Exercise SOME HINTS for a few exercises from Chap. 10

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Exercise SOME HINTS for a few exercises from Chap. 10"

Transcript

1 SOME HINTS for a few exercises from Chap. 10 Exercise 10.8 data = {4, 10, 5, 11, 2, 6, 2, 8, 8, 4, 5, 5, 5, 3, 4, 4, 8, 4, 7, 1, 4, 6, 7, 5, 6, 7, 8, 3, 6, 4, 6, 5, 5, 7, 9, 5, 8, 6, 6, 5, 4, 2, 8, 4, 5, 8, 6, 6, 1, 3, 5, 5, 7, 9, 4, 6, 9, 7, 6, 6, 6, 9, 5, 3, 6, 8, 4, 6, 4, 6}; n = 100; p 0 = 0.05; k = n p 0 ; LCL = 3; CL = n p 0 ; UCL = 17; z[0] = 0; Do[z[i] = z[i - 1] + data[[i]] - k, {i, 1, Length[data]}] cusum = Table[z[i], {i, 1, Length[data]}]; list1 = Table[LCL, {i, 1, Length[data]}]; list2 = Table[CL, {i, 1, Length[data]}]; list3 = Table[UCL, {i, 1, Length[data]}]; TableForm[Transpose[{data, list1, cusum, list3}], TableHeadings {Automatic, {"y N ", "LCL", "z N ", "UCL"}}] G1 = ListPlot[cusum, Joined True, PlotStyle {Black, Thickness[0.002]}, PlotMarkers Automatic, PlotRange {- 2, 45}, DisplayFunction Identity]; G2 = ListPlot[list1, PlotStyle {RGBColor[1, 0, 0], Thickness[0.008]}, Joined True, DisplayFunction Identity]; G3 = ListPlot[list2, PlotStyle RGBColor[0, 1, 0], Joined True, DisplayFunction Identity]; G4 = ListPlot[list3, PlotStyle {RGBColor[1, 0, 0], Thickness[0.008]}, Joined True, DisplayFunction Identity]; Show[G1, G2, G3, G4, DisplayFunction $DisplayFunction] numberobsbeyondcontrollimits = Length[cusum] Mean[ Table[If[cusum[[i]] < LCL cusum[[i]] > UCL, 1, 0], {i, 1, Length[cusum]}]]; If[numberobsbeyondcontrollimits > 0, Print["There is (are) ", numberobsbeyondcontrollimits, " observation(s) beyond the control limits."], Print["There are no observations beyond the control limits."]] y N LCL z N UCL

2 2 Ex-Cap Version7-0.nb

3 Ex-Cap Version7-0.nb There is (are) 37 observation(s) beyond the control limits. Exercise n = 10; p = 0.5; χ[z_] = PDF[BinomialDistribution[n, p], z]; k = 6; LCL = 2; UCL = 10; (* The (infinite) probability transition matrix of the original Markov chain has entries P=[p ij ] i,j=...,lcl,...,ucl,... = [P Bin(n,p) (k+j- i)] i,j=...,lcl,...,ucl,... * ) (* Q block of the probability transition matrix of the absorbing Markov chain * ) Q = Table[χ[k + j - i], {i, LCL, UCL}, {j, LCL, UCL}]; MatrixForm[Round[N[Q, 5] ] * ]

4 4 Ex-Cap Version7-0.nb Exercise n = 80; λ = ; dist = PoissonDistribution[λ]; χ[z_] = PDF[dist, z]; β[z_] = CDF[dist, z]; k = 2; LCL = 0; UCL = 2; Q = Table[If[j == 0, β[k - i], χ[k + j - i]], {i, LCL, UCL}, {j, LCL, UCL}]; (* Check Equation (10.8). * ) MatrixForm[Round[N[Q, 5] ] * ] Example CUSUM chart Parameters n = 100; p 0 = 0.02; x = 6; k = 3; p 1 = FindRoot n Log 1- p 0 1- z Log (1- p 0) z (1- z) p 0 p 1 = {z} /. Dispatch[p 1 ]; p 1 = p 1 [[1]] == k, {z, 1.1 p 0, 0, 1} ; theta = {0, 0.001, , 0.005, , 0.01, p 1 - p 0, 0.03}; alpha = {0.05, 0.25, 0.5, 0.75, 0.9, 0.95}; χ[z_, δ_] = PDF[BinomialDistribution[n, δ], z]; β[z_, δ_] = CDF[BinomialDistribution[n, δ], z]; Q[δ_] = Table[If[j == 0, β[k - i, δ], χ[k + j - i, δ]], {i, 0, x}, {j, 0, x}]; Factorial moments E[RL (s) ]=E[RL (RL - 1)... (RL - s + 1)] ID = IdentityMatrix[x + 1]; FM[i_, δ_, s_] := Apply[Plus, Factorial[s] Table[If[j == i, 1, 0], {j, 0, x}]. MatrixPower[N[Q[δ], 10], s - 1].MatrixPower[Inverse[ID - N[Q[δ], 10]], s]];

5 Ex-Cap Version7-0.nb 5 4 Noncentral moments (in terms of the factorial moments) E[RL s ], s=1,...,4 NM[i_, δ_, 1] := FM[i, δ, 1]; NM[i_, δ_, 2] := FM[i, δ, 2] + FM[i, δ, 1]; NM[i_, δ_, 3] := FM[i, δ, 3] + 3 FM[i, δ, 2] + FM[i, δ, 1]; NM[i_, δ_, 4] := FM[i, δ, 4] + 6 FM[i, δ, 3] + 7 FM[i, δ, 2] + FM[i, δ, 1]; 3 Central moments (in terms of the factorial moments) E({RL - E(RL)} s ), s=1,...,4 CM[i_, δ_, 2] := NM[i, δ, 2] - NM[i, δ, 1] 2 ; CM[i_, δ_, 3] := NM[i, δ, 3] - 3 NM[i, δ, 2] NM[i, δ, 1] + 2 NM[i, δ, 1] 3 ; CM[i_, δ_, 4] := NM[i, δ, 4] - 4 NM[i, δ, 3] NM[i, δ, 1] + 6 NM[i, δ, 2] NM[i, δ, 1] 2-3 NM[i, δ, 1] 4 ; ARL (Average Run Length) ARL[i_, δ_] := NM[i, δ, 1]; ARL[0, p ] Plot[ARL[0, p 0 + δ], {δ, -.01,.1}, PlotRange {0, }] SDRL (Standard Deviation of the Run Length) SDRL[i_, δ_] := CM[i, δ, 2] ; CVRL (Coefficient of Variation of the Run Length) CVRL[i_, δ_] := SDRL[i, δ] ARL[i, δ] ; CSRL (Coefficient of Skewness of the Run Length) Assimetria CSRL[i_, δ_] := CM[i, δ, 3] SDRL[i, δ] 3 ;

6 6 Ex-Cap Version7-0.nb CKRL (Coefficient of Kurtosis of the Run Length) Achatamento CKRL[i_, δ_] := CM[i, δ, 4] - 3; 4 SDRL[i, δ] All RL related measures 0% HS TableForm[Transpose[Table[{theta[[i]], ARL[0, p 0 + theta[[i]]], SDRL[0, p 0 + theta[[i]]], CVRL[0, p 0 + theta[[i]]], CSRL[0, p 0 + theta[[i]]], CKRL[0, p 0 + theta[[i]]]}, {i, 1, Dimensions[theta][[1]]}]], TableAlignments - > {Right}] αα 100% Percentage points of the Run Length 0% HS S[i_, m_, δ_] := Apply[Plus, Table[If[j == i, 1, 0], {j, 0, x}]. MatrixPower[ N[Q[δ], 10], Floor[m]]]; MatrixForm[Transpose[Table[ If[j == 1, m = 0]; While[ If[S[0, m, p 0 + theta[[i]]] <= 1 - alpha[[j]], 1, 0] == 0, m++]; m, {i, 1, Dimensions[theta][[1]]}, {j, 1, Dimensions[alpha][[1]]}]]] Example np-chart Parameters n = 100; p 0 = 0.02; k = 3; p 1 = FindRoot n Log 1- p 0 1- z Log (1- p 0) z (1- z) p 0 p 1 = {z} /. Dispatch[p 1 ]; p 1 = p 1 [[1]] == k, {z, 1.1 p 0, 0, 1} ; theta = {0, 0.001, , 0.005, , 0.01, 0.02, p 1 - p 0, 0.03};

7 Ex-Cap Version7-0.nb 7 Parameter of RL β[dim_, δ_] = 1 - CDF[BinomialDistribution[dim, δ], UCL]; ARL (Average Run Length) ARL[dim_, δ_] := 1 N[β[dim, δ], 10] ; SDRL (Standard Deviation of the Run Length) SDRL[dim_, δ_] := 1 - N[β[dim, δ], 10] N[β[dim, δ], 10] ; CVRL (Coefficient of Variation of the Run Length) CVRL[dim_, δ_] := 1 - N[β[dim, δ], 10] ; CSRL (Coefficient of Skewness of the Run Length) Assimetria CSRL[dim_, δ_] := 2 - N[β[dim, δ], 10] 1 - N[β[dim, δ], 10] ; CKRL (Coefficient of Kurtosis of the Run Length) Achatamento 1 CKRL[dim_, δ_] := N[β[dim, δ], 10]; 1 - N[β[dim, δ], 10] All RL related measures TableForm[Transpose[Table[{theta[[i]], ARL[n, p 0 + theta[[i]]], SDRL[n, p 0 + theta[[i]]], CVRL[n, p 0 + theta[[i]]], CSRL[n, p 0 + theta[[i]]], CKRL[n, p 0 + theta[[i]]]}, {i, 1, Dimensions[theta][[1]]}]], TableAlignments - > {Right}] Survival Function S[m_, dim_, δ_] := Power[1 - N[β[dim, δ], 10], If[m < 0, 0, Floor[m]]];

8 8 Ex-Cap Version7-0.nb αα 100% Percentage points of the Run Length alpha = {0.05, 0.25, 0.5, 0.75, 0.9, 0.95}; MatrixForm[Transpose[Table[ If[j == 1, m = 0]; While[ If[S[m, n, p 0 + theta[[i]]] <= 1 - alpha[[j]], 1, 0] == 0, m++]; m, {i, 1, Dimensions[theta][[1]]}, {j, 1, Dimensions[alpha][[1]]}]]]

9 Ex-Cap Version7-0.nb 9 Exercise 10.17(a) data = {34.5, 34.2, 31.6, 31.5, 35.0, 34.1, 32.6, 33.8, 34.8, 33.6, 31.9, 38.6, 35.4, 34.0, 37.1, 34.9, 33.5, 31.7, 34.0, 35.1, 33.7, 32.8, 33.5, 34.2}; Length[data] n = 5; μ 0 = 32.5; σ 0 = 49 ; k = μ 0 ; h = ; (* The in- control ARL of this standard CUSUM chart for μ is approximately 500. Its control statistic is a deviation between the sample mean and the target value measured in in- control standard deviations of X. * ) LCL = - h; CL = 0; UCL = h; z[0] = 0; data[[i]] - k Do z[i] = z[i - 1] +, {i, 1, Length[data]} cusum = Table[z[i], {i, 1, Length[data]}]; list1 = Table[LCL, {i, 1, Length[data]}]; list2 = Table[CL, {i, 1, Length[data]}]; list3 = Table[UCL, {i, 1, Length[data]}]; σ 0 n TableForm[Transpose[{data, list1, cusum, list3}], TableHeadings {Automatic, {"y N ", "LCL", "z N ", "UCL"}}] G1 = ListPlot[cusum, Joined True, PlotStyle {Black, Thickness[0.002]}, PlotMarkers Automatic, PlotRange {- 25, 25}, DisplayFunction Identity]; G2 = ListPlot[list1, Joined True, PlotStyle {RGBColor[1, 0, 0], Thickness[0.008]}, DisplayFunction Identity]; G3 = ListPlot[list2, Joined True, PlotStyle RGBColor[0, 1, 0], DisplayFunction Identity]; G4 = ListPlot[list3, Joined True, PlotStyle {RGBColor[1, 0, 0], Thickness[0.008]}, DisplayFunction Identity]; Show[G1, G2, G3, G4, DisplayFunction $DisplayFunction] numberobsbeyondcontrollimits = Length[cusum] Mean[ Table[If[cusum[[i]] < LCL cusum[[i]] > UCL, 1, 0], {i, 1, Length[cusum]}]]; If[numberobsbeyondcontrollimits > 0, Print["There is (are) ", numberobsbeyondcontrollimits, " observation(s) beyond the control limits."], Print["There are no observations beyond the control limits."]] 24

10 10 Ex-Cap Version7-0.nb y N LCL z N UCL There are no observations beyond the control limits. Exercise 10.17(b) Sample size and distribution function of the standard normal and the chi-square with (n-1) degrees of freedom n = 5; Φ[z_] = CDF[NormalDistribution[0, 1], z]; χ[z_] = CDF[ChiSquareDistribution[n - 1], z]; Definition of the sub-stochastic matrix Q μμ (δδ, θθ) of the chart CUSUM-μμ

11 Ex-Cap Version7-0.nb 11 h μ = ; k μ = 0.0; x μ = 20; A μ [δ_, θ_] = Table Φ 1 θ 2 h μ j i δ, {i, - x μ, x μ }, {j, - x μ - 1, x μ } ; 2 x μ + 1 T μ = Table[If[i == j, - 1, If[i == j + 1, 1, 0]], {i, - x μ, x μ + 1}, {j, - x μ, x μ }]; Q μ [δ_, θ_] = A μ [δ, θ].t μ ; Definition of ARLi C- μμ (δδ, θθ) ID μ = IdentityMatrix[2 x μ + 1]; M μ [δ_, θ_] := Inverse[ID μ - Q μ [δ, θ]]; um μ = Table[1, {i, - x μ, x μ }]; b μ [i_] = Table[If[j == i, 1, 0], {j, - x μ, x μ }]; ARL μ [i_, δ_, θ_] := b μ [i]. M μ [δ, θ]. um μ ; In-control ARL0 C- μμ (δδ, θθ) and plot of ARL0 C- μμ (δδ, 1) ARL μ [0, 0, 1] Plot[ARL μ [0, δ, 1], {δ, - 2, 2}, PlotRange Full, AxesOrigin {0, 0}]

12 12 Ex-Cap Version7-0.nb Exercise λ = {0.05, 0.1, 1.}; G1 = ListPlot Table λ[[1]] (1 - λ[[1]]) j, {j, 1, 10}, PlotStyle {RGBColor[1, 0, 0], PointSize[0.025]}, PlotRange {0,.11}, DisplayFunction Identity ; G2 = ListPlot Table λ[[2]] (1 - λ[[2]]) j, {j, 1, 10}, PlotStyle {RGBColor[0, 1, 0], PointSize[0.025]}, PlotRange {0,.11}, DisplayFunction Identity ; G3 = ListPlot Table λ[[3]] (1 - λ[[3]]) j, {j, 1, 10}, PlotStyle {RGBColor[0, 0, 1], PointSize[0.025]}, PlotRange {0,.11}, DisplayFunction Identity ; Show[G1, G2, G3, DisplayFunction $DisplayFunction] λ = {0.05, 0.1, 1.}; G1 = ListPlot Table λ[[1]] (1 - λ[[1]]) j, {j, 1, 10}, PlotStyle {RGBColor[1, 0, 0], PointSize[0.025]}, PlotRange {0,.11}, DisplayFunction Identity ; G2 = ListPlot Table λ[[2]] (1 - λ[[2]]) j, {j, 1, 10}, PlotStyle {RGBColor[0, 1, 0], PointSize[0.025]}, PlotRange {0,.11}, DisplayFunction Identity ; G3 = ListPlot Table λ[[3]] (1 - λ[[3]]) j, {j, 1, 10}, PlotStyle {RGBColor[0, 0, 1], PointSize[0.025]}, PlotRange {0,.11}, DisplayFunction Identity ; Show[G1, G2, G3, DisplayFunction $DisplayFunction]

13 Ex-Cap Version7-0.nb 13 Exercise μ 0 = 10.0; w 0 = μ 0 ; λ = 0.2; s = 2;(* target standard deviation of the sample mean* ) (* σ 0 =2;* ) γ = 3; (* n=length[data];* ) data = {10.5, 6, 10, 11, 12.5, 9.5, 6, 10, 10.5, 14.5, 9.5, 12, 12.5, 10.5, 8, 9.5, 7, 10, 13, 9, 12, 6, 12, 15, 11, 7, 9.5, 10, 12, 18}; W = Function N, (1 - λ) N N- 1 w 0 + λ (1 - λ) j data[[n - j]] ; (* Check Equation (10.19). * ) j=0 ewma = Table[W[i], {i, 1, Length[data]}]; LCLexact = Table μ 0 - γ s Sqrt λ 1 - (1 - λ)2 N, {N, 1, Length[data]} ; (2 - λ) CL = Table[μ 0, {N, 1, Length[data]}]; UCLexact = Table μ 0 + γ s Sqrt λ 1 - (1 - λ)2 N, {N, 1, Length[data]} ; (2 - λ) TableForm Transpose[{data, LCLexact, ewma, UCLexact}], TableHeadings Automatic, "x N ", "LCL N ", "w N ", "UCL N " G1 = ListPlot[ewma, Joined True, PlotStyle {Black, Thickness[0.002]}, PlotMarkers Automatic, PlotRange {8, 12}, DisplayFunction Identity]; G2 = ListPlot[LCLexact, Joined True, PlotStyle {RGBColor[1, 0, 0], Thickness[0.008]}, DisplayFunction Identity]; G3 = ListPlot[CL, Joined True, PlotStyle RGBColor[0, 1, 0], DisplayFunction Identity]; G4 = ListPlot[UCLexact, Joined True, PlotStyle {RGBColor[1, 0, 0], Thickness[0.008]}, DisplayFunction Identity]; Show[G1, G2, G3, G4, DisplayFunction $DisplayFunction] numberobsbeyondcontrollimits = Length[ewma] Mean[Table[If[ewma[[i]] < LCLexact[[i]] ewma[[i]] > UCLexact[[i]], 1, 0], {i, 1, Length[ewma]}]]; If[numberobsbeyondcontrollimits > 0, Print["There is (are) ", numberobsbeyondcontrollimits, " observation(s) beyond the control limits."], Print["There are no observations beyond the control limits."]]

14 14 Ex-Cap Version7-0.nb x N LCL N w N UCL N There are no observations beyond the control limits.

15 Ex-Cap Version7-0.nb 15 λ LCLasympt = Table μ 0 - γ s Sqrt, {N, 1, Length[data]} ; (2 - λ) CL = Table[μ 0, {N, 1, Length[data]}]; λ UCLasympt = Table μ 0 + γ s Sqrt, {N, 1, Length[data]} ; (2 - λ) TableForm Transpose[{data, LCLasympt, ewma, UCLasympt}], TableHeadings Automatic, "x N ", "LCL a ", "w N ", "UCL a " G1 = ListPlot[ewma, Joined True, PlotStyle {Black, Thickness[0.002]}, PlotMarkers Automatic, PlotRange {8, 12}, DisplayFunction Identity]; G2 = ListPlot[LCLasympt, Joined True, PlotStyle {RGBColor[1, 0, 0], Thickness[0.008]}, DisplayFunction Identity]; G3 = ListPlot[CL, Joined True, PlotStyle RGBColor[0, 1, 0], DisplayFunction Identity]; G4 = ListPlot[UCLasympt, Joined True, PlotStyle {RGBColor[1, 0, 0], Thickness[0.008]}, DisplayFunction Identity]; Show[G1, G2, G3, G4, DisplayFunction $DisplayFunction] numberobsbeyondcontrollimits = Length[ewma] Mean[Table[If[ewma[[i]] < LCLasympt[[i]] ewma[[i]] > UCLasympt[[i]], 1, 0], {i, 1, Length[ewma]}]]; If[numberobsbeyondcontrollimits > 0, Print["There is (are) ", numberobsbeyondcontrollimits, " observation(s) beyond the control limits."], Print["There are no observations beyond the control limits."]] x N LCL a w N UCL a

16 16 Ex-Cap Version7-0.nb There are no observations beyond the control limits. Exercise Upper one-sided Shewhart chart Φ[z_] = CDF[NormalDistribution[0, 1], z]; n = 5; pfa μ = 1 / 500.0; γ S- μ = Quantile[NormalDistribution[0, 1], 1 - pfa μ ]; 1 ARL S- μ [δ_, θ_] = ARL S- μ [0, 1] Φ γ S- μ- δ θ ;

17 Ex-Cap Version7-0.nb 17 Upper one-sided EWMA chart (0% Head Start) γ E- μ = ; λ μ = 0.134; x μ = 40; Φ[z_] = CDF[NormalDistribution[0, 1], z]; n = 5; A μ [δ_, θ_] = Table If j == - 1, 0, Φ 1 θ γ E- μ j (1 - λ μ ) i (x μ + 1) λ μ (2 - λ μ ) - δ, {i, 0, x μ }, {j, - 1, x μ } ; T μ = Table[If[i == j, - 1, If[i == j + 1, 1, 0]], {i, 0, x μ + 1}, {j, 0, x μ }]; Q μ [δ_, θ_] = A μ [δ, θ].t μ ; ID μ = IdentityMatrix[x μ + 1]; M μ [δ_, θ_] := Inverse[ID μ - Q μ [δ, θ]]; um μ = Table[1, {i, 0, x μ }]; ARL E- μ [i_, δ_, θ_] := Table[If[j == i, 1, 0], {j, 0, x μ }]. M μ [δ, θ]. um μ ; ARL E- μ [0, 0, 1] shift = {0, 0.05, 0.10, 0.20, 0.30, 0.40, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0, 3.0}; TableForm[Table[{shift[[i]], ARL E- μ [0, shift[[i]], 1], ARL S- μ [shift[[i]], 1]}, {i, 1, Length[shift]}], TableHeadings {Automatic, {"δ", "ARL E- μ ", "ARL S- μ "}}] (* ARL values for the EWMA and Shewhart charts * ) δ ARL E- μ ARL S- μ

18 18 Ex-Cap Version7-0.nb EWMA vs. Shewhart chart (percentual reduction in the ARL when the Shewhart chartis replaced by a EWMA chart) Plot 1 - ARL E- μ[0, δ, 1] ARL S- μ [δ, 1] 100, {δ, 0, 10}

19 Ex-Cap Version7-0.nb 19 Exercise Upper one-sided EWMA chart (0% Head Start) n = 5; sigma 0 = 1; λ σ = 0.05; LCL E- σ = 0; UCL E- σ = ; γ E- σ = UCL E- σ - Log sigma 0 2 ; PolyGamma 1, n- 1 2 λ σ 2- λ σ χ[z_] = CDF[ChiSquareDistribution[n - 1], z]; x σ = 20; A σ [θ_] = Table If j == - 1, 0, χ n - 1 θ 2 Exp γ E- σ PolyGamma 1, n j (1 - λ σ ) i + 1 2, {i, 0, x σ }, {j, - 1, x σ } ; (x σ + 1) λ σ (2 - λ σ ) T σ = Table[If[i == j, - 1, If[i == j + 1, 1, 0]], {i, 0, x σ + 1}, {j, 0, x σ }]; Q σ [θ_] = A σ [θ].t σ ; ID σ = IdentityMatrix[x σ + 1]; M σ [θ_] := Inverse[ID σ - Q σ [θ]]; um σ = Table[1, {i, 0, x σ }]; b σ [i_] = Table[If[j == i, 1, 0], {j, 0, x σ }]; ARL E- σ [i_, θ_] := b σ [i]. M σ [θ]. um σ ; ARL E- σ [0, 1] Upper one-sided Shewhart chart UCL S- σ = ; γ S- σ = UCL S- σ n ; ARL S- σ [θ_] = ARL S- σ [1] 1 ; 1 - χ γ S- σ θ

20 20 Ex-Cap Version7-0.nb EWMA vs. Shewhart chart (percentual reduction in the ARL when the Shewhart chartis replaced by a EWMA chart) Plot 1 - ARL E- σ[0, θ] ARL S- σ [θ] 100, {θ, 1, 10}, AxesOrigin {1, 0}

21 Ex-Cap Version7-0.nb 21 Exercise n = 5; Φ[x_] = CDF[NormalDistribution[0, 1], x]; χ[x_] = CDF[ChiSquareDistribution[n - 1], x]; pfa μ = 1 / 1000.; γ μ = Quantile NormalDistribution[0, 1], 1 - pfa μ 2 ; 1 pfa σ = ; γ σ = Quantile[ChiSquareDistribution[n - 1], 1 - pfa σ ]; 1 ARL μ [δ_, θ_] = ARL σ [θ_] = 1 - Φ γ μ- δ θ 1 ; 1 - χ γ σ θ 2 - Φ - γ μ- δ θ ARL μ,σ [δ_, θ_] = Φ γ μ - δ ; - Φ - γ μ - δ θ θ ARL μ [0, 1] ARL σ [1] ARL μ,σ [0, 1] Plot3D[Log[ARL μ,σ [δ, θ]], {δ, 0, 3}, {θ, 1, 2}] χ γ σ θ 2 ;

22 22 Ex-Cap Version7-0.nb ARL μ,σ [δ_, θ_] = ARL μ [δ, θ] ARL σ [θ] ARL μ [δ, θ] + ARL σ [θ] - 1 ; (* Relating the ARL of the joint scheme and ssthe ones of the individual charts... * ) ARL μ [0, 1] ARL σ [1] ARL μ,σ [0, 1] Exercise n = 10; Φ[x_] = CDF[NormalDistribution[0, 1], x]; χ[x_] = CDF[ChiSquareDistribution[n - 1], x]; (* data μ ={1.04,1.06,1.09,1.05,1.07,1.06,1.05,1.10, 1.09,1.05,0.99,1.06,1.05,1.07,1.11,1.04,1.03,1.05,1.06,1.04}; data σ ={0.87,0.85,0.90,0.85,0.73,0.80,0.78,0.83,0.87, , 0.79,0.82,0.75,0.76,0.89,0.91,0.85,0.83,0.79,0.85}; * ) pfa μ = 0.002; γ μ = Quantile NormalDistribution[0, 1], 1 - pfa μ 2 ; pfa σ = 0.002; γ σ = Quantile[ChiSquareDistribution[n - 1], 1 - pfa σ ]; μ 0 = Mean[data μ ]; σ 0 = Mean[data σ ] ; LCL μ = μ 0 - γ μ σ 0 n UCL μ = μ 0 + γ μ σ 0 LCL σ = 0 UCL σ = σ 0 2 n - 1 γ σ n probsignal μ,σ [δ_, θ_] = 1 - probsignal μ,σ [0, 1] Φ γ μ - δ θ - Φ - γ μ - δ θ χ γ σ θ 2 ;

23 Ex-Cap Version7-0.nb 23 probvalidsignal = probsignal μ,σ [0.1, 1.1]; dist = GeometricDistribution[probvalidsignal] ; (* geometric distribution for the number of trials before the first success, where the probability of success in a trial is p * ) CDF[dist, 10-1] ARL μ [δ_, θ_] = 1 - Φ γ μ- δ θ 1 - Φ - γ μ- δ θ ARL σ [θ_] = χ γ σ θ 2 ; ARL μ,σ [δ_, θ_] = ARL μ [δ, θ] ARL σ [θ] ARL μ [δ, θ] + ARL σ [θ] - 1 ; ARL μ [0, 1] ARL σ [1] ARL μ,σ [0, 1] Plot3D[Log[ARL μ,σ [δ, θ]], {δ, 0, 3}, {θ, 1, 2}] ;

24 24 Ex-Cap Version7-0.nb Exercise (with n=9, ARL μμ (0,1)=ARL σσ (1)=500) n = 9; Φ[x_] = CDF[NormalDistribution[0, 1], x]; χ[x_] = CDF[ChiSquareDistribution[n - 1], x]; pfa μ = 1 / 500.0; γ μ = Quantile NormalDistribution[0, 1], 1 - pfa μ 2 ; pfa σ = 1 / 500.0; γ σ = Quantile[ChiSquareDistribution[n - 1], 1 - pfa σ ]; PMS III [θ_] = 1 - Φ γ μ θ - Φ - γ μ θ 1 χ γ σ θ 2 - Φ γ μ θ - Φ - γ μ θ ; theta = {1.01, 1.03, 1.05, 1.10, 1.20, 1.30, 1.40, 1.50, 1.60, 1.70, 1.80, 1.90, 2.00, 3.00}; TableForm[Table[{theta[[i]], PMS III [theta[[i]]]}, {i, 1, Length[theta]}], TableHeadings {Automatic, {"θ", "PMS III "}}] Plot[{PMS III [θ]}, {θ, 1.001, 3}, AxesOrigin - > {1, 0}] 1 - χ[γ σ ] PMS IV [δ_] = ; 1 - χ[γ (Φ[γ μ - δ]- Φ[- γ μ - δ]) σ] delta = {0.05, 0.10, 0.20, 0.30, 0.40, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0, 3.0}; TableForm[Table[{delta[[i]], PMS IV [delta[[i]]]}, {i, 1, Length[delta]}], TableHeadings {Automatic, {"δ", "PMS IV "}}] Plot[{PMS IV [δ]}, {δ, 0.001, 3}, AxesOrigin - > {0, 0}] θ PMS III

25 Ex-Cap Version7-0.nb δ PMS IV

26 26 Ex-Cap Version7-0.nb Exercise n = 5; Φ[x_] = CDF[NormalDistribution[0, 1], x]; χ[x_] = CDF[ChiSquareDistribution[n - 1], x]; pfa μ = 1 / 500.0; γ μ = Quantile[NormalDistribution[0, 1], 1 - pfa μ ]; pfa σ = 1 / 500.0; γ σ = Quantile[ChiSquareDistribution[n - 1], 1 - pfa σ ]; PMS III [θ_] = 1 - Φ γ μ θ ; 1 - Φ γμ χ γσ θ θ 2 theta = {1.01, 1.03, 1.05, 1.10, 1.20, 1.30, 1.40, 1.50, 1.60, 1.70, 1.80, 1.90, 2.00, 3.00}; TableForm[Table[{theta[[i]], PMS III [theta[[i]]]}, {i, 1, Length[theta]}], TableHeadings {Automatic, {"θ", "PMS III "}}] Plot[{PMS III [θ]}, {θ, 1.001, 3}, AxesOrigin - > {1, 0}] 1 - χ[γ σ ] PMS IV [δ_] = ; 1 - χ[γ Φ[γ μ - δ] σ] delta = {0.05, 0.10, 0.20, 0.30, 0.40, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0, 3.0}; TableForm[Table[{delta[[i]], PMS IV [delta[[i]]]}, {i, 1, Length[delta]}], TableHeadings {Automatic, {"δ", "PMS IV "}}] Plot[{PMS IV [δ]}, {δ, 0.001, 3}, AxesOrigin - > {0, 0}] θ PMS III

27 Ex-Cap Version7-0.nb δ PMS IV Sample size and distribution function of the standard normal and the chi-square with (n-1) degrees of freedom n = 5; Φ[z_] = CDF[NormalDistribution[0, 1], z]; χ[z_] = CDF[ChiSquareDistribution[n - 1], z]; Definition of the sub-stochastic matrix Q μμ (δδ, θθ) of the chart EWMA-μμ

28 28 Ex-Cap Version7-0.nb γ μ = ; λ μ = 0.134; x μ = 40; A μ [δ_, θ_] = Table If j == - 1, 0, Φ 1 θ γ μ j (1 - λ μ ) i {i, 0, x μ }, {j, - 1, x μ } ; (x μ + 1) λ μ (2 - λ μ ) - δ, T μ = Table[If[i == j, - 1, If[i == j + 1, 1, 0]], {i, 0, x μ + 1}, {j, 0, x μ }]; Q μ [δ_, θ_] = A μ [δ, θ].t μ ; Definition of ARLi E- μμ (δδ, θθ) ID μ = IdentityMatrix[x μ + 1]; M μ [δ_, θ_] := Inverse[ID μ - Q μ [δ, θ]]; um μ = Table[1, {i, 0, x μ }]; b μ [i_] = Table[If[j == i, 1, 0], {j, 0, x μ }]; ARL μ [i_, δ_, θ_] := b μ [i]. M μ [δ, θ]. um μ ; ARL μ [0, 0, 1] Definition of the sub-stochastic matrix Q σσ (θθ) of the chart EWMA-σσ γ σ = ; λ σ = 0.043; x σ = 40; A σ [θ_] = Table If j == - 1, 0, χ n - 1 θ 2 Exp γ σ PolyGamma 1, n j (1 - λ σ ) i + 1 2, {i, 0, x σ }, {j, - 1, x σ } ; (x σ + 1) λ σ (2 - λ σ ) T σ = Table[If[i == j, - 1, If[i == j + 1, 1, 0]], {i, 0, x σ + 1}, {j, 0, x σ }]; Q σ [θ_] = A σ [θ].t σ ; Definition of ARLi E- σσ (θθ) ID σ = IdentityMatrix[x σ + 1]; M σ [θ_] := Inverse[ID σ - Q σ [θ]]; um σ = Table[1, {i, 0, x σ }]; b σ [i_] = Table[If[j == i, 1, 0], {j, 0, x σ }]; ARL E- σ [i_, θ_] := b σ [i]. M σ [θ]. um σ ; ARL E- σ [0, 1] i Survival function of RL E- μμ (δδ, θθ)

29 Ex-Cap Version7-0.nb 29 F i RLE- μμ δδ,θθ (k) S μ [i_, k_, δ_, θ_] := b μ [i].matrixpower[ Q μ [δ, θ], If[k 0, Floor[k], 0]]. um μ ; j Survival function of RL E- σσ (θθ) F j RLE- σσ (θθ) (k) S σ [j_, k_, θ_] := b σ [j].matrixpower[ Q σ [θ], If[k 0, Floor[k], 0]]. um σ ; "Probability of Misleading Signals" EE + Type III PMS EE +(III; θθ) HS μμ = 0 %, HS σσ = 0 % theta = {1.01, 1.03, 1.05, 1.10, 1.20, 1.30, 1.40, 1.50, 1.60, 1.70, 1.80, 1.90, 2.00, 3.00}; head μ = {0}; head σ = {0};

30 30 Ex-Cap Version7-0.nb Do[Do[Do[{ δ = 0; θ = theta[[l]]; i = head μ [[m]]; j = head σ [[p]]; cu μ = Q μ [δ, θ]; cu σ = Q σ [θ]; err = ; erel = 2 err; oldsum = 0; pot1 μ = ID μ ; pot2 μ = cu μ ; pot σ = cu σ ; oldparc μ = b μ [i].(pot1 μ - pot2 μ ). um μ ; oldparc σ = b σ [j].pot σ. um σ ; oldparc = oldparc μ * oldparc σ ; nparc = 1; While[erel > err, {soma = oldsum + oldparc, erel = Abs[(soma - oldsum) / soma], oldsum = soma, oldpot2 μ = pot2 μ, oldpot σ = pot σ, pot1 μ = pot2 μ, pot2 μ = cu μ.oldpot2 μ, pot σ = cu σ.oldpot σ, oldparc μ = b μ [i].(pot1 μ - pot2 μ ). um μ, oldparc σ = b σ [j].pot σ. um σ, oldparc = oldparc μ * oldparc σ, nparc = nparc + 1, If[Mod[nparc - 1, 500] == 0, Print[ "iter=", nparc - 1, " erro relat=", erel, " valor aprox=", oldsum, " δ=", δ, " θ=", θ]]}], PMS III [i, j, θ] = oldsum; iter[i, j, θ] = nparc - 1; Print[ " δ=", δ, " θ=", θ, " i=", i, " j=", j, " aproximate value=", oldsum, " iterations=", nparc - 1, " relative error=", erel]}, {p, 1, Dimensions[head σ ][[1]]}], {l, 1, Dimensions[theta][[1]]}], {m, 1, Dimensions[head μ ][[1]]}]

31 Ex-Cap Version7-0.nb 31 iter=500 erro relat= valor aprox= δ=0 θ=1.01 iter=1000 erro relat= valor aprox= δ=0 θ=1.01 iter=1500 erro relat= valor aprox= δ=0 θ=1.01 δ=0 θ=1.01 i=0 j=0 aproximate value= iterations=1772 relative error= iter=500 erro relat= valor aprox= δ=0 θ=1.03 iter=1000 erro relat= valor aprox= δ=0 θ=1.03 δ=0 θ=1.03 i=0 j=0 aproximate value= iterations=1320 relative error= iter=500 erro relat= valor aprox= δ=0 θ=1.05 δ=0 θ=1.05 i=0 j=0 aproximate value= iterations=991 relative error= iter=500 erro relat= valor aprox= δ=0 θ=1.1 δ=0 θ=1.1 i=0 j=0 aproximate value= iterations=517 relative error= δ=0 θ=1.2 i=0 j=0 aproximate value= iterations=194 relative error= δ=0 θ=1.3 i=0 j=0 aproximate value= iterations=101 relative error= δ=0 θ=1.4 i=0 j=0 aproximate value= iterations=64 relative error= δ=0 θ=1.5 i=0 j=0 aproximate value= iterations=45 relative error= δ=0 θ=1.6 i=0 j=0 aproximate value= iterations=35 relative error= δ=0 θ=1.7 i=0 j=0 aproximate value= iterations=28 relative error= δ=0 θ=1.8 i=0 j=0 aproximate value= iterations=24 relative error= δ=0 θ=1.9 i=0 j=0 aproximate value= iterations=20 relative error= δ=0 θ=2. i=0 j=0 aproximate value= iterations=18 relative error= δ=0 θ=3. i=0 j=0 aproximate value= iterations=9 relative error=

32 32 Ex-Cap Version7-0.nb MatrixForm[Table[{ theta[[l]], (* head μ [[i]], head σ [[j]], iter[head μ [[i]],head σ [[j]],theta[[l]]], * ) PMS III [head μ [[i]], head σ [[j]], theta[[l]]]}, {j, 1, Dimensions[head σ ][[1]]}, {i, 1, Dimensions[head μ ][[1]]}, {l, 1, Dimensions[theta][[1]]}]] Type IV PMS EE +(IV; δδ) HS μμ = 0 %, HS σσ = 0 % delta = {0.05, 0.10, 0.20, 0.30, 0.40, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0, 3.0}; head μ = {0}; head σ = {0};

33 Ex-Cap Version7-0.nb 33 Do[Do[Do[{ δ = delta[[k]]; θ = 1; i = head μ [[m]]; j = head σ [[p]]; cu μ = Q μ [δ, θ]; cu σ = Q σ [θ]; err = ; erel = 2 err; oldsum = 0; pot1 σ = ID σ ; pot2 σ = cu σ ; pot μ = cu μ ; oldparc σ = b σ [j].(pot1 σ - pot2 σ ). um σ ; oldparc μ = b μ [i].pot μ. um μ ; oldparc = oldparc μ * oldparc σ ; nparc = 1; While[erel > err, {soma = oldsum + oldparc, If[nparc > 1, erel = Abs[(soma - oldsum) / soma]], oldsum = soma, oldpot2 σ = pot2 σ, oldpot μ = pot μ, pot1 σ = pot2 σ, pot2 σ = cu σ.oldpot2 σ, pot μ = cu μ.oldpot μ, oldparc σ = b σ [j].(pot1 σ - pot2 σ ). um σ, oldparc μ = b μ [i].pot μ. um μ, oldparc = oldparc μ * oldparc σ, nparc = nparc + 1, If[Mod[nparc - 1, 500] == 0, Print[ "iter=", nparc - 1, " erro relat=", erel, " valor aprox=", oldsum, " δ=", δ, " θ=", θ]]}], PMS IV [i, j, δ] = oldsum; iter[i, j, δ] = nparc - 1; Print[ " δ=", δ, " θ=", θ, " i=", i, " j=", j, " aproximate value=", oldsum, " iterations=", nparc - 1, " relative error=", erel]}, {p, 1, Dimensions[head σ ][[1]]}], {k, 1, Dimensions[delta][[1]]}], {m, 1, Dimensions[head μ ][[1]]}]

34 34 Ex-Cap Version7-0.nb iter=500 erro relat= valor aprox= δ=0.05 θ=1 iter=1000 erro relat= valor aprox= δ=0.05 θ=1 iter=1500 erro relat= valor aprox= δ=0.05 θ=1 δ=0.05 θ=1 i=0 j=0 aproximate value= iterations=1707 relative error= iter=500 erro relat= valor aprox= δ=0.1 θ=1 iter=1000 erro relat= valor aprox= δ=0.1 θ=1 δ=0.1 θ=1 i=0 j=0 aproximate value= iterations=1388 relative error= iter=500 erro relat= valor aprox= δ=0.2 θ=1 δ=0.2 θ=1 i=0 j=0 aproximate value= iterations=885 relative error= iter=500 erro relat= valor aprox= δ=0.3 θ=1 δ=0.3 θ=1 i=0 j=0 aproximate value= iterations=561 relative error= δ=0.4 θ=1 i=0 j=0 aproximate value= iterations=364 relative error= δ=0.5 θ=1 i=0 j=0 aproximate value= iterations=246 relative error= δ=0.6 θ=1 i=0 j=0 aproximate value= iterations=174 relative error= δ=0.7 θ=1 i=0 j=0 aproximate value= iterations=128 relative error= δ=0.8 θ=1 i=0 j=0 aproximate value= iterations=97 relative error= δ=0.9 θ=1 i=0 j=0 aproximate value= iterations=76 relative error= δ=1. θ=1 i=0 j=0 aproximate value= iterations=62 relative error= δ=1.5 θ=1 i=0 j=0 aproximate value= iterations=28 relative error= δ=2. θ=1 i=0 j=0 aproximate value= iterations=17 relative error= δ=3. θ=1 i=0 j=0 aproximate value= iterations=9 relative error=

35 Ex-Cap Version7-0.nb 35 MatrixForm[Table[{ delta[[l]], (* head μ [[i]], head σ [[j]], iter[head μ [[i]],head σ [[j]],delta[[l]]], * ) PMS IV [head μ [[i]], head σ [[j]], delta[[l]]]}, {j, 1, Dimensions[head σ ][[1]]}, {i, 1, Dimensions[head μ ][[1]]}, {l, 1, Dimensions[delta][[1]]}]] Exercise n = 10; χ[x_] = CDF[ChiSquareDistribution[n - 1], x]; pfa σ = 1 / 100.0; γ σ = Quantile[ChiSquareDistribution[n - 1], 1 - pfa σ ]; 1 - χ γ σ pfa σ = 1 / 100.0; a = Quantile ChiSquareDistribution[n - 1], pfa σ 2 ; b = Quantile ChiSquareDistribution[n - 1], 1 - pfa σ 2 ; 1 - χ b a - χ

36 36 Ex-Cap Version7-0.nb probmisleadingsignal upper = 1 - χ γ σ.9 2 ; dist = GeometricDistribution[probmisleadingsignal upper ] ; (* geometric distribution for the number of trials before the first success, where the probability of success in a trial is p * ) CDF[dist, 100-1] probmisleadingsignal standard = 1 - χ b a - χ.92.9 ; 2 dist = GeometricDistribution[probmisleadingsignal standard ] ; (* geometric distribution for the number of trials before the first success, where the probability of success in a trial is p * ) CDF[dist, 100-1]

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679 APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 1 Table I Summary of Common Probability Distributions 2 Table II Cumulative Standard Normal Distribution Table III Percentage Points, 2 of the Chi-Squared

Διαβάστε περισσότερα

Chap. 13. Exercise A few exercises from Chap. 13. n = 89; c = 2; OC B [p_] = CDF[BinomialDistribution[n, p], c];

Chap. 13. Exercise A few exercises from Chap. 13. n = 89; c = 2; OC B [p_] = CDF[BinomialDistribution[n, p], c]; Cha. 13 A few exercises from Cha. 13 Exercise 13.2 n = 89; c = 2; OC B [_] = CDF[BinomialDistribution[n, ], c]; TableForm[Table[{, OC B []}, {, 0.01, 0.05, 0.01}], TableHeadings {None, {"", "OC B ()"}}]

Διαβάστε περισσότερα

FORMULAS FOR STATISTICS 1

FORMULAS FOR STATISTICS 1 FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

BarChart y 1, y 2, makes a bar chart with bar lengths y 1, y 2,.

BarChart y 1, y 2, makes a bar chart with bar lengths y 1, y 2,. In[]:= In[]:= In[3]:= In[4]:= In[5]:= Out[5]= r : Random ri : Random Integer rdice : Random Integer,, 6 disp : Export "t.ps",, "EPS" & list Table rdice, 0 5,, 4, 6,, 3,, 3, 4,, 6, 4, 6,,, 6, 6,, 3, In[6]:=

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Biostatistics for Health Sciences Review Sheet

Biostatistics for Health Sciences Review Sheet Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................

Διαβάστε περισσότερα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample

Διαβάστε περισσότερα

An Inventory of Continuous Distributions

An Inventory of Continuous Distributions Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >

Διαβάστε περισσότερα

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Queensland University of Technology Transport Data Analysis and Modeling Methodologies Queensland University of Technology Transport Data Analysis and Modeling Methodologies Lab Session #7 Example 5.2 (with 3SLS Extensions) Seemingly Unrelated Regression Estimation and 3SLS A survey of 206

Διαβάστε περισσότερα

Histogram list, 11 RANDOM NUMBERS & HISTOGRAMS. r : RandomReal. ri : RandomInteger. rd : RandomInteger 1, 6

Histogram list, 11 RANDOM NUMBERS & HISTOGRAMS. r : RandomReal. ri : RandomInteger. rd : RandomInteger 1, 6 In[1]:= In[2]:= RANDOM NUMBERS & HISTOGRAMS r : RandomReal In[3]:= In[4]:= In[5]:= ri : RandomInteger In[6]:= rd : RandomInteger 1, 6 In[7]:= list Table rd rd, 100 2 dice Out[7]= 7, 11, 7, 10, 7, 8, 3,

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

Bayesian Data Analysis, Midterm I

Bayesian Data Analysis, Midterm I Bayesian Data Analysis, Midterm I Bugra Gedik bgedik@cc.gatech.edu October 3, 4 Q1) I have used Gibs sampler to solve this problem. 5, iterations with burn-in value of 1, is used. The resulting histograms

Διαβάστε περισσότερα

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Λέκτορας στο Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων, Πανεπιστήμιο Πειραιώς, Ιανουάριος 2012-Μάρτιος 2014.

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Λέκτορας στο Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων, Πανεπιστήμιο Πειραιώς, Ιανουάριος 2012-Μάρτιος 2014. ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ 1. Γενικά στοιχεία Όνομα Επίθετο Θέση E-mail Πέτρος Μαραβελάκης Επίκουρος καθηγητής στο Πανεπιστήμιο Πειραιώς, Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων με αντικείμενο «Εφαρμογές Στατιστικής

Διαβάστε περισσότερα

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

Gaussian related distributions

Gaussian related distributions Gaussian related distributions Santiago Aja-Fernández June 19, 009 1 Gaussian related distributions 1. Gaussian: ormal PDF: MGF: Main moments:. Rayleigh: PDF: MGF: Raw moments: Main moments: px = 1 σ π

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

Table A.1 Random numbers (section 1)

Table A.1 Random numbers (section 1) A Tables Table Contents Page A.1 Random numbers 696 A.2 Orthogonal polynomial trend contrast coefficients 702 A.3 Standard normal distribution 703 A.4 Student s t-distribution 704 A.5 Chi-squared distribution

Διαβάστε περισσότερα

TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics

TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics Exploring Data: Distributions Look for overall pattern (shape, center, spread) and deviations (outliers). Mean (use a calculator): x = x 1 + x

Διαβάστε περισσότερα

Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F

Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F Άσκηση 0, σελ. 9 από το βιβλίο «Μοντέλα Αξιοπιστίας και Επιβίωσης» της Χ. Καρώνη (i) Αρχικά, εισάγουμε τα δεδομένα στο minitab δημιουργώντας δύο μεταβλητές: τη x για τον άτυπο όγκο και την y για τον τυπικό

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

794 Appendix A:Tables

794 Appendix A:Tables Appendix A Tables A Table Contents Page A.1 Random numbers 794 A.2 Orthogonal polynomial trend contrast coefficients 800 A.3 Standard normal distribution 801 A.4 Student s t-distribution 802 A.5 Chi-squared

Διαβάστε περισσότερα

Statistics & Research methods. Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science

Statistics & Research methods. Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science Statistics & Research methods Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science 30 25 1,65 20 1,66 15 10 5 1,67 1,68 Κανονική 0 Height 1,69 Καμπύλη Κανονική Διακύμανση & Ζ-scores

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

5.1 logistic regresssion Chris Parrish July 3, 2016

5.1 logistic regresssion Chris Parrish July 3, 2016 5.1 logistic regresssion Chris Parrish July 3, 2016 Contents logistic regression model 1 1992 vote 1 data..................................................... 1 model....................................................

Διαβάστε περισσότερα

ΔΙΑΓΡΑΜΜΑΤΑ ΕΛΕΓΧΟΥ SHEWHART ΜΕ ΚΑΝΟΝΕΣ ΕΥΑΙΣΘΗΤΟΠΟΙΗΣΗΣ ΠΟΥ ΒΑΣΙΖΟΝΤΑΙ ΣΤΗ ΘΕΩΡΙΑ ΡΟΩΝ

ΔΙΑΓΡΑΜΜΑΤΑ ΕΛΕΓΧΟΥ SHEWHART ΜΕ ΚΑΝΟΝΕΣ ΕΥΑΙΣΘΗΤΟΠΟΙΗΣΗΣ ΠΟΥ ΒΑΣΙΖΟΝΤΑΙ ΣΤΗ ΘΕΩΡΙΑ ΡΟΩΝ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 18 ου Πανελληνίου Συνεδρίου Στατιστικής (2005) σελ.325-331 ΔΙΑΓΡΑΜΜΑΤΑ ΕΛΕΓΧΟΥ SHEWHART ΜΕ ΚΑΝΟΝΕΣ ΕΥΑΙΣΘΗΤΟΠΟΙΗΣΗΣ ΠΟΥ ΒΑΣΙΖΟΝΤΑΙ ΣΤΗ ΘΕΩΡΙΑ ΡΟΩΝ Α. Ρακιτζής 1

Διαβάστε περισσότερα

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer: HOMEWORK# 52258 李亞晟 Eercise 2. The lifetime of light bulbs follows an eponential distribution with a hazard rate of. failures per hour of use (a) Find the mean lifetime of a randomly selected light bulb.

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων Όρια Πιστότητας (Confidence Limits) 2/4/2014 Υπολογ.Φυσική ΣΣ 1 Τα όρια πιστότητας -Confidence Limits (CL) Tα όρια πιστότητας μιας μέτρησης Μπορεί να αναφέρονται

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

519.22(07.07) 78 : ( ) /.. ; c (07.07) , , 2008

519.22(07.07) 78 : ( ) /.. ; c (07.07) , , 2008 .. ( ) 2008 519.22(07.07) 78 : ( ) /.. ;. : -, 2008. 38 c. ( ) STATISTICA.,. STATISTICA.,. 519.22(07.07),.., 2008.., 2008., 2008 2 ... 4 1...5...5 2...14...14 3...27...27 3 ,, -. " ", :,,,... STATISTICA.,,,.

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

6. MAXIMUM LIKELIHOOD ESTIMATION

6. MAXIMUM LIKELIHOOD ESTIMATION 6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ

Διαβάστε περισσότερα

5.6 evaluating, checking, comparing Chris Parrish July 3, 2016

5.6 evaluating, checking, comparing Chris Parrish July 3, 2016 5.6 evaluating, checking, comparing Chris Parrish July 3, 2016 Contents residuals 1 evaluating, checking, comparing 1 data..................................................... 1 model....................................................

Διαβάστε περισσότερα

Θέματα Στατιστικής στη γλώσσα R

Θέματα Στατιστικής στη γλώσσα R Θέματα Στατιστικής στη γλώσσα R Ποσότητες οδηγοί και τα ποσοστιαία σημεία των αντίστοιχων κατανομών Ν(0,1) Student s t X 2, F Διαστήματα εμπιστοσύνης-έλεγχοι Υποθέσεων ένα δείγμα για τη μέση τιμή κανονικής

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Summary of the model specified

Summary of the model specified Program: HLM 7 Hierarchical Linear and Nonlinear Modeling Authors: Stephen Raudenbush, Tony Bryk, & Richard Congdon Publisher: Scientific Software International, Inc. (c) 2010 techsupport@ssicentral.com

Διαβάστε περισσότερα

22 .5 Real consumption.5 Real residential investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.5 Real house prices.5 Real fixed investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.3 Inflation

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

Si + Al Mg Fe + Mn +Ni Ca rim Ca p.f.u

Si + Al Mg Fe + Mn +Ni Ca rim Ca p.f.u .6.5. y = -.4x +.8 R =.9574 y = - x +.14 R =.9788 y = -.4 x +.7 R =.9896 Si + Al Fe + Mn +Ni y =.55 x.36 R =.9988.149.148.147.146.145..88 core rim.144 4 =.6 ±.6 4 =.6 ±.18.84.88 p.f.u..86.76 y = -3.9 x

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Δείγμα (μεγάλο) από οποιαδήποτε κατανομή

Δείγμα (μεγάλο) από οποιαδήποτε κατανομή ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 4ο Κατανομές Στατιστικών Συναρτήσεων Δείγμα από κανονική κατανομή Έστω Χ= Χ Χ Χ τ.δ. από Ν µσ τότε ( 1,,..., n) (, ) Τ Χ Χ Ν Τ Χ σ σ Χ Τ Χ n Χ S µ S µ 1( ) = (0,1), ( ) = ( n 1)

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

χ 2 test ανεξαρτησίας

χ 2 test ανεξαρτησίας χ 2 test ανεξαρτησίας Καθηγητής Ι. Κ. ΔΗΜΗΤΡΙΟΥ demetri@econ.uoa.gr 7.2 Το χ 2 Τεστ Ανεξαρτησίας Tο χ 2 τεστ ανεξαρτησίας (όπως και η παλινδρόμηση) είναι στατιστικά εργαλεία για τον εντοπισμό σχέσεων μεταξύ

Διαβάστε περισσότερα

( ) ( ) STAT 5031 Statistical Methods for Quality Improvement. Homework n = 8; x = 127 psi; σ = 2 psi (a) µ 0 = 125; α = 0.

( ) ( ) STAT 5031 Statistical Methods for Quality Improvement. Homework n = 8; x = 127 psi; σ = 2 psi (a) µ 0 = 125; α = 0. STAT 531 Statistical Methods for Quality Improvement Homework 3 4.8 n = 8; x = 17 psi; σ = psi (a) µ = 15; α =.5 Test H : µ = 15 vs. H 1 : µ > 15. Reject H if Z > Z α. x µ 17 15 Z = = =.88 σ n 8 Z α =

Διαβάστε περισσότερα

Module 5. February 14, h 0min

Module 5. February 14, h 0min Module 5 Stationary Time Series Models Part 2 AR and ARMA Models and Their Properties Class notes for Statistics 451: Applied Time Series Iowa State University Copyright 2015 W. Q. Meeker. February 14,

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def Matrices and vectors Matrix and vector a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn def = ( a ij ) R m n, b = b 1 b 2 b m Rm Matrix and vectors in linear equations: example E 1 : x 1 + x 2 + 3x 4 =

Διαβάστε περισσότερα

1 1 1 2 1 2 2 1 43 123 5 122 3 1 312 1 1 122 1 1 1 1 6 1 7 1 6 1 7 1 3 4 2 312 43 4 3 3 1 1 4 1 1 52 122 54 124 8 1 3 1 1 1 1 1 152 1 1 1 1 1 1 152 1 5 1 152 152 1 1 3 9 1 159 9 13 4 5 1 122 1 4 122 5

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 13. Συμπεράσματα για τη σύγκριση δύο πληθυσμών

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 13. Συμπεράσματα για τη σύγκριση δύο πληθυσμών ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1) HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2017

FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2017 FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2017 M7 Δομές δεδομένων: Πίνακες - Ασκήσεις Γεώργιος Παπαλάμπρου Επικ. Καθηγητής ΕΜΠ Εργαστήριο Ναυτικής Μηχανολογίας george.papalambrou@lme.ntua.gr ΕΜΠ/ΣΝΜΜ

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Supplementary Appendix

Supplementary Appendix Supplementary Appendix Measuring crisis risk using conditional copulas: An empirical analysis of the 2008 shipping crisis Sebastian Opitz, Henry Seidel and Alexander Szimayer Model specification Table

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Elements of Information Theory

Elements of Information Theory Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Lampiran 2 Hasil Kuesioner No. BA1 BA2 BA3 BA4 PQ1 PQ2 PQ3 PQ4 PQ

Lampiran 2 Hasil Kuesioner No. BA1 BA2 BA3 BA4 PQ1 PQ2 PQ3 PQ4 PQ Lampiran 2 Hasil Kuesioner No. BA1 BA2 BA3 BA4 PQ1 PQ2 PQ3 PQ4 PQ5 1 4 3 3 4 4 5 4 5 4 2 5 5 4 5 4 4 3 5 4 3 2 1 3 2 3 3 4 3 3 4 2 3 3 2 4 4 4 3 4 5 2 3 2 2 3 3 3 3 3 6 3 3 3 3 4 4 4 5 4 7 4 3 3 4 3 3

Διαβάστε περισσότερα

Durbin-Levinson recursive method

Durbin-Levinson recursive method Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009. HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009. HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Στατιστικά Κειμένου Text Statistics Γιάννης Τζίτζικας άλ ιάλεξη :

Διαβάστε περισσότερα

255 (log-normal distribution) 83, 106, 239 (malus) 26 - (Belgian BMS, Markovian presentation) 32 (median premium calculation principle) 186 À / Á (goo

255 (log-normal distribution) 83, 106, 239 (malus) 26 - (Belgian BMS, Markovian presentation) 32 (median premium calculation principle) 186 À / Á (goo (absolute loss function)186 - (posterior structure function)163 - (a priori rating variables)25 (Bayes scale) 178 (bancassurance)233 - (beta distribution)203, 204 (high deductible)218 (bonus)26 ( ) (total

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Eight Examples of Linear and Nonlinear Least Squares

Eight Examples of Linear and Nonlinear Least Squares Eight Examples of Linear and Nonlinear Least Squares CEE 699.4, ME 99.4 Sstem Identification Fall, 21 c Henri P. Gavin, September 2, 21 1 Not polnomial, but linear in parameters. ŷ(t i ; a) = a 1 sin(t

Διαβάστε περισσότερα

Εργαστήριο 4. Άóêçóç 1. Άóêçóç 2. Χημικοί. Plot Sec x, x, 2 π, 2π. p1 Plot Abs 1 Abs x, x, 3, 3. 1 In[3]:= f x_ : 2 π. p2 Plot f x, x, 3,

Εργαστήριο 4. Άóêçóç 1. Άóêçóç 2. Χημικοί. Plot Sec x, x, 2 π, 2π. p1 Plot Abs 1 Abs x, x, 3, 3. 1 In[3]:= f x_ : 2 π. p2 Plot f x, x, 3, Εργαστήριο 4 Χημικοί Άóêçóç. In[]:= Plot Sec x, x, π, π 6 4 Out[]= -6-4 - 4 6 - -4-6 Άóêçóç. In[]:= p Plot Abs Abs x, x, 3, 3.0.5 Out[]= -3 - - 3 In[3]:= f x_ : π x p Plot f x, x, 3, 3 0.4 0.3 Out[4]=

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Άσκηση 1. Α. Υπολογίστε χωρίς να εκτελέσετε κώδικα FORTRAN τα παρακάτω: Ποιά είναι η τελική τιμή του Z στα παρακάτω κομμάτια κώδικα FORTRAN:

Άσκηση 1. Α. Υπολογίστε χωρίς να εκτελέσετε κώδικα FORTRAN τα παρακάτω: Ποιά είναι η τελική τιμή του Z στα παρακάτω κομμάτια κώδικα FORTRAN: Άσκηση 1 Α. Υπολογίστε χωρίς να εκτελέσετε κώδικα FORTRAN τα παρακάτω: Ποιά είναι η τελική τιμή του J στα παρακάτω κομμάτια κώδικα FORTRAN: INTEGER J J = 5 J = J + 1 J = J + 1 INTEGER X, Y, J X = 2 Y =

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

ΤΟ EWMA ΙΑΓΡΑΜΜΑ ΓΙΑ ΤΗΝ ΙΑΚΥΜΑΝΣΗ ΜΕ ΕΚΤΙΜΩΜΕΝΕΣ ΠΑΡΑΜΕΤΡΟΥΣ

ΤΟ EWMA ΙΑΓΡΑΜΜΑ ΓΙΑ ΤΗΝ ΙΑΚΥΜΑΝΣΗ ΜΕ ΕΚΤΙΜΩΜΕΝΕΣ ΠΑΡΑΜΕΤΡΟΥΣ Εηνικό Στατιστικό Ινστιτούτο Πρακτικά 7 ου Πανεηνίου Συνεδρίου Στατιστικής (4 σε. 9-98 ΤΟ EWA ΙΑΓΡΑΜΜΑ ΓΙΑ ΤΗΝ ΙΑΚΥΜΑΝΣΗ ΜΕ ΕΚΤΙΜΩΜΕΝΕΣ ΠΑΡΑΜΕΤΡΟΥΣ Π.Ε. Μαραβεάκης Οικονοµικό Πανεπιστήµιο Αθηνών Τµήµα

Διαβάστε περισσότερα

Table 1: Military Service: Models. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed

Table 1: Military Service: Models. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed Tables: Military Service Table 1: Military Service: Models Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed mili 0.489-0.014-0.044-0.044-1.469-2.026-2.026

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Exercise 2: The form of the generalized likelihood ratio

Exercise 2: The form of the generalized likelihood ratio Stats 2 Winter 28 Homework 9: Solutions Due Friday, March 6 Exercise 2: The form of the generalized likelihood ratio We want to test H : θ Θ against H : θ Θ, and compare the two following rules of rejection:

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Introduction to the ML Estimation of ARMA processes

Introduction to the ML Estimation of ARMA processes Introduction to the ML Estimation of ARMA processes Eduardo Rossi University of Pavia October 2013 Rossi ARMA Estimation Financial Econometrics - 2013 1 / 1 We consider the AR(p) model: Y t = c + φ 1 Y

Διαβάστε περισσότερα

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago Laplace Expansion Peter McCullagh Department of Statistics University of Chicago WHOA-PSI, St Louis August, 2017 Outline Laplace approximation in 1D Laplace expansion in 1D Laplace expansion in R p Formal

Διαβάστε περισσότερα

Theorem 8 Let φ be the most powerful size α test of H

Theorem 8 Let φ be the most powerful size α test of H Testing composite hypotheses Θ = Θ 0 Θ c 0 H 0 : θ Θ 0 H 1 : θ Θ c 0 Definition 16 A test φ is a uniformly most powerful (UMP) level α test for H 0 vs. H 1 if φ has level α and for any other level α test

Διαβάστε περισσότερα

Τεχνικές Ελέγχου της Διασποράς Διεργασιών Εντός Γραμμής Παραγωγής.

Τεχνικές Ελέγχου της Διασποράς Διεργασιών Εντός Γραμμής Παραγωγής. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Δ.Π.Μ.Σ. ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Τεχνικές Ελέγχου της Διασποράς Διεργασιών Εντός Γραμμής Παραγωγής. ΔΙΠΛΩΜΑΤΙΚΗ

Διαβάστε περισσότερα

IV. ANHANG 179. Anhang 178

IV. ANHANG 179. Anhang 178 Anhang 178 IV. ANHANG 179 1. Röntgenstrukturanalysen (Tabellen) 179 1.1. Diastereomer A (Diplomarbeit) 179 1.2. Diastereomer B (Diplomarbeit) 186 1.3. Aldoladdukt 5A 193 1.4. Aldoladdukt 13A 200 1.5. Aldoladdukt

Διαβάστε περισσότερα

Probability and Random Processes (Part II)

Probability and Random Processes (Part II) Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα