Technische Universität Berlin SS 2015 Institut für Mathematik Prof. Dr. G. Bärwolff Sekr. MA
|
|
- Σαπφώ Τρικούπης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Technische Universität Berlin SS 2015 Institut für Mathematik Prof. Dr. G. Bärwolff Sekr. MA Exercise sheet FV/FD-Methods for the solution of pde s Discussion: ) Exercise Construct a Finite-Volume scheme to solve the 3D heat-conduction initial-boundary value problem 3) of exercise sheet 4 in spherical coordinates for Dirichlet bc and for the bc of problem 3) of sheet 4. Determine the numerical steady state solution for the Dirichlet bc u b = u(x, y, z) = 263 K + sin(arccos z x 2 + y 2 + z 2 )45 K on the boundary Γ = {(x, y, z) x 2 + y 2 + z 2 = 25 cm 2 }. Validate your approximation by solving the 1D problem of sheet 4 with the full 3D scheme. Solution: The following program solves the problem with the above noted Dirichlet boundary data. A ghost points r n+1 jk in r-direction is used and the ghost-value u n+1 jk is eliminated using the FV-approximation of the equation at the points r n jk and the interpolation of the boundary value u b by (u n+1 jk + u n jk )/2 = u b. Listing 1: source code 1 % hot potato problem 3D 2 % 3 n = 2 0 ; % z e n t r a l e Gitterpunkte in r a d i a l e r Richtung 4 m = 1 5 ; % z e n t r a l e Gitterpunkte vom Nordpol beginnend auf einem Laengenkreis 5 p = 4 ; % z e n t r a l e Gitterpunkte auf dem Aequator ( B r e i t e n k r e i s ) 6 R0 = 0. ; 7 R1 = 1. 0 / 2 0. ; % Radius der Kugel 8 drho = ( R1 R0 ) /n ; 9 dth = pi/m; 10 dphi = 2 pi/p ; 11 % 12 % Zentralpunkte der F i n i t e n Zellen 13 rho = linspace ( R0+drho /2,R1 drho /2,n ) ; 14 th = linspace ( dth /2,pi dth /2,m) ; 15 s i n t h = sin ( th ) ; 16 % Randpunkte der F i n i t e n Zellen 17 rhop = linspace ( R0, R1, n+1) ; 18 thp = linspace ( 0, pi,m+1) ; 19 sinthp = sin ( thp ) ; 20 for i =1:m 21 s i n t h i n v ( i ) = 1/ s i n t h ( i ) ; 22 end 23 for i =1:n 24 rho2 ( i ) = rho ( i ) ˆ 2 ; 25 end 26 for i =1:m 27 t h s i n t h ( i ) = th ( i ) s i n t h ( i ) ; 28 end 29 % Matrixaufbau Ar, Ath, Aphi
2 30 Ar = zeros ( n, n ) ; 31 Ath = zeros (m,m) ; 32 Aphi = zeros ( p, p ) ; 33 % 34 ntend = ; 35 tau = 1. 0 / 1 0. ; 36 Ubound = ; 37 U0 = ; 38 Uu = ; 39 a = 5.6/ e 4; 40 lambda = ; 41 alpha = 3 0 ; 42 % Skalierung 43 s k a l = 1. 0 ; 44 % 45 nmp = n m p ; 46 % Matrixaufbau Ar 47 Ualt = zeros (nmp, 1 ) ; 48 R = zeros (nmp, 1 ) ; 49 % 50 % Laplacian in Kugelkoordinaten 51 % 52 %U = [ u ( 1, 1, 1 ),..., u ( n, 1, 1 ), 53 % u ( 1, 2, 1 ),..., u ( n, 2, 1 ), 54 % u ( 1, 3, 1 ),..., u ( n, 3, 1 ), 55 % 56 % u ( 1,m, 1 ),..., u ( n,m, 1 ), 57 % u ( 1, 1, 2 ),..., u ( n, 1, 2 ), 58 % u ( 1, 2, 2 ),..., u ( n, 2, 2 ), 59 % u ( 1, 3, 2 ),..., u ( n, 3, 2 ), 60 % 61 % u ( 1,m, 2 ),..., u ( n,m, 2 ), 62 % 63 %..., u ( 1, 1, p ),..., u ( n, 1, p ), 64 %..., u ( 1, 2, p ),..., u ( n, 2, p ), 65 %..., u ( 1, 3, p ),..., u ( n, 3, p ), 66 % 67 %..., u ( 1,m, p ),..., u ( n,m, p ) ] 68 % 69 for i =2: n 1 70 Ar ( i, i ) = a ( rhop ( i +1) ˆ2 + rhop ( i ) ˆ 2 ) /drho ; 71 Ar ( i, i 1) = a rhop ( i ) ˆ2/ drho ; 72 Ar ( i, i +1) = a rhop ( i +1) ˆ2/ drho ; 73 end 74 Ar ( 1, 1 ) = a ( rhop ( 1 ) ˆ2 + rhop ( 2 ) ˆ 2 ) /drho ; 75 Ar ( 1, 2 ) = a rhop ( 2 ) ˆ2/ drho ; 76 %%% RB : u = u R, ( u {N+1} + u n ) /2 = u R 77 Ar ( n, n ) = a ( rhop ( n ) ˆ2 + 2 rhop ( n+1) ˆ 2 ) /drho ; 78 %%% h i e r muss die j e w e i l i g e RB an der Kugeloberflaeche eingebaut werden, 79 %%% d. h. U {N } muss aus RB und Laplacian D i s k r e t i s i e r u n g am Punkt x {N... } e l i m i n i e r t werden 80 Ar ( n, n 1) = a rhop ( n ) ˆ2/ drho ; 81 % 82 for i =2:m 1 83 Ath ( i, i ) = a (sin ( thp ( i ) ) + sin ( thp ( i +1) ) ) /dth ; 84 Ath ( i, i 1) = a sin ( thp ( i ) ) /dth ; 85 Ath ( i, i +1) = a sin ( thp ( i +1) ) /dth ; 86 end 87 Ath ( 1, 1 ) = a (sin ( thp ( 1 ) ) + sin ( thp ( 2 ) ) ) /dth ; 88 Ath ( 1, 2 ) = a sin ( thp ( 2 ) ) /dth ; 89 Ath (m,m) = a (sin ( thp (m) ) + sin ( thp (m+1) ) ) /dth ; 90 Ath (m,m 1) = a sin ( thp (m) ) /dth ; 91 for i =2: p 1 92 Aphi ( i, i ) = a 2./ dphi ; 93 Aphi ( i, i 1) = a 1./ dphi ; 94 Aphi ( i, i +1) = a 1./ dphi ; 95 end 96 Aphi ( 1, 1 ) = a 2./ dphi ; 97 Aphi ( 1, 2 ) = a 1./ dphi ; 98 Aphi ( p, p ) = a 2./ dphi ; 99 Aphi ( p, p 1) = a 1./ dphi ;
3 100 Aphi ( 1, p ) = a 1./ dphi ; 101 Aphi ( p, 1 ) = a 1./ dphi ; 102 % 103 Idn = eye ( n, n ) ; 104 Idm = eye (m,m) ; 105 Idp = eye ( p, p ) ; 106 % 107 AAA = kron ( dphi Idp, kron ( dth diag ( s i n t h ), Ar ) ) kron ( dphi Idp, kron ( Ath, drho Idn ) ) kron ( kron ( Aphi, diag ( s i n t h i n v ) ), drho dth Idn ) ; 110 % 111 for i =1:nmp 112 Ualt ( i ) = U0 ; 113 end 114 Umax = U0 ; 115 nt = 0 ; 116 % r e c h t e S e i t e ( Beruecksichtigung des Q u e l lglieds ) 117 R = zeros (nmp, 1 ) ; 118 for i =1: n 119 for j =1:m 120 for k =1: p 121 ind = i + ( j 1) n + ( k 1) n m; 122 if ( i < n ) R( i ) = 0 ; end 123 if ( i == n ) 124 %%% h i e r muss die j e w e i l i g e RB an der Kugeloberflaeche eingebaut werden, 125 %%% d. h. die Loesungs unabhaengige r e c h t e S e i t e, die bei der Eliminierung von U {N } 126 %%% aus RB und Laplacian D i s k r e t i s i e r u n g am Punkt x {N... } e n t s t e h t 127 R( ind ) = a dphi dth s i n t h ( j ) 2 rhop ( n+1) ˆ2/ drho ( s i n t h ( j ) 45) ; end 129 end 130 end 131 % 132 % Loesung 133 U = AAA\R ; 134 % 135 % 136 U3 = reshape (U, n,m, p ) ; 137 % p l o t 138 mesh (U3 ( 1 : n, 1 :m, 1 ) ) 139 title ( Temperatur Feld \ phi = const. ) 140 zlabel ( T(\ rho, \ t h e t a ) ) 141 xlabel ( r ) 142 ylabel ( \ t h e t a ) 143 end 144 % P l o t The full 3D scheme is validated with the program 1 % hot potato problem 3D 2 % 3 n = 2 0 ; 4 m = 4 ; 5 p = 6 ; 6 R0 = 0. ; 7 R1 = 1. 0 / 2 0. ; 8 drho = ( R1 R0 ) /n ; 9 dth = pi/m; 10 dphi = 2 pi/p ; 11 % 12 % Zentralpunkte der F i n i t e n Zellen 13 rho = linspace ( R0+drho /2,R1 drho /2,n ) ; 14 th = linspace ( dth /2,pi dth /2,m) ; 15 s i n t h = sin ( th ) ; 16 % Randpunkte der F i n i t e n Zellen 17 rhop = linspace ( R0, R1, n+1) ; 18 thp = linspace ( 0, pi,m+1) ; 19 sinthp = sin ( thp ) ; 20 for i =1:m Listing 2: source code
4 21 s i n t h i n v ( i ) = 1/ s i n t h ( i ) ; 22 s i n t h i n v 2 ( i ) = 1/ s i n t h ( i ) ˆ 2 ; 23 end 24 for i =1:n 25 rho2 ( i ) = rho ( i ) ˆ 2 ; 26 rho2inv ( i ) = 1./ rho ( i ) ˆ 2 ; 27 end 28 for i =1:m 29 t h s i n t h ( i ) = th ( i ) s i n t h ( i ) ; 30 end 31 % Matrixaufbau Ar, Ath, Aphi 32 Ar = zeros ( n, n ) ; 33 Ath = zeros (m,m) ; 34 Aphi = zeros ( p, p ) ; 35 % 36 ntend = ; 37 tau = 1. 0 / 1 0. ; 38 Ubound = ; 39 U0 = ; 40 Uu = ; 41 a = 5.6/ e 4; 42 lambda = ; 43 alpha = 3 0 ; 44 % Skalierung 45 s k a l = 1. 0 ; 46 % 47 nmp = n m p ; 48 % Matrixaufbau Ar 49 Ualt = zeros (nmp, 1 ) ; 50 R = zeros (nmp, 1 ) ; 51 % 52 % Laplacian in Kugelkoordinaten 53 % 54 %U = [ u ( 1, 1, 1 ),..., u ( n, 1, 1 ), 55 % u ( 1, 2, 1 ),..., u ( n, 2, 1 ), 56 % u ( 1, 3, 1 ),..., u ( n, 3, 1 ), 57 % 58 % u ( 1,m, 1 ),..., u ( n,m, 1 ), 59 % u ( 1, 1, 2 ),..., u ( n, 1, 2 ), 60 % u ( 1, 2, 2 ),..., u ( n, 2, 2 ), 61 % u ( 1, 3, 2 ),..., u ( n, 3, 2 ), 62 % 63 % u ( 1,m, 2 ),..., u ( n,m, 2 ), 64 % 65 %..., u ( 1, 1, p ),..., u ( n, 1, p ), 66 %..., u ( 1, 2, p ),..., u ( n, 2, p ), 67 %..., u ( 1, 3, p ),..., u ( n, 3, p ), 68 % 69 %..., u ( 1,m, p ),..., u ( n,m, p ) ] 70 % 71 for i =2: n 1 72 Ar ( i, i ) = a ( rhop ( i +1) ˆ2 + rhop ( i ) ˆ 2 ) /drho rho2inv ( i ) ; 73 Ar ( i, i 1) = a rhop ( i ) ˆ2/ drho rho2inv ( i ) ; 74 Ar ( i, i +1) = a rhop ( i +1) ˆ2/ drho rho2inv ( i ) ; 75 end 76 Ar ( 1, 1 ) = a ( rhop ( 1 ) ˆ2 + rhop ( 2 ) ˆ 2 ) /drho rho2inv ( 1 ) ; 77 Ar ( 1, 2 ) = a rhop ( 2 ) ˆ2/ drho rho2inv ( 1 ) ; 78 Ar ( n, n ) = a ( rhop ( n ) ˆ2 + rhop ( n+1) ˆ 2 ) /drho rho2inv ( n ) a rhop ( n+1) ˆ2/ drho ( lambda/drho ) /(lambda/drho + alpha ) rho2inv ( n ) ; 80 Ar ( n, n 1) = a rhop ( n ) ˆ2/ drho rho2inv ( n ) ; 81 % 82 for i =2:m 1 83 Ath ( i, i ) = a (sin ( thp ( i ) ) + sin ( thp ( i +1) ) ) /dth/sin ( th ( i ) ) ; 84 Ath ( i, i 1) = a sin ( thp ( i ) ) /dth/sin ( th ( i ) ) ; 85 Ath ( i, i +1) = a sin ( thp ( i +1) ) /dth/sin ( th ( i ) ) ; 86 end 87 Ath ( 1, 1 ) = a (sin ( thp ( 1 ) ) + sin ( thp ( 2 ) ) ) /dth/sin ( th ( 1 ) ) ; 88 Ath ( 1, 2 ) = a sin ( thp ( 2 ) ) /dth/sin ( th ( 1 ) ) ; 89 Ath (m,m) = a (sin ( thp (m) ) + sin ( thp (m+1) ) ) /dth/sin ( th (m) ) ; 90 Ath (m,m 1) = a sin ( thp (m) ) /dth/sin ( th (m) ) ; 91 for i =2: p 1
5 92 Aphi ( i, i ) = a 2./ dphi ; 93 Aphi ( i, i 1) = a 1./ dphi ; 94 Aphi ( i, i +1) = a 1./ dphi ; 95 end 96 Aphi ( 1, 1 ) = a 2./ dphi ; 97 Aphi ( 1, 2 ) = a 1./ dphi ; 98 Aphi ( p, p ) = a 2./ dphi ; 99 Aphi ( p, p 1) = a 1./ dphi ; 100 Aphi ( 1, p ) = a 1./ dphi ; 101 Aphi ( p, 1 ) = a 1./ dphi ; 102 % 103 Idn = eye ( n, n ) ; 104 Idm = eye (m,m) ; 105 Idp = eye ( p, p ) ; 106 % 107 AAA = kron ( Idp, kron ( Idm, Ar ) ) /drho kron ( Idp, kron ( Ath, diag ( rho2inv ) Idn ) ) /dth kron ( kron ( Aphi, diag ( s i n t h i n v 2 ) ),diag ( rho2inv ) Idn ) /dphi ; 110 % 111 u0 = ones (nmp, 1 ) U0 ; 112 % r e c h t e S e i t e ( Beruecksichtigung des Q u e l lglieds ) 113 R1 = zeros ( n, 1 ) ; 114 for i =1: n 115 if ( i < n ) R1 ( i ) = 0 ; end 116 if ( i == n ) 117 R1 ( n ) = a rhop ( n+1) ˆ2 alpha/drho /( lambda/drho + alpha ) Uu/( rho ( n ) ˆ2 drho ) ; end 119 end 120 R = kron ( Idp ones ( p, 1 ),kron ( Idm ones (m, 1 ), R1 ) ) ; 121 % 122 Time min =80; %time in minutes 123 Time=Time min 60; % time in seconds 124 % matlab 125 odefun=@( t, x ) AAA x+r ; % function of r i g h t side 126 [ T,U]= ode23s (@( t, x ) odefun ( t, x ), [ 0, Time ], u0 ) ; %ode23s works f a s t e r f o r s t i f f 127 % 128 for i =1:length ( T ) 129 % f o r i =1:p 130 plot (U( i, 1 : n ) ) 131 end % 2) Exercise Use characteristic l 0 length, time t 0 and temperature u c to write down the problem 3) of sheet 4 in a dimensionless form. Solution: With the characteristic values u c, t 0 and l 0 we define the dimensionless temperature, time and radius ū = u, t = t and r = r. u c t 0 l 0 For the heat conduction equation we get (ūu c ) ( tt 0 ) = a 1 ( rl 0 ) 2 For the boundary condition we come to ( rl 0 ) [( rl 0) 2 (ūu c) ( rl 0 ) λ (ūu c) ( rl 0 ) = α(ūu c u ) The initial condition in dimensionless form reads as ū = 373 K u c. ] ū t = at 0 l 2 0 λ ū αl 0 r = ū u. u c 1 ū r 2 [ r2 r r ].
6 3) Exercise Solve the 2D shallow water problem U t + F (U) x + G(U) y = S(U, B) (1) with the conservative variables U = h hu hv =: q 1 q 2 q 3, the flux function F (U) = hu hu gh2 huv, G(U) = hv huv hv gh2, and the source term S(U, B) = 0 hgb x hgb y h denotes the water height, hu, hv the water amount in the x- and y-direction, u and v are averaged velocities, and B describes the topography of the ground. The body force constant g is set to 1. We consider the spatial domain Ω =]0, 1[ 2 and the time interval [0, 5]. The initial values are { 1 x 1 h(x, y, 0) = 10, y 1 10, 0.5 otherwise and hu = hv = 0 on Ω. On the boundary we use homogeneous Neumann boundary conditions. Consider the cases B = 0 and. B(x, y) = x(1 x)/10. Use a conservative Finite-Volume method (for example Upwind, Lax-Friedrichs or Lax- Wendroff). The numerical Lax-Friedrichs-flux in 2D is for example F num (U, V ) = x 4τ (U V )+ 1 2 [F (U)+F (V )], G num(u, V ) = y 4τ (U V )+ 1 [G(U)+G(V )]. 2 Solution: The FV-method to solve the shallow water problem is implemented in the following program. Listing 3: source code 1 % shallow water 2D e x e r c i s e % 3 n = 3 0 ; % Anzahl innerer Gitterpunkte in x Richtung 4 m = 2 5 ; % Anzahl innerer Gitterpunkte in y Richtung 5 dx = 1/(n+1) ; 6 dy = 1/(m+1) ; 7 % 8 a =0; b =1; 9 c =0; d=1; 10 g = ; 11 % Zentralpunkte der F i n i t e n Zellen 12 xp = linspace ( a dx, b+dx, n+2) ; 13 x = linspace ( a dx/2, b+dx/2,n+1) ;
7 14 yp = linspace ( c dy, d+dy,m+2) ; 15 y = linspace ( c dy/2,d+dy/2,m+1) ; 16 % Anfangsbedingungen 17 % U( x, y, 1 ) =: h 18 % U( x, y, 2 ) =: hu 19 % U( x, y, 3 ) =: hv 20 % 21 for i =1: n+1 22 for j =1:m+1 23 U( i, j, 1 ) = 0. 5 ; 24 U( i, j, 2 ) = 0 ; 25 U( i, j, 3 ) = 0 ; 26 if ( x ( i ) < ( b a ) /10 && y ( j ) < ( d c ) /10) U( i, j, 1 ) = 1. 0 ; end 27 end 28 end 29 % 30 % Berechnung in Z e i t r i c h t u n g 31 % 32 tau = 1 / ; 33 ntend = ; 34 nt = 0 ; 35 while ( nt < ntend ) 36 % 37 % Randbedingungen 38 for k =1:3 39 % 40 for i =2:n 41 U( i, 1, k ) = U( i, 2, k ) ; 42 U( i,m+1,k ) = U( i,m, k ) ; 43 end 44 for j =2:m 45 U( 1, j, k ) = U( 2, j, k ) ; 46 U( n+1, j, k ) = U( n, j, k ) ; 47 end 48 % 49 for i =2:n 50 for j =2:m 51 % Lax F r i e d r i c h s Methode 52 % Un( i, j, k ) = U( i, j, k ) tau/dx ( dx/tau /4 (U( i, j, k ) U( i +1, j, k ) ) ( F (U, i, j, k, g ) + F (U, i +1, j, k, g ) ) % ( ( dx/tau /4 (U( i 1, j, k ) U( i, j, k ) ) ( F (U, i 1, j, k, g ) + F (U, i, j, k, g ) ) ) ) ) % tau/dy ( dy/tau /4 (U( i, j, k ) U( i, j +1,k ) ) (G(U, i, j, k, g ) + G(U, i, j +1,k, g ) ) % ( ( dy/tau /4 (U( i, j 1,k ) U( i, j, k ) ) (G(U, i, j 1,k, g ) + G(U, i, j, k, g ) ) ) ) ) U( i, j, k ) = (U( i +1, j, k ) + U( i 1, j, k ) + U( i, j +1,k ) + U( i, j 1,k ) ) tau 0. 5 ( ( F (U, i +1, j, k, g ) F (U, i 1, j, k, g ) ) /dx ( G(U, i, j +1,k, g ) G(U, i, j 1,k, g ) ) /dy ) tau U( i, j, 1 ) g S ( x, y, i, j, k ) ; 60 end 61 end 62 % end k 63 end 64 nt = nt + 1 ; 65 mesh (U( 2 : n, 2 :m, 1 ) ) 66 title ( Wasserhoehe h ( x, y ) ) 67 zlabel ( h ( x, y ) ) 68 xlabel ( x ) 69 ylabel ( y ) 70 end 71 % p l o t 72 mesh (U( 2 : n, 2 :m, 1 ) ) 73 title ( Wasserhoehe h ( x, y ) ) 74 zlabel ( h ( x, y ) ) 75 xlabel ( x ) 76 ylabel ( y ) 77 % P l o t function f = F (U, i, j, k, g ) 80 if ( k == 1) f = U( i, j, 2 ) ; end
8 81 if ( k == 2) f = U( i, j, 2 ) ˆ2/U( i, j, 1 ) g U( i, j, 1 ) ˆ 2 ; end 82 if ( k == 3) f = U( i, j, 2 ) U( i, j, 3 ) /U( i, j, 1 ) ; end 83 % endfunction function g = G(U, i, j, k, g ) 86 if ( k == 1) g = U( i, j, 3 ) ; end 87 if ( k == 2) g = U( i, j, 2 ) U( i, j, 3 ) /U( i, j, 1 ) ; end 88 if ( k == 3) g = U( i, j, 3 ) ˆ2/U( i, j, 1 ) g U( i, j, 1 ) ˆ 2 ; end 89 % endfunction function s = S ( x, y, i, j, k ) 92 if ( k == 1) s = 0. 0 ; end 93 if ( k == 2) s = x ( i ) ; end 94 if ( k == 3) s = 0. 0 ; end 95 % endfunction
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Finite difference method for 2-D heat equation
Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
- 1+x 2 - x 3 + 7x4. 40 + 127x8. 12 - x5 4 + 31x6. 360 - x 7. - 1+x 2 - x 3 - -
a.bergara@ehu.es - 1 x 2 - - - - - - - Ο - 1x 2 - x 3 - - - - - - 1 x 2 - x 3 7 x4 12-1x 2 - x 3 7x4 12 - x5 4 31x6 360 - x 7 40 127x8 20160 - - - Ο clear; % Coefficients of the equation: a x'b x c
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model
1 Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis Applied Mathematics & Computers Laboratory Technical University of Crete Chania 73100,
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Variational Wavefunction for the Helium Atom
Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Lecture 26: Circular domains
Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
The Pohozaev identity for the fractional Laplacian
The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O
Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
ΜΑΣ 473/673: Μέθοδοι Πεπερασμένων Στοιχείων
ΜΑΣ 473/673: Μέθοδοι Πεπερασμένων Στοιχείων Ένα δυσδιάστατο παράδειγμα με το λογισμικό MATLAB Θεωρούμε το εξής Π.Σ.Τ.: Να βρεθεί η u(x, y) έτσι ώστε όπου f (x, y) = 1. u u f ( x, y), x ( 1,1) ( 1,1) x
Solution to Review Problems for Midterm III
Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5
Ηλεκτρονικοί Υπολογιστές IV
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Η δυναμική ενός μοντέλου Keynsian Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
Daewoo Technopark A-403, Dodang-dong, Wonmi-gu, Bucheon-city, Gyeonggido, Korea LM-80 Test Report
LM-80 Test Report Approved Method: Measuring Lumen Maintenance of LED Light Sources Project Number: KILT1212-U00216 Date: September 17 th, 2013 Requested by: Dongbu LED Co., Ltd 90-1, Bongmyeong-Ri, Namsa-Myeon,
( ) 2 and compare to M.
Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Forced Pendulum Numerical approach
Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.
Written Examination. Antennas and Propagation (AA ) April 26, 2017.
Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
EE101: Resonance in RLC circuits
EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC
1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1
Chapter 7: Exercises 1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 35+n:30 n a 35+n:20 n 0 0.068727 11.395336 10 0.097101 7.351745 25
Integrals in cylindrical, spherical coordinates (Sect. 15.7)
Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
Ηλεκτρονικοί Υπολογιστές IV
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Δυναμική του χρέους και του ελλείμματος Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο
ΚΕΦΑΛΑΙΟ 2 Περιγραφή της Κίνησης Στο κεφάλαιο αυτό θα δείξουμε πώς να προγραμματίσουμε απλές εξισώσεις τροχιάς ενός σωματιδίου και πώς να κάνουμε βασική ανάλυση των αριθμητικών αποτελεσμάτων. Χρησιμοποιούμε
3.5 - Boundary Conditions for Potential Flow
13.021 Marine Hydrodynamics, Fall 2004 Lecture 10 Copyright c 2004 MIT - Department of Ocean Engineering, All rights reserved. 13.021 - Marine Hydrodynamics Lecture 10 3.5 - Boundary Conditions for Potential
Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3
Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point
If we restrict the domain of y = sin x to [ π 2, π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
Εφαρμογή της μεθόδου πεπερασμένων διαφορών στην εξίσωση θερμότητας
Εφαρμογή της μεθόδου πεπερασμένων διαφορών στην εξίσωση θερμότητας Να γραφεί script το οποίο να επιλύει αριθμητικά της γενική εξίσωση θερμότητας με χρήση της προς τα εμπρός παραγώγου ως προς το χρόνο,
Thin Film Chip Resistors
FEATURES PRECISE TOLERANCE AND TEMPERATURE COEFFICIENT EIA STANDARD CASE SIZES (0201 ~ 2512) LOW NOISE, THIN FILM (NiCr) CONSTRUCTION REFLOW SOLDERABLE (Pb FREE TERMINATION FINISH) Type Size EIA PowerRating
Math 5440 Problem Set 4 Solutions
Math 544 Math 544 Problem Set 4 Solutions Aaron Fogelson Fall, 5 : (Logan,.8 # 4) Find all radial solutions of the two-dimensional Laplace s equation. That is, find all solutions of the form u(r) where
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
Discretization of Generalized Convection-Diffusion
Discretization of Generalized Convection-Diffusion H. Heumann R. Hiptmair Seminar für Angewandte Mathematik ETH Zürich Colloque Numérique Suisse / Schweizer Numerik Kolloquium 8 Generalized Convection-Diffusion
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Ηλεκτρονικοί Υπολογιστές IV
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Εισαγωγή στα δυναμικά συστήματα Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Solutions - Chapter 4
Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ]
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
New bounds for spherical two-distance sets and equiangular lines
New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a
Odometry Calibration by Least Square Estimation
Robotics 2 Odometry Calibration by Least Square Estimation Giorgio Grisetti Kai Arras Gian Diego Tipaldi Cyrill Stachniss Wolfram Burgard SA-1 Least Squares Minimization The minimization algorithm proceeds
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
DATA SHEET Surface mount NTC thermistors. BCcomponents
DATA SHEET 2322 615 1... Surface mount N thermistors Supersedes data of 17th May 1999 File under BCcomponents, BC02 2001 Mar 27 FEATURES High sensitivity High accuracy over a wide temperature range Taped
Assignment 1 Solutions Complex Sinusoids
Assignment Solutions Complex Sinusoids ECE 223 Signals and Systems II Version. Spring 26. Eigenfunctions of LTI systems. Which of the following signals are eigenfunctions of LTI systems? a. x[n] =cos(
Section 8.2 Graphs of Polar Equations
Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is
Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³
ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΤΗΣ ΔΥΝΑΜΙΚΗΣ ΤΟΥ ΕΔΑΦΙΚΟΥ ΝΕΡΟΥ ΣΤΗΝ ΠΕΡΙΠΤΩΣΗ ΑΡΔΕΥΣΗΣ ΜΕ ΥΠΟΓΕΙΟΥΣ ΣΤΑΛΑΚΤΗΦΟΡΟΥΣ ΣΩΛΗΝΕΣ ΣΕ ΔΙΑΣΤΡΩΜΕΝΑ ΕΔΑΦΗ
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΑΕΙΦΟΡΙΚΗ ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Δημήτριος Πάντζαλης Πτυχιούχος Γεωπόνος Α.Π.Θ.
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
Overview. Transition Semantics. Configurations and the transition relation. Executions and computation
Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition
*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)
C3 past papers 009 to 01 physicsandmathstutor.comthis paper: January 009 If you don't find enough space in this booklet for your working for a question, then pleasecuse some loose-leaf paper and glue it
UNIVERSITY OF CALIFORNIA. EECS 150 Fall ) You are implementing an 4:1 Multiplexer that has the following specifications:
UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences EECS 150 Fall 2001 Prof. Subramanian Midterm II 1) You are implementing an 4:1 Multiplexer that has the following specifications:
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
Higher Derivative Gravity Theories
Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)
συνήθων µεθόδων καθαίρεσης. ΜΟΝΑ Α ΜΕΤΡΗΣΗΣ: κυβικό µέτρο (m3) πραγµατικού όγκου προ της καθαιρέσεως () ΠΟΣΟΤΗΤΑ: 5,00
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΗΡΑΚΛΕΙΟΥ ΗΜΟΣ ΧΕΡΣΟΝΗΣΟΥ /ΝΣΗ ΤΕΧΝΙΚΩΝ ΥΠΗΡΕΣΙΩΝ ΗΜΟΣ: Χερσονήσου ΕΡΓΟ: AΝΑΠΛΑΣΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΧΩΡΟΥ ΤΗΣ "ΠΑΙ ΙΚΗΣ ΕΞΟΧΗΣ ΚΟΚΚΙΝΗ ΧΑΝΙ" ΤΟΥ ΗΜΟΥ ΧΕΡΣΟΝΗΣΟΥ Προϋπολογισµός:300.000,00
Local Approximation with Kernels
Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider
Chapter 7 Transformations of Stress and Strain
Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
Answer sheet: Third Midterm for Math 2339
Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne
Graded Refractive-Index
Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for
CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,
CHAPTER : PERIMETER, AREA, CIRCUMFERENCE, AND SIGNED FRACTIONS. INTRODUCTION TO GEOMETRIC MEASUREMENTS p. -3. PERIMETER: SQUARES, RECTANGLES, TRIANGLES p. 4-5.3 AREA: SQUARES, RECTANGLES, TRIANGLES p.
ηµιουργία αρχείου στον matlab editor Πληκτρολόγηση ακολουθίας εντολών
Προγραµµατισµός Αρχεία εντολών (script files) Τυπικό hello world πρόγραµµα σε script ηµιουργία αρχείου στον matlab editor Πληκτρολόγηση ακολουθίας εντολών disp( ( 'HELLO WORLD!'); % τυπική εντολή εξόδου
Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines
Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the
Note: Please use the actual date you accessed this material in your citation.
MIT OpenCourseWare http://ocw.mit.edu 6.03/ESD.03J Electromagnetics and Applications, Fall 005 Please use the following citation format: Markus Zahn, 6.03/ESD.03J Electromagnetics and Applications, Fall
Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =
C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9