Technische Universität Berlin SS 2015 Institut für Mathematik Prof. Dr. G. Bärwolff Sekr. MA

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Technische Universität Berlin SS 2015 Institut für Mathematik Prof. Dr. G. Bärwolff Sekr. MA"

Transcript

1 Technische Universität Berlin SS 2015 Institut für Mathematik Prof. Dr. G. Bärwolff Sekr. MA Exercise sheet FV/FD-Methods for the solution of pde s Discussion: ) Exercise Construct a Finite-Volume scheme to solve the 3D heat-conduction initial-boundary value problem 3) of exercise sheet 4 in spherical coordinates for Dirichlet bc and for the bc of problem 3) of sheet 4. Determine the numerical steady state solution for the Dirichlet bc u b = u(x, y, z) = 263 K + sin(arccos z x 2 + y 2 + z 2 )45 K on the boundary Γ = {(x, y, z) x 2 + y 2 + z 2 = 25 cm 2 }. Validate your approximation by solving the 1D problem of sheet 4 with the full 3D scheme. Solution: The following program solves the problem with the above noted Dirichlet boundary data. A ghost points r n+1 jk in r-direction is used and the ghost-value u n+1 jk is eliminated using the FV-approximation of the equation at the points r n jk and the interpolation of the boundary value u b by (u n+1 jk + u n jk )/2 = u b. Listing 1: source code 1 % hot potato problem 3D 2 % 3 n = 2 0 ; % z e n t r a l e Gitterpunkte in r a d i a l e r Richtung 4 m = 1 5 ; % z e n t r a l e Gitterpunkte vom Nordpol beginnend auf einem Laengenkreis 5 p = 4 ; % z e n t r a l e Gitterpunkte auf dem Aequator ( B r e i t e n k r e i s ) 6 R0 = 0. ; 7 R1 = 1. 0 / 2 0. ; % Radius der Kugel 8 drho = ( R1 R0 ) /n ; 9 dth = pi/m; 10 dphi = 2 pi/p ; 11 % 12 % Zentralpunkte der F i n i t e n Zellen 13 rho = linspace ( R0+drho /2,R1 drho /2,n ) ; 14 th = linspace ( dth /2,pi dth /2,m) ; 15 s i n t h = sin ( th ) ; 16 % Randpunkte der F i n i t e n Zellen 17 rhop = linspace ( R0, R1, n+1) ; 18 thp = linspace ( 0, pi,m+1) ; 19 sinthp = sin ( thp ) ; 20 for i =1:m 21 s i n t h i n v ( i ) = 1/ s i n t h ( i ) ; 22 end 23 for i =1:n 24 rho2 ( i ) = rho ( i ) ˆ 2 ; 25 end 26 for i =1:m 27 t h s i n t h ( i ) = th ( i ) s i n t h ( i ) ; 28 end 29 % Matrixaufbau Ar, Ath, Aphi

2 30 Ar = zeros ( n, n ) ; 31 Ath = zeros (m,m) ; 32 Aphi = zeros ( p, p ) ; 33 % 34 ntend = ; 35 tau = 1. 0 / 1 0. ; 36 Ubound = ; 37 U0 = ; 38 Uu = ; 39 a = 5.6/ e 4; 40 lambda = ; 41 alpha = 3 0 ; 42 % Skalierung 43 s k a l = 1. 0 ; 44 % 45 nmp = n m p ; 46 % Matrixaufbau Ar 47 Ualt = zeros (nmp, 1 ) ; 48 R = zeros (nmp, 1 ) ; 49 % 50 % Laplacian in Kugelkoordinaten 51 % 52 %U = [ u ( 1, 1, 1 ),..., u ( n, 1, 1 ), 53 % u ( 1, 2, 1 ),..., u ( n, 2, 1 ), 54 % u ( 1, 3, 1 ),..., u ( n, 3, 1 ), 55 % 56 % u ( 1,m, 1 ),..., u ( n,m, 1 ), 57 % u ( 1, 1, 2 ),..., u ( n, 1, 2 ), 58 % u ( 1, 2, 2 ),..., u ( n, 2, 2 ), 59 % u ( 1, 3, 2 ),..., u ( n, 3, 2 ), 60 % 61 % u ( 1,m, 2 ),..., u ( n,m, 2 ), 62 % 63 %..., u ( 1, 1, p ),..., u ( n, 1, p ), 64 %..., u ( 1, 2, p ),..., u ( n, 2, p ), 65 %..., u ( 1, 3, p ),..., u ( n, 3, p ), 66 % 67 %..., u ( 1,m, p ),..., u ( n,m, p ) ] 68 % 69 for i =2: n 1 70 Ar ( i, i ) = a ( rhop ( i +1) ˆ2 + rhop ( i ) ˆ 2 ) /drho ; 71 Ar ( i, i 1) = a rhop ( i ) ˆ2/ drho ; 72 Ar ( i, i +1) = a rhop ( i +1) ˆ2/ drho ; 73 end 74 Ar ( 1, 1 ) = a ( rhop ( 1 ) ˆ2 + rhop ( 2 ) ˆ 2 ) /drho ; 75 Ar ( 1, 2 ) = a rhop ( 2 ) ˆ2/ drho ; 76 %%% RB : u = u R, ( u {N+1} + u n ) /2 = u R 77 Ar ( n, n ) = a ( rhop ( n ) ˆ2 + 2 rhop ( n+1) ˆ 2 ) /drho ; 78 %%% h i e r muss die j e w e i l i g e RB an der Kugeloberflaeche eingebaut werden, 79 %%% d. h. U {N } muss aus RB und Laplacian D i s k r e t i s i e r u n g am Punkt x {N... } e l i m i n i e r t werden 80 Ar ( n, n 1) = a rhop ( n ) ˆ2/ drho ; 81 % 82 for i =2:m 1 83 Ath ( i, i ) = a (sin ( thp ( i ) ) + sin ( thp ( i +1) ) ) /dth ; 84 Ath ( i, i 1) = a sin ( thp ( i ) ) /dth ; 85 Ath ( i, i +1) = a sin ( thp ( i +1) ) /dth ; 86 end 87 Ath ( 1, 1 ) = a (sin ( thp ( 1 ) ) + sin ( thp ( 2 ) ) ) /dth ; 88 Ath ( 1, 2 ) = a sin ( thp ( 2 ) ) /dth ; 89 Ath (m,m) = a (sin ( thp (m) ) + sin ( thp (m+1) ) ) /dth ; 90 Ath (m,m 1) = a sin ( thp (m) ) /dth ; 91 for i =2: p 1 92 Aphi ( i, i ) = a 2./ dphi ; 93 Aphi ( i, i 1) = a 1./ dphi ; 94 Aphi ( i, i +1) = a 1./ dphi ; 95 end 96 Aphi ( 1, 1 ) = a 2./ dphi ; 97 Aphi ( 1, 2 ) = a 1./ dphi ; 98 Aphi ( p, p ) = a 2./ dphi ; 99 Aphi ( p, p 1) = a 1./ dphi ;

3 100 Aphi ( 1, p ) = a 1./ dphi ; 101 Aphi ( p, 1 ) = a 1./ dphi ; 102 % 103 Idn = eye ( n, n ) ; 104 Idm = eye (m,m) ; 105 Idp = eye ( p, p ) ; 106 % 107 AAA = kron ( dphi Idp, kron ( dth diag ( s i n t h ), Ar ) ) kron ( dphi Idp, kron ( Ath, drho Idn ) ) kron ( kron ( Aphi, diag ( s i n t h i n v ) ), drho dth Idn ) ; 110 % 111 for i =1:nmp 112 Ualt ( i ) = U0 ; 113 end 114 Umax = U0 ; 115 nt = 0 ; 116 % r e c h t e S e i t e ( Beruecksichtigung des Q u e l lglieds ) 117 R = zeros (nmp, 1 ) ; 118 for i =1: n 119 for j =1:m 120 for k =1: p 121 ind = i + ( j 1) n + ( k 1) n m; 122 if ( i < n ) R( i ) = 0 ; end 123 if ( i == n ) 124 %%% h i e r muss die j e w e i l i g e RB an der Kugeloberflaeche eingebaut werden, 125 %%% d. h. die Loesungs unabhaengige r e c h t e S e i t e, die bei der Eliminierung von U {N } 126 %%% aus RB und Laplacian D i s k r e t i s i e r u n g am Punkt x {N... } e n t s t e h t 127 R( ind ) = a dphi dth s i n t h ( j ) 2 rhop ( n+1) ˆ2/ drho ( s i n t h ( j ) 45) ; end 129 end 130 end 131 % 132 % Loesung 133 U = AAA\R ; 134 % 135 % 136 U3 = reshape (U, n,m, p ) ; 137 % p l o t 138 mesh (U3 ( 1 : n, 1 :m, 1 ) ) 139 title ( Temperatur Feld \ phi = const. ) 140 zlabel ( T(\ rho, \ t h e t a ) ) 141 xlabel ( r ) 142 ylabel ( \ t h e t a ) 143 end 144 % P l o t The full 3D scheme is validated with the program 1 % hot potato problem 3D 2 % 3 n = 2 0 ; 4 m = 4 ; 5 p = 6 ; 6 R0 = 0. ; 7 R1 = 1. 0 / 2 0. ; 8 drho = ( R1 R0 ) /n ; 9 dth = pi/m; 10 dphi = 2 pi/p ; 11 % 12 % Zentralpunkte der F i n i t e n Zellen 13 rho = linspace ( R0+drho /2,R1 drho /2,n ) ; 14 th = linspace ( dth /2,pi dth /2,m) ; 15 s i n t h = sin ( th ) ; 16 % Randpunkte der F i n i t e n Zellen 17 rhop = linspace ( R0, R1, n+1) ; 18 thp = linspace ( 0, pi,m+1) ; 19 sinthp = sin ( thp ) ; 20 for i =1:m Listing 2: source code

4 21 s i n t h i n v ( i ) = 1/ s i n t h ( i ) ; 22 s i n t h i n v 2 ( i ) = 1/ s i n t h ( i ) ˆ 2 ; 23 end 24 for i =1:n 25 rho2 ( i ) = rho ( i ) ˆ 2 ; 26 rho2inv ( i ) = 1./ rho ( i ) ˆ 2 ; 27 end 28 for i =1:m 29 t h s i n t h ( i ) = th ( i ) s i n t h ( i ) ; 30 end 31 % Matrixaufbau Ar, Ath, Aphi 32 Ar = zeros ( n, n ) ; 33 Ath = zeros (m,m) ; 34 Aphi = zeros ( p, p ) ; 35 % 36 ntend = ; 37 tau = 1. 0 / 1 0. ; 38 Ubound = ; 39 U0 = ; 40 Uu = ; 41 a = 5.6/ e 4; 42 lambda = ; 43 alpha = 3 0 ; 44 % Skalierung 45 s k a l = 1. 0 ; 46 % 47 nmp = n m p ; 48 % Matrixaufbau Ar 49 Ualt = zeros (nmp, 1 ) ; 50 R = zeros (nmp, 1 ) ; 51 % 52 % Laplacian in Kugelkoordinaten 53 % 54 %U = [ u ( 1, 1, 1 ),..., u ( n, 1, 1 ), 55 % u ( 1, 2, 1 ),..., u ( n, 2, 1 ), 56 % u ( 1, 3, 1 ),..., u ( n, 3, 1 ), 57 % 58 % u ( 1,m, 1 ),..., u ( n,m, 1 ), 59 % u ( 1, 1, 2 ),..., u ( n, 1, 2 ), 60 % u ( 1, 2, 2 ),..., u ( n, 2, 2 ), 61 % u ( 1, 3, 2 ),..., u ( n, 3, 2 ), 62 % 63 % u ( 1,m, 2 ),..., u ( n,m, 2 ), 64 % 65 %..., u ( 1, 1, p ),..., u ( n, 1, p ), 66 %..., u ( 1, 2, p ),..., u ( n, 2, p ), 67 %..., u ( 1, 3, p ),..., u ( n, 3, p ), 68 % 69 %..., u ( 1,m, p ),..., u ( n,m, p ) ] 70 % 71 for i =2: n 1 72 Ar ( i, i ) = a ( rhop ( i +1) ˆ2 + rhop ( i ) ˆ 2 ) /drho rho2inv ( i ) ; 73 Ar ( i, i 1) = a rhop ( i ) ˆ2/ drho rho2inv ( i ) ; 74 Ar ( i, i +1) = a rhop ( i +1) ˆ2/ drho rho2inv ( i ) ; 75 end 76 Ar ( 1, 1 ) = a ( rhop ( 1 ) ˆ2 + rhop ( 2 ) ˆ 2 ) /drho rho2inv ( 1 ) ; 77 Ar ( 1, 2 ) = a rhop ( 2 ) ˆ2/ drho rho2inv ( 1 ) ; 78 Ar ( n, n ) = a ( rhop ( n ) ˆ2 + rhop ( n+1) ˆ 2 ) /drho rho2inv ( n ) a rhop ( n+1) ˆ2/ drho ( lambda/drho ) /(lambda/drho + alpha ) rho2inv ( n ) ; 80 Ar ( n, n 1) = a rhop ( n ) ˆ2/ drho rho2inv ( n ) ; 81 % 82 for i =2:m 1 83 Ath ( i, i ) = a (sin ( thp ( i ) ) + sin ( thp ( i +1) ) ) /dth/sin ( th ( i ) ) ; 84 Ath ( i, i 1) = a sin ( thp ( i ) ) /dth/sin ( th ( i ) ) ; 85 Ath ( i, i +1) = a sin ( thp ( i +1) ) /dth/sin ( th ( i ) ) ; 86 end 87 Ath ( 1, 1 ) = a (sin ( thp ( 1 ) ) + sin ( thp ( 2 ) ) ) /dth/sin ( th ( 1 ) ) ; 88 Ath ( 1, 2 ) = a sin ( thp ( 2 ) ) /dth/sin ( th ( 1 ) ) ; 89 Ath (m,m) = a (sin ( thp (m) ) + sin ( thp (m+1) ) ) /dth/sin ( th (m) ) ; 90 Ath (m,m 1) = a sin ( thp (m) ) /dth/sin ( th (m) ) ; 91 for i =2: p 1

5 92 Aphi ( i, i ) = a 2./ dphi ; 93 Aphi ( i, i 1) = a 1./ dphi ; 94 Aphi ( i, i +1) = a 1./ dphi ; 95 end 96 Aphi ( 1, 1 ) = a 2./ dphi ; 97 Aphi ( 1, 2 ) = a 1./ dphi ; 98 Aphi ( p, p ) = a 2./ dphi ; 99 Aphi ( p, p 1) = a 1./ dphi ; 100 Aphi ( 1, p ) = a 1./ dphi ; 101 Aphi ( p, 1 ) = a 1./ dphi ; 102 % 103 Idn = eye ( n, n ) ; 104 Idm = eye (m,m) ; 105 Idp = eye ( p, p ) ; 106 % 107 AAA = kron ( Idp, kron ( Idm, Ar ) ) /drho kron ( Idp, kron ( Ath, diag ( rho2inv ) Idn ) ) /dth kron ( kron ( Aphi, diag ( s i n t h i n v 2 ) ),diag ( rho2inv ) Idn ) /dphi ; 110 % 111 u0 = ones (nmp, 1 ) U0 ; 112 % r e c h t e S e i t e ( Beruecksichtigung des Q u e l lglieds ) 113 R1 = zeros ( n, 1 ) ; 114 for i =1: n 115 if ( i < n ) R1 ( i ) = 0 ; end 116 if ( i == n ) 117 R1 ( n ) = a rhop ( n+1) ˆ2 alpha/drho /( lambda/drho + alpha ) Uu/( rho ( n ) ˆ2 drho ) ; end 119 end 120 R = kron ( Idp ones ( p, 1 ),kron ( Idm ones (m, 1 ), R1 ) ) ; 121 % 122 Time min =80; %time in minutes 123 Time=Time min 60; % time in seconds 124 % matlab 125 odefun=@( t, x ) AAA x+r ; % function of r i g h t side 126 [ T,U]= ode23s (@( t, x ) odefun ( t, x ), [ 0, Time ], u0 ) ; %ode23s works f a s t e r f o r s t i f f 127 % 128 for i =1:length ( T ) 129 % f o r i =1:p 130 plot (U( i, 1 : n ) ) 131 end % 2) Exercise Use characteristic l 0 length, time t 0 and temperature u c to write down the problem 3) of sheet 4 in a dimensionless form. Solution: With the characteristic values u c, t 0 and l 0 we define the dimensionless temperature, time and radius ū = u, t = t and r = r. u c t 0 l 0 For the heat conduction equation we get (ūu c ) ( tt 0 ) = a 1 ( rl 0 ) 2 For the boundary condition we come to ( rl 0 ) [( rl 0) 2 (ūu c) ( rl 0 ) λ (ūu c) ( rl 0 ) = α(ūu c u ) The initial condition in dimensionless form reads as ū = 373 K u c. ] ū t = at 0 l 2 0 λ ū αl 0 r = ū u. u c 1 ū r 2 [ r2 r r ].

6 3) Exercise Solve the 2D shallow water problem U t + F (U) x + G(U) y = S(U, B) (1) with the conservative variables U = h hu hv =: q 1 q 2 q 3, the flux function F (U) = hu hu gh2 huv, G(U) = hv huv hv gh2, and the source term S(U, B) = 0 hgb x hgb y h denotes the water height, hu, hv the water amount in the x- and y-direction, u and v are averaged velocities, and B describes the topography of the ground. The body force constant g is set to 1. We consider the spatial domain Ω =]0, 1[ 2 and the time interval [0, 5]. The initial values are { 1 x 1 h(x, y, 0) = 10, y 1 10, 0.5 otherwise and hu = hv = 0 on Ω. On the boundary we use homogeneous Neumann boundary conditions. Consider the cases B = 0 and. B(x, y) = x(1 x)/10. Use a conservative Finite-Volume method (for example Upwind, Lax-Friedrichs or Lax- Wendroff). The numerical Lax-Friedrichs-flux in 2D is for example F num (U, V ) = x 4τ (U V )+ 1 2 [F (U)+F (V )], G num(u, V ) = y 4τ (U V )+ 1 [G(U)+G(V )]. 2 Solution: The FV-method to solve the shallow water problem is implemented in the following program. Listing 3: source code 1 % shallow water 2D e x e r c i s e % 3 n = 3 0 ; % Anzahl innerer Gitterpunkte in x Richtung 4 m = 2 5 ; % Anzahl innerer Gitterpunkte in y Richtung 5 dx = 1/(n+1) ; 6 dy = 1/(m+1) ; 7 % 8 a =0; b =1; 9 c =0; d=1; 10 g = ; 11 % Zentralpunkte der F i n i t e n Zellen 12 xp = linspace ( a dx, b+dx, n+2) ; 13 x = linspace ( a dx/2, b+dx/2,n+1) ;

7 14 yp = linspace ( c dy, d+dy,m+2) ; 15 y = linspace ( c dy/2,d+dy/2,m+1) ; 16 % Anfangsbedingungen 17 % U( x, y, 1 ) =: h 18 % U( x, y, 2 ) =: hu 19 % U( x, y, 3 ) =: hv 20 % 21 for i =1: n+1 22 for j =1:m+1 23 U( i, j, 1 ) = 0. 5 ; 24 U( i, j, 2 ) = 0 ; 25 U( i, j, 3 ) = 0 ; 26 if ( x ( i ) < ( b a ) /10 && y ( j ) < ( d c ) /10) U( i, j, 1 ) = 1. 0 ; end 27 end 28 end 29 % 30 % Berechnung in Z e i t r i c h t u n g 31 % 32 tau = 1 / ; 33 ntend = ; 34 nt = 0 ; 35 while ( nt < ntend ) 36 % 37 % Randbedingungen 38 for k =1:3 39 % 40 for i =2:n 41 U( i, 1, k ) = U( i, 2, k ) ; 42 U( i,m+1,k ) = U( i,m, k ) ; 43 end 44 for j =2:m 45 U( 1, j, k ) = U( 2, j, k ) ; 46 U( n+1, j, k ) = U( n, j, k ) ; 47 end 48 % 49 for i =2:n 50 for j =2:m 51 % Lax F r i e d r i c h s Methode 52 % Un( i, j, k ) = U( i, j, k ) tau/dx ( dx/tau /4 (U( i, j, k ) U( i +1, j, k ) ) ( F (U, i, j, k, g ) + F (U, i +1, j, k, g ) ) % ( ( dx/tau /4 (U( i 1, j, k ) U( i, j, k ) ) ( F (U, i 1, j, k, g ) + F (U, i, j, k, g ) ) ) ) ) % tau/dy ( dy/tau /4 (U( i, j, k ) U( i, j +1,k ) ) (G(U, i, j, k, g ) + G(U, i, j +1,k, g ) ) % ( ( dy/tau /4 (U( i, j 1,k ) U( i, j, k ) ) (G(U, i, j 1,k, g ) + G(U, i, j, k, g ) ) ) ) ) U( i, j, k ) = (U( i +1, j, k ) + U( i 1, j, k ) + U( i, j +1,k ) + U( i, j 1,k ) ) tau 0. 5 ( ( F (U, i +1, j, k, g ) F (U, i 1, j, k, g ) ) /dx ( G(U, i, j +1,k, g ) G(U, i, j 1,k, g ) ) /dy ) tau U( i, j, 1 ) g S ( x, y, i, j, k ) ; 60 end 61 end 62 % end k 63 end 64 nt = nt + 1 ; 65 mesh (U( 2 : n, 2 :m, 1 ) ) 66 title ( Wasserhoehe h ( x, y ) ) 67 zlabel ( h ( x, y ) ) 68 xlabel ( x ) 69 ylabel ( y ) 70 end 71 % p l o t 72 mesh (U( 2 : n, 2 :m, 1 ) ) 73 title ( Wasserhoehe h ( x, y ) ) 74 zlabel ( h ( x, y ) ) 75 xlabel ( x ) 76 ylabel ( y ) 77 % P l o t function f = F (U, i, j, k, g ) 80 if ( k == 1) f = U( i, j, 2 ) ; end

8 81 if ( k == 2) f = U( i, j, 2 ) ˆ2/U( i, j, 1 ) g U( i, j, 1 ) ˆ 2 ; end 82 if ( k == 3) f = U( i, j, 2 ) U( i, j, 3 ) /U( i, j, 1 ) ; end 83 % endfunction function g = G(U, i, j, k, g ) 86 if ( k == 1) g = U( i, j, 3 ) ; end 87 if ( k == 2) g = U( i, j, 2 ) U( i, j, 3 ) /U( i, j, 1 ) ; end 88 if ( k == 3) g = U( i, j, 3 ) ˆ2/U( i, j, 1 ) g U( i, j, 1 ) ˆ 2 ; end 89 % endfunction function s = S ( x, y, i, j, k ) 92 if ( k == 1) s = 0. 0 ; end 93 if ( k == 2) s = x ( i ) ; end 94 if ( k == 3) s = 0. 0 ; end 95 % endfunction

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Finite difference method for 2-D heat equation

Finite difference method for 2-D heat equation Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

- 1+x 2 - x 3 + 7x4. 40 + 127x8. 12 - x5 4 + 31x6. 360 - x 7. - 1+x 2 - x 3 - -

- 1+x 2 - x 3 + 7x4. 40 + 127x8. 12 - x5 4 + 31x6. 360 - x 7. - 1+x 2 - x 3 - - a.bergara@ehu.es - 1 x 2 - - - - - - - Ο - 1x 2 - x 3 - - - - - - 1 x 2 - x 3 7 x4 12-1x 2 - x 3 7x4 12 - x5 4 31x6 360 - x 7 40 127x8 20160 - - - Ο clear; % Coefficients of the equation: a x'b x c

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model 1 Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis Applied Mathematics & Computers Laboratory Technical University of Crete Chania 73100,

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

High order interpolation function for surface contact problem

High order interpolation function for surface contact problem 3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

The Pohozaev identity for the fractional Laplacian

The Pohozaev identity for the fractional Laplacian The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

ΜΑΣ 473/673: Μέθοδοι Πεπερασμένων Στοιχείων

ΜΑΣ 473/673: Μέθοδοι Πεπερασμένων Στοιχείων ΜΑΣ 473/673: Μέθοδοι Πεπερασμένων Στοιχείων Ένα δυσδιάστατο παράδειγμα με το λογισμικό MATLAB Θεωρούμε το εξής Π.Σ.Τ.: Να βρεθεί η u(x, y) έτσι ώστε όπου f (x, y) = 1. u u f ( x, y), x ( 1,1) ( 1,1) x

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

Ηλεκτρονικοί Υπολογιστές IV

Ηλεκτρονικοί Υπολογιστές IV ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Η δυναμική ενός μοντέλου Keynsian Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

Daewoo Technopark A-403, Dodang-dong, Wonmi-gu, Bucheon-city, Gyeonggido, Korea LM-80 Test Report

Daewoo Technopark A-403, Dodang-dong, Wonmi-gu, Bucheon-city, Gyeonggido, Korea LM-80 Test Report LM-80 Test Report Approved Method: Measuring Lumen Maintenance of LED Light Sources Project Number: KILT1212-U00216 Date: September 17 th, 2013 Requested by: Dongbu LED Co., Ltd 90-1, Bongmyeong-Ri, Namsa-Myeon,

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Written Examination. Antennas and Propagation (AA ) April 26, 2017. Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

EE101: Resonance in RLC circuits

EE101: Resonance in RLC circuits EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC

Διαβάστε περισσότερα

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 Chapter 7: Exercises 1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 35+n:30 n a 35+n:20 n 0 0.068727 11.395336 10 0.097101 7.351745 25

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Ηλεκτρονικοί Υπολογιστές IV

Ηλεκτρονικοί Υπολογιστές IV ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Δυναμική του χρέους και του ελλείμματος Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο

ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο ΚΕΦΑΛΑΙΟ 2 Περιγραφή της Κίνησης Στο κεφάλαιο αυτό θα δείξουμε πώς να προγραμματίσουμε απλές εξισώσεις τροχιάς ενός σωματιδίου και πώς να κάνουμε βασική ανάλυση των αριθμητικών αποτελεσμάτων. Χρησιμοποιούμε

Διαβάστε περισσότερα

3.5 - Boundary Conditions for Potential Flow

3.5 - Boundary Conditions for Potential Flow 13.021 Marine Hydrodynamics, Fall 2004 Lecture 10 Copyright c 2004 MIT - Department of Ocean Engineering, All rights reserved. 13.021 - Marine Hydrodynamics Lecture 10 3.5 - Boundary Conditions for Potential

Διαβάστε περισσότερα

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3 Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Εφαρμογή της μεθόδου πεπερασμένων διαφορών στην εξίσωση θερμότητας

Εφαρμογή της μεθόδου πεπερασμένων διαφορών στην εξίσωση θερμότητας Εφαρμογή της μεθόδου πεπερασμένων διαφορών στην εξίσωση θερμότητας Να γραφεί script το οποίο να επιλύει αριθμητικά της γενική εξίσωση θερμότητας με χρήση της προς τα εμπρός παραγώγου ως προς το χρόνο,

Διαβάστε περισσότερα

Thin Film Chip Resistors

Thin Film Chip Resistors FEATURES PRECISE TOLERANCE AND TEMPERATURE COEFFICIENT EIA STANDARD CASE SIZES (0201 ~ 2512) LOW NOISE, THIN FILM (NiCr) CONSTRUCTION REFLOW SOLDERABLE (Pb FREE TERMINATION FINISH) Type Size EIA PowerRating

Διαβάστε περισσότερα

Math 5440 Problem Set 4 Solutions

Math 5440 Problem Set 4 Solutions Math 544 Math 544 Problem Set 4 Solutions Aaron Fogelson Fall, 5 : (Logan,.8 # 4) Find all radial solutions of the two-dimensional Laplace s equation. That is, find all solutions of the form u(r) where

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Discretization of Generalized Convection-Diffusion

Discretization of Generalized Convection-Diffusion Discretization of Generalized Convection-Diffusion H. Heumann R. Hiptmair Seminar für Angewandte Mathematik ETH Zürich Colloque Numérique Suisse / Schweizer Numerik Kolloquium 8 Generalized Convection-Diffusion

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Ηλεκτρονικοί Υπολογιστές IV

Ηλεκτρονικοί Υπολογιστές IV ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Εισαγωγή στα δυναμικά συστήματα Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Solutions - Chapter 4

Solutions - Chapter 4 Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ]

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

Odometry Calibration by Least Square Estimation

Odometry Calibration by Least Square Estimation Robotics 2 Odometry Calibration by Least Square Estimation Giorgio Grisetti Kai Arras Gian Diego Tipaldi Cyrill Stachniss Wolfram Burgard SA-1 Least Squares Minimization The minimization algorithm proceeds

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

DATA SHEET Surface mount NTC thermistors. BCcomponents

DATA SHEET Surface mount NTC thermistors. BCcomponents DATA SHEET 2322 615 1... Surface mount N thermistors Supersedes data of 17th May 1999 File under BCcomponents, BC02 2001 Mar 27 FEATURES High sensitivity High accuracy over a wide temperature range Taped

Διαβάστε περισσότερα

Assignment 1 Solutions Complex Sinusoids

Assignment 1 Solutions Complex Sinusoids Assignment Solutions Complex Sinusoids ECE 223 Signals and Systems II Version. Spring 26. Eigenfunctions of LTI systems. Which of the following signals are eigenfunctions of LTI systems? a. x[n] =cos(

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΤΗΣ ΔΥΝΑΜΙΚΗΣ ΤΟΥ ΕΔΑΦΙΚΟΥ ΝΕΡΟΥ ΣΤΗΝ ΠΕΡΙΠΤΩΣΗ ΑΡΔΕΥΣΗΣ ΜΕ ΥΠΟΓΕΙΟΥΣ ΣΤΑΛΑΚΤΗΦΟΡΟΥΣ ΣΩΛΗΝΕΣ ΣΕ ΔΙΑΣΤΡΩΜΕΝΑ ΕΔΑΦΗ

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΤΗΣ ΔΥΝΑΜΙΚΗΣ ΤΟΥ ΕΔΑΦΙΚΟΥ ΝΕΡΟΥ ΣΤΗΝ ΠΕΡΙΠΤΩΣΗ ΑΡΔΕΥΣΗΣ ΜΕ ΥΠΟΓΕΙΟΥΣ ΣΤΑΛΑΚΤΗΦΟΡΟΥΣ ΣΩΛΗΝΕΣ ΣΕ ΔΙΑΣΤΡΩΜΕΝΑ ΕΔΑΦΗ ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΑΕΙΦΟΡΙΚΗ ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Δημήτριος Πάντζαλης Πτυχιούχος Γεωπόνος Α.Π.Θ.

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition

Διαβάστε περισσότερα

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6) C3 past papers 009 to 01 physicsandmathstutor.comthis paper: January 009 If you don't find enough space in this booklet for your working for a question, then pleasecuse some loose-leaf paper and glue it

Διαβάστε περισσότερα

UNIVERSITY OF CALIFORNIA. EECS 150 Fall ) You are implementing an 4:1 Multiplexer that has the following specifications:

UNIVERSITY OF CALIFORNIA. EECS 150 Fall ) You are implementing an 4:1 Multiplexer that has the following specifications: UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences EECS 150 Fall 2001 Prof. Subramanian Midterm II 1) You are implementing an 4:1 Multiplexer that has the following specifications:

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

συνήθων µεθόδων καθαίρεσης. ΜΟΝΑ Α ΜΕΤΡΗΣΗΣ: κυβικό µέτρο (m3) πραγµατικού όγκου προ της καθαιρέσεως () ΠΟΣΟΤΗΤΑ: 5,00

συνήθων µεθόδων καθαίρεσης. ΜΟΝΑ Α ΜΕΤΡΗΣΗΣ: κυβικό µέτρο (m3) πραγµατικού όγκου προ της καθαιρέσεως () ΠΟΣΟΤΗΤΑ: 5,00 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΗΡΑΚΛΕΙΟΥ ΗΜΟΣ ΧΕΡΣΟΝΗΣΟΥ /ΝΣΗ ΤΕΧΝΙΚΩΝ ΥΠΗΡΕΣΙΩΝ ΗΜΟΣ: Χερσονήσου ΕΡΓΟ: AΝΑΠΛΑΣΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΧΩΡΟΥ ΤΗΣ "ΠΑΙ ΙΚΗΣ ΕΞΟΧΗΣ ΚΟΚΚΙΝΗ ΧΑΝΙ" ΤΟΥ ΗΜΟΥ ΧΕΡΣΟΝΗΣΟΥ Προϋπολογισµός:300.000,00

Διαβάστε περισσότερα

Local Approximation with Kernels

Local Approximation with Kernels Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider

Διαβάστε περισσότερα

Chapter 7 Transformations of Stress and Strain

Chapter 7 Transformations of Stress and Strain Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

Graded Refractive-Index

Graded Refractive-Index Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for

Διαβάστε περισσότερα

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES, CHAPTER : PERIMETER, AREA, CIRCUMFERENCE, AND SIGNED FRACTIONS. INTRODUCTION TO GEOMETRIC MEASUREMENTS p. -3. PERIMETER: SQUARES, RECTANGLES, TRIANGLES p. 4-5.3 AREA: SQUARES, RECTANGLES, TRIANGLES p.

Διαβάστε περισσότερα

ηµιουργία αρχείου στον matlab editor Πληκτρολόγηση ακολουθίας εντολών

ηµιουργία αρχείου στον matlab editor Πληκτρολόγηση ακολουθίας εντολών Προγραµµατισµός Αρχεία εντολών (script files) Τυπικό hello world πρόγραµµα σε script ηµιουργία αρχείου στον matlab editor Πληκτρολόγηση ακολουθίας εντολών disp( ( 'HELLO WORLD!'); % τυπική εντολή εξόδου

Διαβάστε περισσότερα

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpenCourseWare http://ocw.mit.edu 6.03/ESD.03J Electromagnetics and Applications, Fall 005 Please use the following citation format: Markus Zahn, 6.03/ESD.03J Electromagnetics and Applications, Fall

Διαβάστε περισσότερα

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l = C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9

Διαβάστε περισσότερα