ()"}, PlotStyle RGBColor[1, 0, 0], DislayFunction Identity]; riskoints = {{ 1, 1 - α}, { 2, β}}; G2 = ListPlot[riskoints, PlotStyle PointSize[0.014], PlotStyle RGBColor[0, 1, 0], DislayFunction Identity]; Show[G1, G2, DislayFunction $DislayFunction] (* OC curve tye B obtain via Wetherill and Brown's method; roducer's risk oint (left) and consumer's risk oint (right). * ) OC B () OC B ()

4 4 Ex-Ca13.nb bdist[n_, t_] := BinomialDistribution[n, t]; dist[n_, t_] := PoissonDistribution[n * t]; hdist[n_, t_, ng_] := HyergeometricDistribution[n, Round[t * ng], ng]; bin[x_, n_, t_, ng_] := PDF[bdist[n, t], x]; oi[x_, n_, t_, ng_] := PDF[dist[n, t], x]; hi[x_, n_, t_, ng_] := PDF[hdist[n, t, ng], x]; c Pa[_, {n_, c_, ng_}, f_] := f[d, n,, ng]; d=0 Paatr[_, {{a_, b_}, {e_, d_}}, ng_, f_] := Pa[, {lanoamosatrib[{{a, b}, {e, d}}, ng, f][[1]], lanoamosatrib[{{a, b}, {e, d}}, ng, f][[2]], ng}, f] lanoamosatrib[{{a_, b_}, {e_, d_}}, ng_, f_] := Module[{n, c}, j = 0; t = 0; While[t 0, i = 2; While[i ng && Pa[a, {i, j, ng}, f] 1 - b, i = i + 1] If[Pa[e, {i - 1, j, ng}, f] d, t = 1, t = 0]; j = j + 1]; While[ Pa[a, {i - 1, j - 1, ng}, f] 1 - b && Pa[e, {i - 1, j - 1, ng}, f] d, i = i - 1]; {n = i, c = j - 1}] n tot = 800; (* lot size * ) 1 = 0.01; (* AQL * ) α = 0.05; (* roducer's risk * ) 2 = 0.1; (* LTPD * ) β = 0.10; (* consumer's risk * ) Print["Use the samle size and accetance number, (n,c)=", lanoamosatrib[{{ 1, α}, { 2, β}}, n tot, hi]] (* By using the exact distribution, both n and c are smaller than the one obtained via the Poisson aroximation * ) listoca = Table[{, N[CDF[HyergeometricDistribution[37, Round[n tot ], n tot ], 1], 5]}, {, 0.005, 0.15, 0.005}]; TableForm[listOCA, TableHeadings {None, {"", "OC A ()"}}] G3 = ListPlot[listOCA, AxesLabel {"", "OC A ()"}, PlotStyle RGBColor[1, 0, 1], DislayFunction Identity]; riskoints = {{ 1, 1 - α}, { 2, β}}; G2 = ListPlot[riskoints, PlotStyle PointSize[0.014], DislayFunction Identity]; Show[G3, G2, DislayFunction $DislayFunction] (* OC curve tye B, roducer's risk oint (left) and consumer's risk oint (right). * ) Use the samle size and accetance number, (n,c)={37, 1}

5 Ex-Ca13.nb 5 OC A () OC A ()

6 6 Ex-Ca13.nb Print["Use the samle size and accetance number, (n,c)=", lanoamosatrib[{{ 1, α}, { 2, β}}, n tot, bin]] (* Both n and c are smaller than the one obtained via the Poisson aroximation * ) OC B [_] = CDF[BinomialDistribution[52, ], 2]; TableForm[Table[{, OC B []}, {, 0.005, 0.15, 0.005}], TableHeadings {None, {"", "OC B ()"}}] G4 = Plot[OC B [], {, 0,.15}, AxesLabel {"", "OC B ()"}, DislayFunction Identity]; riskoints = {{ 1, 1 - α}, { 2, β}}; G2 = ListPlot[riskoints, PlotStyle PointSize[0.014], DislayFunction Identity]; Show[G4, G2, DislayFunction $DislayFunction] (* OC curve tye B, roducer's risk oint (left) and consumer's risk oint (right). * ) Use the samle size and accetance number, (n,c)={52, 2} OC B () OC B ()

7 Ex-Ca13.nb 7 Show[G1, G2, G3, G4, DislayFunction $DislayFunction] OC B ()

8 8 Ex-Ca13.nb Exercise 13.4 n tot = 800; (* lot size * ) 1 = 0.01; (* AQL * ) α = 0.05; (* roducer's risk * ) 2 = 0.1; (* LTPD * ) β = 0.10; (* consumer's risk * ) (* Single samling lans (n,c) according to: * ) (* (54,2), Binomial Distribution aroximation + Wetherhill and Brown method RED * ) (* (52,2), Binomial Distribution aroximation GREEN* ) (* (37,1), exact HyerGeometric Distribution BLUE * ) (* (80,2), Norm ANSI/ ASQC Z MAGENTA * ) OC Wetherill [_] = CDF[BinomialDistribution[54, ], 2]; OC B [_] = CDF[BinomialDistribution[52, ], 2]; listocawetherill = Table[{, N[CDF[HyergeometricDistribution[54, Round[n tot ], n tot ], 2], 5]}, {, 0.005, 0.15, 0.005}] listocabinomial = Table[ {, N[CDF[HyergeometricDistribution[52, Round[n tot ], n tot], 2], 5]}, {, 0.005, 0.15, 0.005}] listoca = Table[{, N[CDF[HyergeometricDistribution[37, Round[n tot ], n tot ], 1], 5]}, {, 0.005, 0.15, 0.005}] listocanorm = Table[{, N[CDF[HyergeometricDistribution[80, Round[n tot ], n tot ], 1], 2]}, {, 0.005, 0.15, 0.005}] riskoints = {{ 1, 1 - α}, { 2, β}}; G1 = Plot[OC Wetherill [], {, 0,.15}, PlotStyle {RGBColor[0, 1, 0], Thickness[0.002]}, DislayFunction Identity]; G2 = Plot[OC B [], {, 0,.15}, PlotStyle {RGBColor[1, 0, 0], Thickness[0.002]}, AxesLabel {"", "OC B ()"}, DislayFunction Identity]; G3 = ListPlot[listOCA, PlotStyle {RGBColor[0, 0, 1], Thickness[0.01]}, DislayFunction Identity]; G4 = ListPlot[listOCAnorm, PlotStyle {RGBColor[1, 0, 1], Thickness[0.01]}, DislayFunction Identity]; G5 = ListPlot[riskoints, PlotStyle PointSize[0.014], DislayFunction Identity]; Show[G1, G2, G3, G4, G5, DislayFunction $DislayFunction] (* OC curve associated to the Norm far from riskoints * ) {{0.005, }, {0.01, }, {0.015, }, {0.02, }, {0.025, 5322}, {0.03, }, {0.035, }, {0.04, 3153}, {0.045, }, {0.05, 8350}, {0.055, 1626}, {0.06, }, {0.065, }, {0.07, 5172}, {0.075, 0957}, {0.08, }, {0.085, }, {0.09, }, {0.095, }, {0.1, }, {0.105, }, {0.11, }, {0.115, }, {0.12, }, {0.125, }, {0.13, }, {0.135, }, {0.14, }, {0.145, }, {0.15, }}

9 Ex-Ca13.nb 9 {{0.005, }, {0.01, }, {0.015, }, {0.02, }, {0.025, 6499}, {0.03, }, {0.035, }, {0.04, 5434}, {0.045, }, {0.05, }, {0.055, 4303}, {0.06, }, {0.065, }, {0.07, 7600}, {0.075, 3219}, {0.08, }, {0.085, }, {0.09, }, {0.095, }, {0.1, }, {0.105, }, {0.11, }, {0.115, }, {0.12, }, {0.125, }, {0.13, }, {0.135, }, {0.14, }, {0.145, }, {0.15, }} {{0.005, }, {0.01, }, {0.015, 9737}, {0.02, 3359}, {0.025, }, {0.03, 9412}, {0.035, 2454}, {0.04, }, {0.045, 9462}, {0.05, 3612}, {0.055, }, {0.06, }, {0.065, 9010}, {0.07, 5106}, {0.075, 1646}, {0.08, }, {0.085, }, {0.09, }, {0.095, }, {0.1, }, {0.105, }, {0.11, }, {0.115, }, {0.12, }, {0.125, }, {0.13, }, {0.135, }, {0.14, }, {0.145, }, {0.15, }} {{0.005, 0.95}, {0.01, 1}, {0.015, 6}, {0.02, 0.51}, {0.025, 0.39}, {0.03, 9}, {0.035, 1}, {0.04, 0.15}, {0.045, 0.11}, {0.05, 0.075}, {0.055, 0.052}, {0.06, 0.036}, {0.065, 0.025}, {0.07, 0.017}, {0.075, 0.011}, {0.08, }, {0.085, }, {0.09, }, {0.095, }, {0.1, }, {0.105, }, {0.11, }, {0.115, }, {0.12, }, {0.125, }, {0.13, }, {0.135, }, {0.14, }, {0.145, }, {0.15, }}

10 10 Ex-Ca13.nb Exercise 13.6 n tot = 800; (* lot size * ) AOQ[n_, c_, _] = 1 n tot (n tot - n) CDF[BinomialDistribution[n, ], c]; (* Average Outgoing Quality (AOQ) or ercentage of defective due to rectifying insection in a single samling lan and using the binomial aroximation to the accetance robability * ) Plot[{AOQ[80, 2, ], AOQ[37, 1, ], }, {, 0.001, 0.15}, PlotStyle {RGBColor[1, 0, 0], RGBColor[0, 1, 0], RGBColor[0, 0, 1]}, AxesLabel {"", "AOQ()"}] (* AOQ of single samling lan using the Norm RED * ) (* AOQ of single samling lan obtained by solving (13.5) with the exact Hyergeometric distribution GREEN * ) FindMaximum[AOQ[80, 2, ], {, 0.001, 1}] FindMaximum[AOQ[37, 1, ], {, 0.001, 1}] AOQ[80, 2, ] AOQ[37, 1, ] Plot 1-100, 1-100, {, 0.001, 0.15}, AxesLabel {"", "AOQ rel. reduction"}, PlotStyle {RGBColor[1, 0, 0], RGBColor[0, 1, 0]} (* Associated relative reduction of the ercentage of defective * ) AOQ() { , { }} { , { }} AOQ rel. reduction

11 Ex-Ca13.nb 11 Exercise 13.7 n tot = 800; (* lot size * ) ATI[n_, c_, _] = n tot + (n - n tot ) CDF[BinomialDistribution[n, ], c]; (* Average Total Insection (ATI) or ercentage of defective due to rectifying insection in a single samling lan and using the binomial aroximation to the accetance robability * ) ATItable = Table[{, ATI[80, 2, ], ATI[37, 1, ]}, {, 0, 0.15, 0.01}]; TableForm[ATItable, TableHeadings {None, {"", "ATI(n=80,c=2)", "ATI(n=37,c=1)"}}] Plot[{ATI[80, 2, ], ATI[37, 1, ], n tot }, {, 0.001, 0.15}, PlotStyle {RGBColor[1, 0, 0], RGBColor[0, 1, 0], RGBColor[0, 0, 1]}, AxesLabel {"", "ATI()"}] (* ATI of single samling lan using the Norm RED * ) (* ATI of single samling lan obtained by solving (13.5) with the exact Hyergeometric distribution GREEN * ) ATI(n=80,c=2) ATI(n=37,c=1) ATI()

12 12 Ex-Ca13.nb Exercise 13.8 n 1 = 50; (* Collect a first samle of size n 1 * ) c 1 = 1; (* Accet the lot if D 1 c 1, reject if D1>c2 * ) n 2 = 100; (* Collect a second samle of size n 2 if c 1 <D 1 c 2 * ) c 2 = 3; (* Accet the lot if D 1 +D 2 c 2, reject otherwise * ) I[_] = CDF[BinomialDistribution[n 1, ], c 1 ]; (* RED * ) II[_] = c 2 PDF[BinomialDistribution[n 1, ], k] k=c 1 +1 CDF[BinomialDistribution[n 2, ], c 2 - k]; (* GREEN * ) a[_] = I[] + II[]; (* BLUE * ) OC B [_] = CDF[BinomialDistribution[75, ], 2]; (* MAGENTA * ) Plot[{I[], II[], a[], OC B []}, {, 0.001, 0.15}, PlotStyle {RGBColor[1, 0, 0], RGBColor[0, 1, 0], RGBColor[0, 0, 1], RGBColor[1, 0, 1]}, AxesLabel {"", ""}] Null

13 Ex-Ca13.nb 13 Exercise 13.9 n 1 = 50; (* Collect a first samle of size n 1 * ) c 1 = 2; (* Accet the lot if D 1 c 1, reject if D1>c2 * ) n 2 = 100; (* Collect a second samle of size n 2 if c 1 <D 1 c 2 * ) c 2 = 6; (* Accet the lot if D 1 +D 2 c 2, reject otherwise * ) ASN[_] = n 1 + n 2 CDF[BinomialDistribution[n 1, ], c 2 ] - CDF[BinomialDistribution[n 1, ], c 1 ] ; (* RED * ) (* Average Samle Number * ) Plot[{ASN[], 79}, {, 0.001, 0.15}, PlotStyle {RGBColor[1, 0, 0], RGBColor[0, 1, 0]}, AxesLabel {"", "ASN()"}] ASN() Exercise n 1 = 60; (* Collect a first samle of size n 1 * ) c 1 = 2; (* Accet the lot if D 1 c 1, reject if D1>c2 * ) n 2 = 120; (* Collect a second samle of size n 2 if c 1 <D 1 c 2 * ) c 2 = 3; (* Accet the lot if D 1 +D 2 c 2, reject AS SOON AS D 1 +D 2 >c 2, * ) ASN[_] = n 1 + c 2 PDF[BinomialDistribution[n 1, ], j] j=c 1 +1 n 2 CDF[BinomialDistribution[n 2, ], c 2 - j] + c 2 - j + 1 PDF[BinomialDistribution[n 2 + 1, ], c 2 - j + 2] ; (* Average Samle Number - double samling lan with curtailment * ) TableForm[Table[{, ASN[]}, {, 0.005, 0.15, 0.005}], TableHeadings {None, {"", "ASN()"}}] Plot[ASN[], {, 0.001, 0.15}, AxesLabel {"", "ASN()"}]

14 14 Ex-Ca13.nb ASN() ASN()

15 Ex-Ca13.nb 15 I[_] = CDF[BinomialDistribution[n 1, ], c 1 ]; II[_] = c 2 PDF[BinomialDistribution[n 1, ], k] * k=c 1 +1 CDF[BinomialDistribution[n 2, ], c 2 - k]; a[_] = I[] + II[]; (* RED * ) OC B [_] = CDF[BinomialDistribution[89, ], 2]; (* GREEN * ) Plot[{a[], OC B []}, {, 0.001, 0.15}, PlotStyle {RGBColor[1, 0, 0], RGBColor[0, 1, 0]}, AxesLabel {"", ""}] Plot[{ASN[], 89}, {, 0.001, 0.15}, PlotStyle {RGBColor[1, 0, 0], RGBColor[0, 0, 1]}, AxesLabel {"", "ASN()"}] ASN()

16 16 Ex-Ca13.nb Exercise = 0.01; (* AQL * ) α = 0.05; (* roducer's risk * ) 2 = 0.06; (* LTPD * ) β = 0.10; (* consumer's risk * ) n 1 = 60; (* Collect a first samle of size n 1 * ) c 1 = 1; (* Accet the lot if D 1 c 1, reject if D1>c2 * ) n 2 = 2 n 1 ; (* Collect a second samle of size n 2 if c 1 <D 1 c 2 * ) c 2 = 3; (* Accet the lot if D 1 +D 2 c 2, reject otherwise * ) I[_] = CDF[BinomialDistribution[n 1, ], c 1 ]; II[_] = c 2 PDF[BinomialDistribution[n 1, ], k] * k=c 1 +1 CDF[BinomialDistribution[n 2, ], c 2 - k]; a[_] = I[] + II[]; Plot[a[], {, 0.001, 0.15}, AxesLabel {"", "P a ()"}] (* Primary OC curve of tye B of a double samling lan (without rectifying insection or curtailment) * ) ASN[_] = n 1 + n 2 CDF[BinomialDistribution[n 1, ], c 2 ] - CDF[BinomialDistribution[n 1, ], c 1 ] ; (* RED * ) (* Average Samle Number * ) Plot[ASN[], {, 0.001, 0.15}, AxesLabel {"", "ASN()"}] P a () ASN()

17 Ex-Ca13.nb 17 Exercise n tot = 800; (* lot size * ) 1 = 0.01; (* AQL * ) α = 0.05; (* roducer's risk * ) 2 = 0.06; (* LTPD * ) β = 0.10; (* consumer's risk * ) n 1 = 60; (* Collect a first samle of size n 1 * ) c 1 = 1; (* Accet the lot if D 1 c 1, reject if D1>c2 * ) n 2 = 2 n 1 ; (* Collect a second samle of size n 2 if c 1 <D 1 c 2 * ) c 2 = 3; (* Accet the lot if D 1 +D 2 c 2, reject otherwise * ) I[_] = CDF[BinomialDistribution[n 1, ], c 1 ]; II[_] = c 2 PDF[BinomialDistribution[n 1, ], k] * k=c 1 +1 CDF[BinomialDistribution[n 2, ], c 2 - k]; a[_] = I[] + II[]; AOQ[_] = 1 ((n tot - n 1 ) I[] + (n tot - n 1 - n 2 ) II[]); n tot Plot[AOQ[], {, 0.001, 0.15}, AxesLabel {"", "AOQ()"}] (* AOQ of a double samling (WITH rectifying insection and NO curtailment) * ) FindMaximum[AOQ[], {, 0.001, 1}] AOQ() { , { }}

18 18 Ex-Ca13.nb ATI[_] = n 1 I[] + (n 1 + n 2 ) II[] + n tot (1 - a[]); Plot[{ATI[], 800}, {, 0.001, 0.15}, PlotStyle {RGBColor[1, 0, 0], RGBColor[0, 0, 1]}, AxesLabel {"", "ATI()"}, PlotRange {0, n tot }] (* ATI of a double samling lan(with rectifying insection and NO curtailment) * ) ATI() = 0.01; (* AQL * ) α = 0.05; (* roducer's risk * ) 2 = 0.06; (* LTPD * ) β = 0.10; (* consumer's risk * ) Q[c_, x_] = Quantile[ChiSquareDistribution[2 (c + 1)], x]; N[Q[c, 1 - β], 5] r[c_] = N[Q[c, α], 5] ; i = 0; While r[i] > 2 1, Print "Do not use accetance number c=", i, " because r(c)=", r[i], "> 2 =", 2 ; 1 1 i++ Print "Use accetance number c=", i, " because r(c)=", r[i], " 2 1 =", 2 1 Q[i, 1 - β] n[c_] = Ceiling ; 2 2 Print["Use the samle size n=", n[i]] ATISingle[_] = n tot + n[i] - n tot CDF[BinomialDistribution[n[i], ], i]; (* ATI of a single samling lan(with rectifying insection) * ) Plot[{ATI[], ATISingle[], 800}, {, 0.001, 0.15}, PlotStyle {RGBColor[1, 0, 0], RGBColor[0, 1, 0], RGBColor[0, 0, 1]}, AxesLabel {"", "ASN()"}, PlotRange {0, n tot }]

19 Ex-Ca13.nb 19 Do not use accetance number c=0 because r(c)= > 2 1 =6. Do not use accetance number c=1 because r(c)= > 2 1 =6. Do not use accetance number c=2 because r(c)= > 2 1 =6. Use accetance number c=3 because r(c)= =6. Use the samle size n=112 ASN() Exercise = 0.01; (* AQL * ) α = 0.05; (* roducer's risk * ) 2 = 0.07; (* LTPD * ) β = 0.10; (* consumer's risk * ) gdist = NormalDistribution[0, 1]; Φ[x_] := CDF[gdist, x]; Ω[x_] := Quantile[gdist, x]; n σ = Ceiling Ω[1 - α] - Ω[β] Ω[ 2 ] - Ω[ 1 ] 2 ; k σ = Ω[ 2] Ω[1 - α] - Ω[ 1 ] Ω[β] ; Ω[β] - Ω[1 - α] PVar[n_, _] = Φ n (- k σ - Ω[]) ; i = n σ ; While[PVar[i, 1 ] < 1 - α PVar[i, 2 ] > β, Print["Do not use samle size n σ =", i, " because P a [ 1 ]=", PVar[i, 1 ], "<", 1 - α, " or P a [ 2 ]=", PVar[i, 2 ], ">", β]; i++] Print["Use samle size n σ =", i, " and accetance constant k σ =", k σ, " because P a [ 1 ]=", PVar[i, 1 ], " ", 1 - α, " and P a [ 2 ]=", PVar[i, 2 ], " ", β] Use samle size n σ =12 and accetance constant k σ = because P a [ 1 ]= and P a [ 2 ]=

20 20 Ex-Ca13.nb bdist[n_, t_] := BinomialDistribution[n, t]; dist[n_, t_] := PoissonDistribution[n * t]; hdist[n_, t_, ng_] := HyergeometricDistribution[n, Round[t * ng], ng]; bin[x_, n_, t_, ng_] := PDF[bdist[n, t], x]; oi[x_, n_, t_, ng_] := PDF[dist[n, t], x]; hi[x_, n_, t_, ng_] := PDF[hdist[n, t, ng], x]; c Pa[_, {n_, c_, ng_}, f_] := f[d, n,, ng]; d=0 Paatr[_, {{a_, b_}, {e_, d_}}, ng_, f_] := Pa[, {lanoamosatrib[{{a, b}, {e, d}}, ng, f][[1]], lanoamosatrib[{{a, b}, {e, d}}, ng, f][[2]], ng}, f] lanoamosatrib[{{a_, b_}, {e_, d_}}, ng_, f_] := Module[{n, c}, j = 0; t = 0; While[t 0, i = 2; While[i ng && Pa[a, {i, j, ng}, f] 1 - b, i = i + 1] If[Pa[e, {i - 1, j, ng}, f] d, t = 1, t = 0]; j = j + 1]; While[ Pa[a, {i - 1, j - 1, ng}, f] 1 - b && Pa[e, {i - 1, j - 1, ng}, f] d, i = i - 1]; {n = i, c = j - 1}] n tot = 500; (* lot size * ) 1 = 0.01; (* AQL * ) α = 0.05; (* roducer's risk * ) 2 = 0.07; (* LTPD * ) β = 0.10; (* consumer's risk * ) Print["Use the samle size and accetance number, (n,c)=", lanoamosatrib[{{ 1, α}, { 2, β}}, n tot, hi]] Use the samle size and accetance number, (n,c)={72, 2}

21 Ex-Ca13.nb 21 G1 = Plot[PVar[12, ], {, 0.001, 0.15}, PlotStyle RGBColor[0, 1, 0], AxesLabel {"", ""}, DislayFunction Identity]; (* GREEN * ) listoca = Table[{, N[CDF[HyergeometricDistribution[72, Round[n tot ], n tot ], 2], 5]}, {, 0.005, 0.15, 0.005}]; TableForm[listOCA, TableHeadings {None, {"", "OC A ()"}}]; G2 = ListPlot[listOCA, PlotStyle RGBColor[1, 0, 0], DislayFunction Identity]; (* RED * ) riskoints = {{ 1, 1 - α}, { 2, β}}; G3 = ListPlot[riskoints, PlotStyle PointSize[0.014], DislayFunction Identity]; Show[G1, G2, G3, DislayFunction $DislayFunction] (* OC curve tye B, roducer's risk oint (left) and consumer's risk oint (right). * )

22 22 Ex-Ca13.nb Exercise In[1]:= 1 = 0.01; (* AQL * ) α = 0.05; (* roducer's risk * ) 2 = 0.07; (* LTPD * ) β = 0.10; (* consumer's risk * ) gdist = NormalDistribution[0, 1]; Φ[x_] := CDF[gdist, x]; Ω[x_] := Quantile[gdist, x]; n σ = Ceiling Ω[1 - α] - Ω[β] Ω[ 2 ] - Ω[ 1 ] 2 ; k σ = Ω[ 2] Ω[1 - α] - Ω[ 1 ] Ω[β] ; Ω[β] - Ω[1 - α] PVar[n_, _] = Φ n (- k σ - Ω[]) ; i = n σ ; While[PVar[i, 1 ] < 1 - α PVar[i, 2 ] > β, Print["Do not use samle size n σ =", i, " because P a [ 1 ]=", PVar[i, 1 ], "<", 1 - α, " or P a [ 2 ]=", PVar[i, 2 ], ">", β]; i++] Print["Use samle size n σ =", i, " and accetance constant k σ =", k σ, " because P a [ 1 ]=", PVar[i, 1 ], " ", 1 - α, " and P a [ 2 ]=", PVar[i, 2 ], " ", β] Use samle size n σ =12 and accetance constant k σ = because P a [ 1 ]= and P a [ 2 ]=

23 Ex-Ca13.nb 23 In[14]:= n σ = 12; k σ = ; u = 3 n σ k σ ; v = 3 n σ 2 k σ 2 ; n s = Ceiling n σ + u + u v 12 ; k s = 3 n s n s - 4 k σ; Ω[1 - ] - k PVarDesc[n_, k_, _] = Φ 1+ 3 n k2 6 n- 8 n 3 n- 4 3 n- 3 ; (* PVarDesc[n_,k_,_]= CDF NoncentralStudentTDistribution n- 1, n Ω[],- n k ; * ) i = n s ; While PVarDesc i, 3 i i - 4 k σ, 1 < 1 - α PVarDesc i, 3 i i - 4 k σ, 2 > β, Print "Do not use samle size n s =", i, " and accetance constant k s =", 3 i i - 4 k σ, " because P a [ 1 ]=", PVarDesc i, 3 i i - 4 k σ, 1, "<", 1 - α, " or P a [ 2 ]=", PVarDesc i, 3 i i - 4 k σ, 2, ">", β ; i++ Print "Use samle size n s =", i, " and accetance constant k s =", 3 i i - 4 k σ, " because P a [ 1 ]=", PVarDesc i, 3 i i - 4 k σ, 1, " ", 1 - α, " and P a [ 2 ]=", PVarDesc i, 3 i i - 4 k σ, 2, " ", β Use samle size n s =34 and accetance constant k s = because P a [ 1 ]= and P a [ 2 ]=

24 24 Ex-Ca13.nb In[30]:= G1 = Plot[PVarDesc[34, , ], {, 0.001, 0.15}, PlotStyle RGBColor[1, 0, 0], AxesLabel {"", ""}, DislayFunction Identity]; (* RED * ) G2 = Plot CDF NoncentralStudentTDistribution 34-1, 34. Ω[], , {, 0.001, 0.15}, PlotStyle RGBColor[0, 1, 0], DislayFunction Identity ; (* GREEN * ) G3 = Plot Φ 12 ( Ω[]), {, 0.001, 0.15}, PlotStyle RGBColor[0, 0, 1], DislayFunction Identity ; (* BLUE * ) riskoints = {{ 1, 1 - α}, { 2, β}}; G4 = ListPlot[riskoints, PlotStyle PointSize[0.014], DislayFunction Identity]; Show[G1, G2, G3, G4, DislayFunction $DislayFunction] Out[35]=

25 Ex-Ca13.nb 25 Exercise In[36]:= 1 = 0.01; (* AQL * ) α = 0.05; (* roducer's risk * ) 2 = 0.07; (* LTPD * ) β = 0.10; (* consumer's risk * ) gdist = NormalDistribution[0, 1]; Φ[x_] := CDF[gdist, x]; Ω[x_] := Quantile[gdist, x]; Ω[1 - ] - k PVarDesc[n_, k_, _] = Φ 1+ 3 n k2 6 n- 8 n 3 n- 4 3 n- 3 ; G1 = Plot[PVarDesc[34, , ], {, 0.001, 0.15}, PlotStyle RGBColor[1, 0, 0], AxesLabel {"", ""}, DislayFunction Identity]; (* RED * ) G2 = Plot CDF NoncentralStudentTDistribution 34-1, 34. Ω[], , {, 0.001, 0.15}, PlotStyle RGBColor[0, 1, 0], DislayFunction Identity ; (* GREEN * ) G3 = Plot[PVarDesc[25, 1.85, ], {, 0.001, 0.15}, PlotStyle RGBColor[0, 0, 1], DislayFunction Identity]; (* BLUE * ) G4 = Plot CDF NoncentralStudentTDistribution 25-1, 25 Ω[], , {, 0.001, 0.15}, PlotStyle RGBColor[1, 0, 1], DislayFunction Identity ; (* MAGENTA * ) riskoints = {{ 1, 1 - α}, { 2, β}}; G5 = ListPlot[riskoints, PlotStyle PointSize[0.014], DislayFunction Identity]; Show[G1, G3, G5, DislayFunction $DislayFunction] Show[G2, G4, G5, DislayFunction $DislayFunction] Show[G1, G2, G3, G4, G5, DislayFunction $DislayFunction] Out[50]=

26 26 Ex-Ca13.nb Out[51]= Out[52]=

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Ελληνικό Ανοικτό Πανεπιστήμιο

Ελληνικό Ανοικτό Πανεπιστήμιο Διοίκηση Ολικής Ποιότητας και Διαχείριση Περιβάλλοντος Ελληνικό Ανοικτό Πανεπιστήμιο Πρόγραμμα Σπουδών: Διοίκηση Επιχειρήσεων και Οργανισμών Ακαδημαϊκό Έτος 2006-07 2η ΟΣΣ Ευτύχιος Σαρτζετάκης, Αναπληρωτής

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

BarChart y 1, y 2, makes a bar chart with bar lengths y 1, y 2,.

BarChart y 1, y 2, makes a bar chart with bar lengths y 1, y 2,. In[]:= In[]:= In[3]:= In[4]:= In[5]:= Out[5]= r : Random ri : Random Integer rdice : Random Integer,, 6 disp : Export "t.ps",, "EPS" & list Table rdice, 0 5,, 4, 6,, 3,, 3, 4,, 6, 4, 6,,, 6, 6,, 3, In[6]:=

Διαβάστε περισσότερα

Histogram list, 11 RANDOM NUMBERS & HISTOGRAMS. r : RandomReal. ri : RandomInteger. rd : RandomInteger 1, 6

Histogram list, 11 RANDOM NUMBERS & HISTOGRAMS. r : RandomReal. ri : RandomInteger. rd : RandomInteger 1, 6 In[1]:= In[2]:= RANDOM NUMBERS & HISTOGRAMS r : RandomReal In[3]:= In[4]:= In[5]:= ri : RandomInteger In[6]:= rd : RandomInteger 1, 6 In[7]:= list Table rd rd, 100 2 dice Out[7]= 7, 11, 7, 10, 7, 8, 3,

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Exercise SOME HINTS for a few exercises from Chap. 10

Exercise SOME HINTS for a few exercises from Chap. 10 SOME HINTS for a few exercises from Chap. 10 Exercise 10.8 data = {4, 10, 5, 11, 2, 6, 2, 8, 8, 4, 5, 5, 5, 3, 4, 4, 8, 4, 7, 1, 4, 6, 7, 5, 6, 7, 8, 3, 6, 4, 6, 5, 5, 7, 9, 5, 8, 6, 6, 5, 4, 2, 8, 4,

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Εργαστήριο 4. Άóêçóç 1. Άóêçóç 2. Χημικοί. Plot Sec x, x, 2 π, 2π. p1 Plot Abs 1 Abs x, x, 3, 3. 1 In[3]:= f x_ : 2 π. p2 Plot f x, x, 3,

Εργαστήριο 4. Άóêçóç 1. Άóêçóç 2. Χημικοί. Plot Sec x, x, 2 π, 2π. p1 Plot Abs 1 Abs x, x, 3, 3. 1 In[3]:= f x_ : 2 π. p2 Plot f x, x, 3, Εργαστήριο 4 Χημικοί Άóêçóç. In[]:= Plot Sec x, x, π, π 6 4 Out[]= -6-4 - 4 6 - -4-6 Άóêçóç. In[]:= p Plot Abs Abs x, x, 3, 3.0.5 Out[]= -3 - - 3 In[3]:= f x_ : π x p Plot f x, x, 3, 3 0.4 0.3 Out[4]=

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679 APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 1 Table I Summary of Common Probability Distributions 2 Table II Cumulative Standard Normal Distribution Table III Percentage Points, 2 of the Chi-Squared

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample

Διαβάστε περισσότερα

Risk! " #$%&'() *!'+,'''## -. / # $

Risk!  #$%&'() *!'+,'''## -. / # $ Risk! " #$%&'(!'+,'''## -. / 0! " # $ +/ #%&''&(+(( &'',$ #-&''&$ #(./0&'',$( ( (! #( &''/$ #$ 3 #4&'',$ #- &'',$ #5&''6(&''&7&'',$ / ( /8 9 :&' " 4; < # $ 3 " ( #$ = = #$ #$ ( 3 - > # $ 3 = = " 3 3, 6?3

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

22 .5 Real consumption.5 Real residential investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.5 Real house prices.5 Real fixed investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.3 Inflation

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

1. Πόσοι αριθμοί μικρότεροι του διαιρούνται με όλους τους μονοψήφιους αριθμούς;

1. Πόσοι αριθμοί μικρότεροι του διαιρούνται με όλους τους μονοψήφιους αριθμούς; ΚΥΠΡΙΚΗ ΜΘΗΜΤΙΚΗ ΤΙΡΙ ΠΡΧΙΚΟΣ ΙΩΝΙΣΜΟΣ 7//2009 ΩΡ 0:00-2:00 ΟΗΙΣ. Να λύσετε όλα τα θέματα. Κάθε θέμα βαθμολογείται με 0 μονάδες. 2. Να γράφετε με μπλε ή μαύρο μελάνι (επιτρέπεται η χρήση μολυβιού για τα

Διαβάστε περισσότερα

FORMULAS FOR STATISTICS 1

FORMULAS FOR STATISTICS 1 FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)

Διαβάστε περισσότερα

EE101: Resonance in RLC circuits

EE101: Resonance in RLC circuits EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Chapter 6 BLM Answers

Chapter 6 BLM Answers Chapter 6 BLM Answers BLM 6 Chapter 6 Prerequisite Skills. a) i) II ii) IV iii) III i) 5 ii) 7 iii) 7. a) 0, c) 88.,.6, 59.6 d). a) 5 + 60 n; 7 + n, c). rad + n rad; 7 9,. a) 5 6 c) 69. d) 0.88 5. a) negative

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

± 20% ± 5% ± 10% RENCO ELECTRONICS, INC.

± 20% ± 5% ± 10% RENCO ELECTRONICS, INC. RL15 RL16, RL17, RL18 MINIINDUCTORS CONFORMALLY COATED MARKING The nominal inductance is marked by a color code as listed in the table below. Color Black Brown Red Orange Yellow Green Blue Purple Grey

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

Supplementary Appendix

Supplementary Appendix Supplementary Appendix Measuring crisis risk using conditional copulas: An empirical analysis of the 2008 shipping crisis Sebastian Opitz, Henry Seidel and Alexander Szimayer Model specification Table

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Analytical Expression for Hessian

Analytical Expression for Hessian Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that

Διαβάστε περισσότερα

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1) HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the

Διαβάστε περισσότερα

MathCity.org Merging man and maths

MathCity.org Merging man and maths MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)

Διαβάστε περισσότερα

An Inventory of Continuous Distributions

An Inventory of Continuous Distributions Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >

Διαβάστε περισσότερα

Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά.

Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά. Διαστημικό εστιατόριο του (Μ)ΑστροΈκτορα Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά. Μόλις μια παρέα πελατών κάτσει σε ένα

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

A Hierarchy of Theta Bodies for Polynomial Systems

A Hierarchy of Theta Bodies for Polynomial Systems A Hierarchy of Theta Bodies for Polynomial Systems Rekha Thomas, U Washington, Seattle Joint work with João Gouveia (U Washington) Monique Laurent (CWI) Pablo Parrilo (MIT) The Theta Body of a Graph G

Διαβάστε περισσότερα

; +302 ; +313; +320,.

; +302 ; +313; +320,. 1.,,*+, - +./ +/2 +, -. ; +, - +* cm : Key words: snow-water content, surface soil, snow type, water permeability, water retention +,**. +,,**/.. +30- +302 ; +302 ; +313; +320,. + *+, *2// + -.*, **. **+.,

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop SECTIN 9. AREAS AND LENGTHS IN PLAR CRDINATES 9. AREAS AND LENGTHS IN PLAR CRDINATES A Click here for answers. S Click here for solutions. 8 Find the area of the region that is bounded by the given curve

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

CE 530 Molecular Simulation

CE 530 Molecular Simulation C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ342: Βάσεις Δεδομένων Χειμερινό Εξάμηνο 2013 Φροντιστήριο 10 ΛΥΣΕΙΣ Επερωτήσεις SQL Άσκηση 1 Για το ακόλουθο σχήμα Suppliers(sid, sname, address) Parts(pid, pname,

Διαβάστε περισσότερα

Cable Systems - Postive/Negative Seq Impedance

Cable Systems - Postive/Negative Seq Impedance Cable Systems - Postive/Negative Seq Impedance Nomenclature: GMD GMR - geometrical mead distance between conductors; depends on construction of the T-line or cable feeder - geometric mean raduius of conductor

Διαβάστε περισσότερα

ΠΟΙΟΤΗΤΑ ΑΤΜΟΣΦΑΙΡΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΠΟΙΟΤΗΤΑ ΑΤΜΟΣΦΑΙΡΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΠΟΙΟΤΗΤΑ ΑΤΜΟΣΦΑΙΡΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Κωνσταντινή Σαµαρά - Κωνσταντίνου Εργαστήριο Ελέγχου Ρύπανσης Περιβάλλοντος, Τµήµα Χηµείας, ΑΠΘ ΠΕΡΙΛΗΨΗ Παρότι υπήρξε σηµαντική βελτίωση της ποιότητας του αέρα στις

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

1. Αφετηρία από στάση χωρίς κριτή (self start όπου πινακίδα εκκίνησης) 5 λεπτά µετά την αφετηρία σας από το TC1B KALO LIVADI OUT

1. Αφετηρία από στάση χωρίς κριτή (self start όπου πινακίδα εκκίνησης) 5 λεπτά µετά την αφετηρία σας από το TC1B KALO LIVADI OUT Date: 21 October 2016 Time: 14:00 hrs Subject: BULLETIN No 3 Document No: 1.3 --------------------------------------------------------------------------------------------------------------------------------------

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

Εργαστήριο Οργάνωσης Η/Υ. Δαδαλιάρης Αντώνιος

Εργαστήριο Οργάνωσης Η/Υ. Δαδαλιάρης Αντώνιος Εργαστήριο Οργάνωσης Η/Υ Δαδαλιάρης Αντώνιος dadaliaris@uth.gr Σχόλια: - - This is a single line comment - - There is no alternative way to write multi-line comments Αναγνωριστικά: Τα αναγνωριστικά

Διαβάστε περισσότερα

Luminaire Property. Photometric Results. Page 1 of 15 Pages. Report No.: 9 Test Time: 2017/5/18 09:59

Luminaire Property. Photometric Results. Page 1 of 15 Pages. Report No.: 9 Test Time: 2017/5/18 09:59 Report No.: 9 Test Time: 2017/5/18 09:59 Page 1 of 15 Pages Luminaire Property Luminaire Manufacturer: Luminaire Description: VMC4911 Current: 0.2A Power Factor: 0.989 Voltage: 120 V Power: 54.0W Photometric

Διαβάστε περισσότερα

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03).. Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and

Διαβάστε περισσότερα

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ Γηπισκαηηθή Δξγαζία ηνπ Φνηηεηή ηνπ ηκήκαηνο Ζιεθηξνιόγσλ Μεραληθώλ θαη Σερλνινγίαο Ζιεθηξνληθώλ

Διαβάστε περισσότερα

Computing the Gradient

Computing the Gradient FMIA F. Moukalled L. Mangani M. Darwish An Advanced Introduction with OpenFOAM and Matlab This textbook explores both the theoretical oundation o the Finite Volume Method (FVM) and its applications in

Διαβάστε περισσότερα

FOR THE MOMENT, DUE TO ECONOMICAL CRISIS, PRODUCTION OF GICLEE COPIES UNDER REQUEST, IS SUSPENDED.

FOR THE MOMENT, DUE TO ECONOMICAL CRISIS, PRODUCTION OF GICLEE COPIES UNDER REQUEST, IS SUSPENDED. MORIS GEORGE Aviation Paintings & Illustrations For English, please read the RED captions. The prices are without VAT (left) with 24%VAT (right). Please feel free to ask anything by using the contact form.

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

NMBTC.COM /

NMBTC.COM / Common Common Vibration Test:... Conforms to JIS C 60068-2-6, Amplitude: 1.5mm, Frequency 10 to 55 Hz, 1 hour in each of the X, Y and Z directions. Shock Test:...Conforms to JIS C 60068-2-27, Acceleration

Διαβάστε περισσότερα

Molecular evolutionary dynamics of respiratory syncytial virus group A in

Molecular evolutionary dynamics of respiratory syncytial virus group A in Molecular evolutionary dynamics of respiratory syncytial virus group A in recurrent epidemics in coastal Kenya James R. Otieno 1#, Charles N. Agoti 1, 2, Caroline W. Gitahi 1, Ann Bett 1, Mwanajuma Ngama

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Durbin-Levinson recursive method

Durbin-Levinson recursive method Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again

Διαβάστε περισσότερα

SCOPE OF ACCREDITATION TO ISO 17025:2005

SCOPE OF ACCREDITATION TO ISO 17025:2005 SCOPE OF ACCREDITATION TO ISO 17025:2005 TFF CORPORATION TEKTRONIX COMPANY 1-14-1 Midorigaoka, Naka-gun, Ninomiya-machi, Kanagawa Pref. 259-0132 JAPAN Hideki Yuyama Phone: 81 463 70 5634 CALIBRATION Valid

Διαβάστε περισσότερα

6.003: Signals and Systems. Modulation

6.003: Signals and Systems. Modulation 6.003: Signals and Systems Modulation May 6, 200 Communications Systems Signals are not always well matched to the media through which we wish to transmit them. signal audio video internet applications

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Graded Refractive-Index

Graded Refractive-Index Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for

Διαβάστε περισσότερα

πόρτες κατοικιών residential doors

πόρτες κατοικιών residential doors πόρτες κατοικιών residential doors Για τις κατοικίες προσφέρουμε ιδανικές λύσεις για μοντέρνα ή κλασική διακόσμηση, με πόρτες και αξεσουάρ, προσαρμοσμένα στην αισθητική του χώρου σας. Διατίθενται σε μεγάλη

Διαβάστε περισσότερα

Magnetically Coupled Circuits

Magnetically Coupled Circuits DR. GYURCSEK ISTVÁN Magnetically Coupled Circuits Sources and additional materials (recommended) Dr. Gyurcsek Dr. Elmer: Theories in Electric Circuits, GlobeEdit, 2016, ISBN:978-3-330-71341-3 Ch. Alexander,

Διαβάστε περισσότερα

Metal Oxide Leaded Film Resistor

Metal Oxide Leaded Film Resistor Features -Excellent Long-Time stability -High surge / overload capability -Wide resistance range : 0.1Ω~22MΩ -Controlled temperature coefficient -Resistance standard tolerance: ±5% (consult factory for

Διαβάστε περισσότερα

SMD Wire Wound Ferrite Chip Inductors - LS Series. LS Series. Product Identification. Shape and Dimensions / Recommended Pattern LS0402/0603/0805/1008

SMD Wire Wound Ferrite Chip Inductors - LS Series. LS Series. Product Identification. Shape and Dimensions / Recommended Pattern LS0402/0603/0805/1008 SMD Wire Wound Ferrite Chip Inductors - LS Series LS Series LS Series is the newest in open type ferrite wire wound chip inductors. The wire wound ferrite construction supports higher SRF, lower DCR and

Διαβάστε περισσότερα

Liner Shipping Hub Network Design in a Competitive Environment

Liner Shipping Hub Network Design in a Competitive Environment Downloaded from orbit.dtu.dk on: Oct 01, 2016 Liner Shipping Hub Network Design in a Competitive Environment Gelareh, Shahin; Nickel, Stefan; Pisinger, David Publication date: 2010 Document Version Publisher's

Διαβάστε περισσότερα