Ανάκληση Πληροφορίας. Διδάσκων Δημήτριος Κατσαρός

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ανάκληση Πληροφορίας. Διδάσκων Δημήτριος Κατσαρός"

Transcript

1 Ανάκληση Πληροφορίας Διδάσκων Δημήτριος Κατσαρός Διάλεξη 13η: 28/04/2014 1

2 Παράμετροι του μοντέλου PageRank 2

3 Ηπαράμετροςα(1/2) Η παράμετρος αυτή ελέγχει στην ουσία την προτεραιότητα που δίνεται στη δομή των υπερσυνδέσμων ή στην τηλεμεταφορά Είδαμε στην προηγούμενη διαφάνεια ότι οι Brin & Page πρότειναν τιμή.85 για την παράμετρο αυτή Γιατί αυτήν την τιμή; Ποια είναι η επίδραση του α στο πρόβλημα του PageRank; Με α=.5, τότε η επαναληπτική μέθοδος χρειάζεται μόνο 34 επαναλήψεις για να συγκλίνει σε μια ακρίβεια 10-10!! Όμως αυτό σημαίνει ότι η τεχνητά εισαχθείσα έννοια της τηλεμεταφοράς θα είναι ίσης σημαντικότητας με τη δομή των υπερσυνδέσμων!? 3

4 Ηπαράμετροςα(2/2) Για α=1.0, οι αριθμός των επαναλήψεων για σύγκλιση γίνεται απαγορευτικός Ακόμα και για α=.85 απαιτούνται μερικές ημέρες για να επιτευχθεί η σύγκλιση όταν οι πίνακες είναι του μεγέθους του Παγκοσμίου Ιστού Απλώς το α=.85 επιτυγχάνει ένα αποδεκτό tradeoff Πέρααπόαυτόόμως, η παράμετρος ελέγχει και την ευαισθησία του διανύσματος PageRank Γιατιμέςτουακοντάσε1, τότε ακόμα και μικρές αλλαγές στη δομή του Web Επηρεάζουν σημαντικά τις τιμές PageRank των σελίδων 4

5 Ο πίνακας υπερσυνδέσμων H Διάφορες προσαρμογές μπορεί να γίνουν πάνω στον H Στην βασική υλοποίηση, κάθε εξερχόμενος σύνδεσμος έχει το ίδιο βάρος/σημαντικότητα Παρόλο που η τακτική αυτή είναι δημοκρατική, εύκολη στην υλοποίηση, εντούτοις δεν είναι η κατάλληλη για τα rankings Στην πραγματικότητα, ο random surfer δεν διαλέγει τυχαία με την ίδια πιθανότητα ποιον σύνδεσμο θα ακολουθήσει, αλλά λαμβάνει υπόψη του το πλούσιο περιεχόμενο των σελίδων όπου θα πάει, αλλά και το κείμενο πάνω στους υπερσυνδέσμους Έτσι, αντί για την υπόθεση του random surfer, έχουμε τον intelligent surfer 5

6 Παράδειγμα προσαρμοσμένου πίνακα H Πώς αποφασίζουμε με ποιο τρόπο θα αναθέσουμε διαφορετικά βάρη στους εξερχόμενους υπερσυνδέσμους; Από τα access logs! Παράδειγμα: Από την P 1 είναι δυο φορές πιο πιθανό να πάμε στην P 2 παρά στην P 3 Προφανώς όλες οι παρόμοιες μέθοδοι θα είναι ευρεστικές Για παράδειγμα, τα στοιχεία Η 45 και Η 46 μπορούν να προσδιοριστούν με βάση την ομοιότητα (cosine similarity) μεταξύ των σελίδων P 4 με την P 5 και P 6 Για το γράφημα με τους 6 κόμβους ο νέος πίνακας H θα μετατραπεί στον ακόλουθο: 6

7 Παράδειγμα προσαρμοσμένου πίνακα H 7

8 Ο πίνακας τηλεμεταφοράς Ε (1/3) Μια από τις πρώτες προσαρμογές ήταν ότι αντί για τη χρήση του 1/nee T προτιμήθηκε ο πίνακας ev T To v T με v T > 0, είναι ένα διάνυσμα πιθανοτήτων που ονομάζεται personalization ή teleportation διάνυσμα Αφού το v T είναι διάνυσμα πιθανοτήτων με θετικά στοιχεία, κάθε κόμβος είναι συνδεδεμένος με κάθε άλλο κόμβο, άρα ο G είναι πρωτογενής Χρησιμοποιώντας το v T αντί για το 1/ne T σημαίνει ότι οι πιθανότητες τηλεμεταφοράς δεν είναι πλέον ομοιόμορφες 8

9 Ο πίνακας τηλεμεταφοράς Ε (2/3) Άρα για κάθε τηλεμεταφορά, ο surfer δεν επιλέγει ομοιόμορφα σε ποια σελίδα θα πάει, αλλά καθοδηγείται από το διάνυσμα v T Αυτή η μετατροπή ευτυχώς δεν καταστρέφει τα πλεονεκτήματα της power method Όταν G=αS+(1-α)ev T, τότε η power method γίνεται: 9

10 Ο πίνακας τηλεμεταφοράς Ε (3/3) Αυτή η αλλαγή δεν έχει καμία επίδραση πάνω στο ρυθμό σύγκλισης στον πολλαπλασιασμό διανύσματος με αραιό πίνακα στις μικρές αποθηκευτικές απαιτήσεις Όμως, αλλάζει το ίδιο το διάνυσμα PageRank!! Αυτό δεν είναι μειονέκτημα!? Δεν είναι απαραίτητο ότι σε όλους μας ταιριάζει το ίδιο ranking Άλλωστε, παρέχει μια ευελιξία ώστε ανάλογα τις ανάγκες μας να προσαρμόζουμε απλά το v T 10

11 Προσωποποίηση του PageRank Η προσωποποίηση αλλάζει το διάνυσμα PageRank, από query-independet και user-independent σε userdependent και πιο δύσκολο στον υπολογισμό Στην θεωρία είναι ωραία η προσωποποίηση, αλλά στην πράξη είναι δύσκολα εφαρμόσιμη Κάθε π Τ απαιτεί μερικές ημέρες για τον υπολογισμό του Οπότε, αφού επικρατεί η άποψη ότι η προσωποποιημένη αναζήτηση είναι η μελλοντική τάση στις μηχανές αναζήτησης, αρκετοί δημιούργησαν ψευδοπροσωποποιημένα διανύσματα PageRank Δεν απευθύνονται σε κάθε χρήστη, αλλά σε ομάδες χρηστών 11

12 Topic-sensitive PageRank (1/3) Δημιουργία ενός πεπερασμένου αριθμού PageRank διανυσμάτων π Τ (v it ), κάθεένααπόαυτάπολωμένοως προς κάποια συγκεκριμένο θέμα Ποια θέματα επιλέχθηκαν; Ο Taher Haveliwala επέλεξε τα 16 πρώτα από το Open Directory Project (ODP) Τα 16 πολωμένα διανύσματα προϋπολογίζονται Το ζήτημα είναι να τα συνδυάσουμε αποτελεσματικά κατά την ερώτηση του χρήστη 12

13 Topic-sensitive PageRank (2/3) Ο Taher Haveliwala έφτιαξε έναν κυρτό συνδυασμό αυτών ως εξής π Τ = β 1 π Τ (v 1T ) +β 2 π Τ (v 2T ) + +β 16 π Τ (v 16T ) όπου Σβ ι =1 Για παράδειγμα, η ερώτησηscience project ideas εμπίπτει μεταξύ των εξής κατηγοριών του ODP: Κατηγορία 7: Kids και Teens Κατηγορία 10: Reference Κατηγορία 12: Science Προφανώς τα αντίστοιχα διανύσματα αυτών των κατηγοριών πρέπει να πάρουν μεγαλύτερο βάρος ή ίσως και όλο το βάρος 13

14 Topic-sensitive PageRank (3/3) Για τον υπολογισμό των βαρών χρησιμοποιήθηκε ένας classifier Bayes Όταν υπολογιστεί το topic-sensitive score, συνδυάζεται με το αντίστοιχο content score O Jeh Glen, Taher Haveliwala & Serendap Kamvar δημιούργησαν το καλοκαίρι του 2003 την εταιρεία Kaltix γιαναπροωθήσουντηνιδέατου personalized PageRank, και τελικά η εταιρεία τους αγοράστηκε το Σεπτέμβριο του 2003 από την Google Τον Μάρτιο του 2004, η Google προώθησε την προσωποποίηση 14

15 Το φάσμα του personalized πίνακα G (1/4) ΘΕΩΡΗΜΑ: Εάν το φάσμα (ιδιοτιμές) του στοχαστικού πίνακα S είναι {1,λ 2,λ 3,,λ n }, τότε το φάσμα του personalized πίνακα Google G=αS + (1-α)ev T είναι {1,αλ 2,αλ 3,,αλ n }, όπου το v T είναι ένα διάνυσμα πιθανοτήτων 15

16 Το φάσμα του personalized πίνακα G (2/4) Αφού ο S είναι στοχαστικός, τότε το (1,e) είναι ένα ζεύγος του S Έστω ότι Q = (e X) είναι μη ιδιόμορφος (nonsingular) πίνακας που έχει το ιδιοδιάνυσμα e ως πρώτη στήλη του Έστω ότι Τότε Απ εδώ παίρνουμε δυο χρήσιμες ταυτότητες y T e=1 Y T e=0 16

17 Το φάσμα του personalized πίνακα G (3/4) Ως συνέπεια, ο μετασχηματισμός ομοιότητας φανερώνει ότι ο Y T SX περιέχει τις υπόλοιπες ιδιοτιμές του S, λ 2,λ 3,,λ n 17

18 Το φάσμα του personalized πίνακα G (4/4) Εφαρμόζοντας τον μετασχηματισμό ομοιότητας στον G=αS + (1-α)ev T Επομένως, οι ιδιοτιμές του G=αS + (1-α)ev T είναι οι {1,αλ 2,αλ 3,,αλ n } 18

Ανάκληση Πληροφορίας. Διδάσκων Δημήτριος Κατσαρός

Ανάκληση Πληροφορίας. Διδάσκων Δημήτριος Κατσαρός Ανάκληση Πληροφορίας Διδάσκων Δημήτριος Κατσαρός Διάλεξη 15η: 12/05/2014 1 Το πρόβλημα PageRank ως γραμμικό σύστημα 2 PageRank ως γραμμικό σύστημα Το πρόβλημα του PageRank μπορεί να γραφεί είτε ως Πρόβλημα

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Ανάκληση Πληποφοπίαρ. Διδάζκων Δημήηριος Καηζαρός

Ανάκληση Πληποφοπίαρ. Διδάζκων Δημήηριος Καηζαρός Ανάκληση Πληποφοπίαρ Διδάζκων Δημήηριος Καηζαρός Διάλεξη 17η: 23/05/2016 1 Spamming PageRank 2 (Link Spam Farms) Spamming: Παξαπιάλεζε ησλ κεραλώλ αλαδήηεζεο γηα λα απνθηεζεί πςειόηεξε δηάηαμε (ranking)

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 3: Στοχαστικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Μαρκοβιανές Αλυσίδες

Μαρκοβιανές Αλυσίδες Μαρκοβιανές Αλυσίδες { θ * } Στοχαστική Ανέλιξη είναι μια συλλογή τ.μ. Ο χώρος Τ (συνήθως είναι χρόνος) μπορεί να είναι είτε διακριτός είτε συνεχής και καλείται παραμετρικός χώρος. Το σύνολο των δυνατών

Διαβάστε περισσότερα

Ο αλγόριθμος PageRank της Google

Ο αλγόριθμος PageRank της Google Ο αλγόριθμος PageRank της Google 1 Η μηχανή αναζήτησης Google Το Google ξεκίνησε σαν μια κολεγιακή εργασία από τον Larry Page και τον Sergey Brin το 1996 με σκοπό την κατασκευή μιας μηχανής αναζήτησης

Διαβάστε περισσότερα

Web Mining. Χριστίνα Αραβαντινού Ιούνιος 2014

Web Mining. Χριστίνα Αραβαντινού Ιούνιος 2014 Web Mining Χριστίνα Αραβαντινού aravantino@ceid.upatras.gr Ιούνιος 2014 1 / 34 Χριστίνα Αραβαντινού Web Mining Περιεχόµενα 1 2 3 4 5 6 2 / 34 Χριστίνα Αραβαντινού Web Mining Το Web Mining στοχεύει στην

Διαβάστε περισσότερα

Η ΜΕΘΟΔΟΣ PCA (Principle Component Analysis)

Η ΜΕΘΟΔΟΣ PCA (Principle Component Analysis) Η ΜΕΘΟΔΟΣ PCA (Principle Component Analysis) Η μέθοδος PCA (Ανάλυση Κύριων Συνιστωσών), αποτελεί μία γραμμική μέθοδο συμπίεσης Δεδομένων η οποία συνίσταται από τον επαναπροσδιορισμό των συντεταγμένων ενός

Διαβάστε περισσότερα

E-commerce Networks & Applications. Η διαφήμιση στο Internet. Νίκος Κωνσταντίνου

E-commerce Networks & Applications. Η διαφήμιση στο Internet. Νίκος Κωνσταντίνου E-commerce Networks & Applications Η διαφήμιση στο Internet Νίκος Κωνσταντίνου Εισαγωγή Ηαπλήδημιουργίαενόςsite δεν είναι πλέον αρκετή Μια επένδυση σε ανάπτυξη και συντήρηση δεν αποδίδει χωρίς διαφήμιση

Διαβάστε περισσότερα

ΚΕΦ.6:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ. ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ

ΚΕΦ.6:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ. ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ ΚΕΦ:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ Τετραγωνικές μορφές: Συναρτήσεις με τύπο Q ν α ι j j, j [ ] ν α α ν αν α νν ν Τ Χ ΑΧ Για παράδειγμα εάν v Q α + α + α + α α + α + α + α δηλ a a a a α + α + α

Διαβάστε περισσότερα

Θέμα 1. με επαυξημένο 0 1 1/ 2. πίνακα. και κλιμακωτή μορφή αυτού

Θέμα 1. με επαυξημένο 0 1 1/ 2. πίνακα. και κλιμακωτή μορφή αυτού ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΗΣ Ιουλίου 0 Θέμα α) (Μον.6) Να βρεθεί η τιμή του πραγματικού

Διαβάστε περισσότερα

Οι παράµετροι του µοντέλου PageRank

Οι παράµετροι του µοντέλου PageRank ΚΕΦΑΛΑΙΟ 5 Οι παράµετροι του µοντέλου PageRank Του παππού µου, Sr. William H. Langville, του άρεσε να καταπιάνεται µε διάϕορα πράγµατα στο υπόγειο εργαστήριό του. Για παράδειγµα, είχε στήσει έναν ολόκληρο

Διαβάστε περισσότερα

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων 1ο Σετ Ασκήσεων - Λύσεις

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων 1ο Σετ Ασκήσεων - Λύσεις Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων ο Σετ Ασκήσεων - Λύσεις Νοέμβριος - Δεκέμβριος 205 Ερώτημα (α). Η νοσοκόμα ακολουθεί μια Ομογενή Μαρκοβιανή Αλυσίδα Διακριτού Χρόνου με χώρο καταστάσεων το σύνολο

Διαβάστε περισσότερα

Μελέτη Περίπτωσης: Random Surfer

Μελέτη Περίπτωσης: Random Surfer Μελέτη Περίπτωσης: Random Surfer Introduction to Programming in Java: An Interdisciplinary Approach Robert Sedgewick and Kevin Wayne Copyright 2008 March 1, 2016 11:10 tt Memex Memex. [Vannevar Bush, 1936]

Διαβάστε περισσότερα

Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό

Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό ιδάσκων ηµήτριος Κατσαρός, Ph.D. @ Τµ. Μηχανικών Η/Υ, Τηλεπικοινωνιών & ικτύων Πανεπιστήµιο Θεσσαλίας ιάλεξη 14η: 30/05/2007 1 Η µέθοδος HITS Η µέθοδος

Διαβάστε περισσότερα

The DeGroot model for Social Influence and Opinions

The DeGroot model for Social Influence and Opinions The DeGroot model for Social Influence and Opinions An Example Περιεχόμενα Το βασικό μοντέλο DeGroot Το μοντέλο DeGroot με πεισματάρηδες κόμβους Ένα παράδειγμα Έστω ένα κοινωνικό δίκτυο με τρεις κόμβους

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Κατακερματισμός. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Κατακερματισμός. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Κατακερματισμός Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Λεξικό Dictionary Ένα λεξικό (dictionary) είναι ένας αφηρημένος τύπος δεδομένων (ΑΤΔ) που διατηρεί

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΑΠΟΙΚΙΑΣ ΜΥΡΜΗΓΚΙΩΝ ANT COLONY OPTIMIZATION METHODS

ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΑΠΟΙΚΙΑΣ ΜΥΡΜΗΓΚΙΩΝ ANT COLONY OPTIMIZATION METHODS ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΑΠΟΙΚΙΑΣ ΜΥΡΜΗΓΚΙΩΝ ANT COLONY OPTIMIZATION METHODS Χρήστος Δ. Ταραντίλης Αν. Καθηγητής ΟΠΑ ACO ΑΛΓΟΡΙΘΜΟΙ Η ΛΟΓΙΚΗ ΑΝΑΖΗΤΗΣΗΣ ΛΥΣΕΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΙΑΤΑΞΗΣ (1/3) Ε..Ε. ΙΙ Oι ACO

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 5 Κατανομές πιθανότητας και εκτίμηση παραμέτρων δυαδικές τυχαίες μεταβλητές Bayesian decision Minimum misclassificaxon rate decision: διαλέγουμε την κατηγορία Ck για

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 17η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 17η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 17η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται: στο βιβλίο Artificia Inteigence A Modern Approach των S. Russe και

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 15: O αλγόριθμος SIMPLE

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 15: O αλγόριθμος SIMPLE ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 15: O αλγόριθμος SIMPLE Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε τις θέσεις που

Διαβάστε περισσότερα

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης

Διαβάστε περισσότερα

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Παράδειγμα 1 Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με _ + Σχήμα 1 στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Α) Γράψτε το σύστημα ευθέως κλάδου σε κανονική παρατηρήσιμη μορφή στο χώρο

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή

Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδημαϊκό έτος 2010-11 Χειμερινό Εξάμηνο Practice final exam 1. Έστω ότι για

Διαβάστε περισσότερα

5. ΣΥΣΤΗΜΑΤΙΚΗ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Systematic Sampling)

5. ΣΥΣΤΗΜΑΤΙΚΗ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Systematic Sampling) 5. ΣΥΣΤΗΜΑΤΙΚΗ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Systematic Sampling) Συχνά, είναι ταχύτερη και ευκολότερη η επιλογή των μονάδων του πληθυσμού, αν αυτή γίνεται από κάποιο κατάλογο ξεκινώντας από κάποιο τυχαίο αρχικό σημείο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 5 Ιουλίου 2009

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 5 Ιουλίου 2009 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 5 Ιουλίου 009 Θέμα (0 μονάδες) Έστω U = (, y, z, w) = z, y = w υποσύνολο του και V ο υπόχωρος

Διαβάστε περισσότερα

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση Κεφάλαιο ο: Δικτυωτή Ανάλυση. Εισαγωγή Η δικτυωτή ανάλυση έχει παίξει σημαντικό ρόλο στην Ηλεκτρολογία. Όμως, ορισμένες έννοιες και τεχνικές της δικτυωτής ανάλυσης είναι πολύ χρήσιμες και σε άλλες επιστήμες.

Διαβάστε περισσότερα

Social Web: lesson #4

Social Web: lesson #4 Social Web: lesson #4 looking for relevant information browsing searching monitoring recommendations Information Retrieval the inverted index Google.com the pagerank algorithm the value of words the price

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών. Ένα στοιχείο γράφεται ως, όπου κάθε.

Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών. Ένα στοιχείο γράφεται ως, όπου κάθε. Ψηφιακά Δένδρα Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών τα οποία είναι ακολουθίες συμβάλλων από ένα πεπερασμένο αλφάβητο Ένα στοιχείο γράφεται ως, όπου κάθε. Μπορούμε να

Διαβάστε περισσότερα

Το μοντέλο DeGroot και το Παίγνιο Επιρροής

Το μοντέλο DeGroot και το Παίγνιο Επιρροής Το μοντέλο DeGroot και το Παίγνιο Επιρροής Social Influence and Opinion Dynamics Παύλος Εφραιμίδης Επίκ. καθηγητής An Example Περιεχόμενα Το βασικό μοντέλο DeGroot Το μοντέλο DeGroot με πεισματάρηδες κόμβους

Διαβάστε περισσότερα

Information Retrieval

Information Retrieval Ανάκληση Πληποφοπίαρ Information Retrieval Διδάζκων Δημήηριος Καηζαρός Διάλεξη 13η: 10/05/2016 Τμ. HMMY, Πανεπιστήμιο Θεσσαλίας 1 Ερπυστές στον Παγκόσμιο Ιστό Το πρόβλημα της ανενέωσης σελίδων στον index

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ Η μελέτη διαφόρων στοχαστικών φαινομένων μπορεί γενικά να γίνει χρησιμοποιώντας

ΕΙΣΑΓΩΓΗ Η μελέτη διαφόρων στοχαστικών φαινομένων μπορεί γενικά να γίνει χρησιμοποιώντας ΕΙΣΑΓΩΓΗ Η μελέτη διαφόρων στοχαστικών φαινομένων μπορεί γενικά να γίνει χρησιμοποιώντας κυρίως τρεις μεθόδους:. Αναλυτικές Μέθοδοι: πραγματοποιείται κατάλληλη μαθηματική μοντελοποίηση του στοχαστικού

Διαβάστε περισσότερα

Κεφ. 2: Επίλυση συστημάτων εξισώσεων. 2.1 Επίλυση εξισώσεων

Κεφ. 2: Επίλυση συστημάτων εξισώσεων. 2.1 Επίλυση εξισώσεων Κεφ. : Επίλυση συστημάτων εξισώσεων. Επίλυση εξισώσεων. Επίλυση συστημάτων με απευθείας μεθόδους.. Μέθοδοι Gauss, Gauss-Jorda.. Παραγοντοποίηση LU (ειδικές περιπτώσεις: Cholesky, Thomas).. Νόρμες πινάκων,

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο

Εθνικό Μετσόβιο Πολυτεχνείο Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΤΗΝ ΕΥΡΕΣΗ ΙΔΙΟΤΙΜΩΝ ΠΙΝΑΚΑ Διπλωματική Εργασία ΚΑΡΑΝΤΖΙΑ ΑΝΝΑ Επιβλέπων Καθηγητής: Παναγιώτης Ψαρράκος

Διαβάστε περισσότερα

9. Συστολικές Συστοιχίες Επεξεργαστών

9. Συστολικές Συστοιχίες Επεξεργαστών Κεφάλαιο 9: Συστολικές συστοιχίες επεξεργαστών 208 9. Συστολικές Συστοιχίες Επεξεργαστών Οι συστολικές συστοιχίες επεξεργαστών είναι επεξεργαστές ειδικού σκοπού οι οποίοι είναι συνήθως προσκολλημένοι σε

Διαβάστε περισσότερα

Ανάκληση Πληποφοπίαρ. Διδάζκων Δημήηριος Καηζαρός

Ανάκληση Πληποφοπίαρ. Διδάζκων Δημήηριος Καηζαρός Ανάκληση Πληποφοπίαρ Διδάζκων Δημήηριος Καηζαρός Διάλεξη 11: 12/04/2016 1 Τα μαθημαηικά ηοσ PageRank 2 Η αρχική εξίσωση αθροίσματος Το PageRank μιας σελίδας είναι το άθροισμα του PageRank των σελίδων που

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ Ενότητα #4: ΙΣΟΡΡΟΠΙΑ ΑΓΟΡΩΝ

ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ Ενότητα #4: ΙΣΟΡΡΟΠΙΑ ΑΓΟΡΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ Ενότητα #4: ΙΣΟΡΡΟΠΙΑ ΑΓΟΡΩΝ Διδάσκων: Μανασάκης Κωνσταντίνος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Τα κείμενα και τα διαγράμματα της παρουσίασης έχουν ληφθεί

Διαβάστε περισσότερα

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι)

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι) 77 78 7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7. ΕΙΣΑΓΩΓΗ Η Άλγεβρα των μητρών οι πινάκων είναι ιδιαίτερα χρήσιμη για την επίλυση συστημάτων καθώς επίσης στις επιστήμες της οικονομετρίας και της στατιστικής. ΟΡΙΣΜΟΣ: Μήτρα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ. 4.1 Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα

ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ. 4.1 Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ 4. Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα Εστω R είναι ο γνωστός -διάστατος πραγµατικός διανυσµατικός χώρος. Μία απεικόνιση L :

Διαβάστε περισσότερα

Ανάπτυξη συστήματος ερωταποκρίσεων για αρχεία ελληνικών εφημερίδων

Ανάπτυξη συστήματος ερωταποκρίσεων για αρχεία ελληνικών εφημερίδων Ανάπτυξη συστήματος ερωταποκρίσεων για αρχεία ελληνικών εφημερίδων Οικονομικό Πανεπιστήμιο Αθηνών Πρόγραμμα Μεταπτυχιακών Σπουδών «Επιστήμη των Υπολογιστών» Διπλωματική Εργασία Μαρία-Ελένη Κολλιάρου 2

Διαβάστε περισσότερα

Υπολογιστική Νοημοσύνη. Μάθημα 12: Παραδείγματα Ασκήσεων 2

Υπολογιστική Νοημοσύνη. Μάθημα 12: Παραδείγματα Ασκήσεων 2 Υπολογιστική Νοημοσύνη Μάθημα 12: Παραδείγματα Ασκήσεων 2 Δίκτυα Πολλών Επιπέδων Με μη γραμμικούς νευρώνες Έστω ένα πρόβλημα κατηγοριοποίησης, με δύο βαθμούς ελευθερίας (x, y) και δύο κατηγορίες (A, B).

Διαβάστε περισσότερα

Μέθοδοι μονοδιάστατης ελαχιστοποίησης

Μέθοδοι μονοδιάστατης ελαχιστοποίησης Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν

Διαβάστε περισσότερα

2. ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

2. ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ . ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Εισαγωγή Οι κλασσικές μέθοδοι αριστοποίησης βασίζονται κατά κύριο λόγο στο διαφορικό λογισμό. Ο Μαθηματικός Προγραμματισμός ο οποίος περιλαμβάνει τον Γραμμικό Προγραμματισμό

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 009-0 ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΥΝΟΨΗΣ

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος 6/6/06 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 0 Δίνεται ο πίνακας A =. Nα υπολογίσετε την βαθμίδα του και να βρείτε τη διάσταση και από μία βάση α) του μηδενοχώρου

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1 Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 4 ης διάλεξης 4.1. (α) Αποδείξτε ότι αν η h είναι συνεπής, τότε h(n

Διαβάστε περισσότερα

Αλγόριθµοι Οπισθοδρόµησης

Αλγόριθµοι Οπισθοδρόµησης Αλγόριθµοι Οπισθοδρόµησης Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Η οπισθοδρόµηση στο σχεδιασµό αλγορίθµων Το πρόβληµα των σταθερών γάµων και ο αλγόριθµος των Gale-Shapley Το πρόβληµα

Διαβάστε περισσότερα

Non Linear Equations (2)

Non Linear Equations (2) Non Linear Equations () Τρίτη, 17 Φεβρουαρίου 015 5:14 μμ 15.0.19 Page 1 15.0.19 Page 15.0.19 Page 3 15.0.19 Page 4 15.0.19 Page 5 15.0.19 Page 6 15.0.19 Page 7 15.0.19 Page 8 15.0.19 Page 9 15.0.19 Page

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΤΕΛΙΚΗΣ ΕΞΕΤΑΣΗΣ 9 Ιουνίου (διάρκεια ώρες και λ) Διαβάστε προσεκτικά και απαντήστε

Διαβάστε περισσότερα

Κβαντική Επεξεργασία Πληροφορίας

Κβαντική Επεξεργασία Πληροφορίας Κβαντική Επεξεργασία Πληροφορίας Ενότητα 11: Είδη και μετασχηματισμοί πινάκων Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Είδη και μετασχηματισμοί

Διαβάστε περισσότερα

Είδη Μεταβλητών. κλίµακα µέτρησης

Είδη Μεταβλητών. κλίµακα µέτρησης ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρµοσµένες Επιστήµες Στατιστικός Πληθυσµός και Δείγµα Το στατιστικό

Διαβάστε περισσότερα

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό

Διαβάστε περισσότερα

Ethernet Ethernet ΙΕΕΕ CSMA/CD

Ethernet Ethernet ΙΕΕΕ CSMA/CD Ethernet Τα τοπικά δίκτυα είναι συνήθως τύπου Ethernet ή λέμε ότι ακολουθούν το πρότυπο ΙΕΕΕ 802.3 Ακολουθούν το μηχανισμό CSMA/CD (Πολλαπλή πρόσβαση με Ακρόαση Φέροντος και Ανίχνευση Συγκρούσεων). Πολλαπλή

Διαβάστε περισσότερα

Ηλεκτρονική Μάθηση στην Προσχολική Ηλικία

Ηλεκτρονική Μάθηση στην Προσχολική Ηλικία Πανεπιστήμιο Μακεδονίας Ηλεκτρονική Μάθηση στην Προσχολική Ηλικία Αγνή Χ. Λιάππα Επιβλέποντες Καθηγητές: Ταραμπάνης Κων/νος Ταμπούρης Ευθύμιος Εξεταστές: Σατρατζέμη Μαρία Ξυνόγαλος Στυλιανός Το πρόβλημα

Διαβάστε περισσότερα

ΠΛΗ ΛΥΣΕΙΣ ΕΡΓ_2 ΣΕΛ. 1/11

ΠΛΗ ΛΥΣΕΙΣ ΕΡΓ_2 ΣΕΛ. 1/11 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: Νοεμβρίου 007 Ημερομηνία παράδοσης της Εργασίας: 4 Δεκεμβρίου 007 Πριν από την λύση κάθε άσκησης καλό

Διαβάστε περισσότερα

Έντυπο Υποβολής Αξιολόγησης Γ.Ε.

Έντυπο Υποβολής Αξιολόγησης Γ.Ε. Έντυπο Υποβολής Αξιολόγησης Γ.Ε. O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

Πρωτόκολλα Ελέγχου προσπέλασης μέσου

Πρωτόκολλα Ελέγχου προσπέλασης μέσου Πρωτόκολλα Ελέγχου προσπέλασης μέσου Πρόβλημα: ταυτόχρονη μετάδοση δύο ή περισσότερων κόμβων στο ίδιο κανάλι (μήκος κύματος). Ένα τέτοιο γεγονός ονομάζεται σύγκρουση. Ένα πρωτόκολλο MAC έχει συνήθως ως

Διαβάστε περισσότερα

7.9 ροµολόγηση. Ερωτήσεις

7.9 ροµολόγηση. Ερωτήσεις 7.9 ροµολόγηση Ερωτήσεις 1. Να δώσετε τον ορισµό της δροµολόγησης; 2. Από τι εξαρτάται η χρονική στιγµή στην οποία λαµβάνονται οι αποφάσεις δροµολόγησης; Να αναφέρετε ποια είναι αυτή στην περίπτωση των

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 13 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Wepage: http://eclass.uop.gr/courses/tst15

Διαβάστε περισσότερα

3. Γραμμικά Συστήματα

3. Γραμμικά Συστήματα 3. Γραμμικά Συστήματα Ασκήσεις 3. Αποδείξτε ότι το γινόμενο δύο άνω τριγωνικών πινάκων είναι άνω τριγωνικός πίνακας. Επίσης, στην περίπτωση που ένας άνω τριγωνικός πίνακας U 2 R n;n είναι αντιστρέψιμος,

Διαβάστε περισσότερα

ΠΟΛΥ ΜΕΓΑΛΗ : ΜΕΓΑΛΗ : ΜΕΣΑΙΑ: ΜΙΚΡΗ

ΠΟΛΥ ΜΕΓΑΛΗ : ΜΕΓΑΛΗ : ΜΕΣΑΙΑ: ΜΙΚΡΗ Page 1 of 67 Page 2 of 67 Page 3 of 67 Page 4 of 67 1. Page 5 of 67 Page 6 of 67 Page 7 of 67 2. Page 8 of 67 Page 9 of 67 Page 10 of 67 Page 11 of 67 Page 12 of 67 Page 13 of 67 Page 14 of 67 Page 15

Διαβάστε περισσότερα

Α.Τ.Ε.Ι. ΜΑΚΕΔΟΝΙΑΣ Τμήμα πληροφορικής και επικοινωνιών. Συμπίεση ψηφιακών εικόνων με ανάλυση κύριων συνιστωσών και χρήση νευρωνικού δικτύου.

Α.Τ.Ε.Ι. ΜΑΚΕΔΟΝΙΑΣ Τμήμα πληροφορικής και επικοινωνιών. Συμπίεση ψηφιακών εικόνων με ανάλυση κύριων συνιστωσών και χρήση νευρωνικού δικτύου. ΑΤΕΙ ΜΑΚΕΔΟΝΙΑΣ Τμήμα πληροφορικής και επικοινωνιών Συμπίεση ψηφιακών εικόνων με ανάλυση κύριων συνιστωσών και χρήση νευρωνικού δικτύου Ψηφιακή είκόνα Η ψηφιακή εικόνα είναι ένα πεπερασμένο σύνολο περιοχών

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Τυχαίες μεταβλητές: Βασικές έννοιες Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (σε αντίθεση με τις

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ιδάσκων:

Διαβάστε περισσότερα

Πρωτόκολλα Διαδικτύου Μέρος 2ο. Επικοινωνίες Δεδομένων Μάθημα 3 ο

Πρωτόκολλα Διαδικτύου Μέρος 2ο. Επικοινωνίες Δεδομένων Μάθημα 3 ο Πρωτόκολλα Διαδικτύου Μέρος 2ο Επικοινωνίες Δεδομένων Μάθημα 3 ο Internet Protocol (IP) Στο επίπεδο δικτύου της τεχνολογίας TCP/IP, συναντάμε το πρωτόκολλο IP. Η λειτουργία του IP βασίζεται αποκλειστικά

Διαβάστε περισσότερα

Εργαστήριο Σημασιολογικού Ιστού

Εργαστήριο Σημασιολογικού Ιστού Εργαστήριο Σημασιολογικού Ιστού Ενότητα 3: Από το μοντέλο EAV στους γράφους Μ.Στεφανιδάκης 4-3-2015. Το μοντέλο EAV σχηματικά Τα δεδομένα ως τώρα έχουν τη μορφή μεμονωμένων νιφάδων Είναι όμως πράγματι

Διαβάστε περισσότερα

ΔΗΜΙΟΥΡΓΙΑ ΚΑΙ ΠΑΡΑΓΩΓΗ ΔΙΑΦΗΜΙΣΗΣ

ΔΗΜΙΟΥΡΓΙΑ ΚΑΙ ΠΑΡΑΓΩΓΗ ΔΙΑΦΗΜΙΣΗΣ ΔΗΜΙΟΥΡΓΙΑ ΚΑΙ ΠΑΡΑΓΩΓΗ ΔΙΑΦΗΜΙΣΗΣ Η διαφήμιση με μία μόνο λέξη χαρακτηρίζεται και ως «υπόσχεση», καθώς δίνει μια υπόσχεση στον υποψήφιο αγοραστή, για το προϊόν που διαφημίζει και αναφέρεται στην επίδραση

Διαβάστε περισσότερα

7.1 Επίπεδο δικτύου. Ερωτήσεις. λέξεις κλειδιά:

7.1 Επίπεδο δικτύου. Ερωτήσεις. λέξεις κλειδιά: 7.1 Επίπεδο δικτύου Ερωτήσεις 1. Με ποιες ενέργειες ασχολείται το επίπεδο δικτύου; Ποιες συσκευές συμμετέχουν σε αυτές τις ενέργειες; 2. Ποιο είναι το χαμηλότερο επίπεδο στο μοντέλο OSI που ασχολείται

Διαβάστε περισσότερα

ΑΝΑΓΝΩΡΙΣΗ ΚΟΙΝΟΤΗΤΩΝ ΚΑΙ ΣΥΣΤΑΣΗ ΠΛΗΡΟΦΟΡΙΑΣ ΜΕ ΤΗΝ ΧΡΗΣΗ ΣΥΝΘΕΤΙΚΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ

ΑΝΑΓΝΩΡΙΣΗ ΚΟΙΝΟΤΗΤΩΝ ΚΑΙ ΣΥΣΤΑΣΗ ΠΛΗΡΟΦΟΡΙΑΣ ΜΕ ΤΗΝ ΧΡΗΣΗ ΣΥΝΘΕΤΙΚΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΑΝΑΓΝΩΡΙΣΗ ΚΟΙΝΟΤΗΤΩΝ ΚΑΙ ΣΥΣΤΑΣΗ ΠΛΗΡΟΦΟΡΙΑΣ ΜΕ ΤΗΝ ΧΡΗΣΗ ΣΥΝΘΕΤΙΚΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ Παπαδάκης Χαράλαμπος 1, Παναγιωτάκης Κώστας 2, Παρασκευή Φραγκοπούλου 1 1 Τμήμα Μηχ/κών Πληροφορικής, ΤΕΙ Κρήτης 2 Τμήμα

Διαβάστε περισσότερα

1 ο Φροντιστήριο Υπολογιστική Νοημοσύνη 2

1 ο Φροντιστήριο Υπολογιστική Νοημοσύνη 2 1 ο Φροντιστήριο Υπολογιστική Νοημοσύνη 2 Άσκηση Δίνεται ο αρχικός πληθυσμός, στην 1 η στήλη στον παρακάτω πίνακα και οι αντίστοιχες καταλληλότητες (στήλη 2). Υποθέστε ότι, το ζητούμενο είναι η μεγιστοποίηση

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-9) ΜΕΡΟΣ 7: ΙΔΙΟΤΙΜΕΣ & ΙΔΙΟΔΙΑΝΥΣΜΑΤΑ ΔΙΑΓΩΝΙΟΠΟΙΗΣΗ ΠΙΝΑΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΑΠΟ ΤΙΣ ΠΑΡΑΔΟΣΕΙΣ

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

1/12/2016. Πλεονεκτήματα. Μειονεκτήματα. (Roy, 1994)

1/12/2016. Πλεονεκτήματα. Μειονεκτήματα. (Roy, 1994) Πολυκριτηριακή Ανάλυση και Λήψη Αποφάσεων Δ. Καλιαμπάκος -Δ. Δαμίγος μγ Πολυκριτηριακή ανάλυση «Ο κύριος στόχος δεν είναι να ανακαλύψουμε μια λύση αλλά να δημιουργήσουμε ή να κατασκευάσουμε κάτι το οποίο

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (1)

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (1) Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες () Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Πεπερασμένα Αυτόματα (Κεφάλαιο., Sipser) Ορισμός πεπερασμένων αυτομάτων και ορισμός του

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

Περιεχόµενα διαλέξεων 2ης εβδοµάδας

Περιεχόµενα διαλέξεων 2ης εβδοµάδας Εισαγωγή οµή και πόροι τηλεπικοινωνιακού συστήµατος Σήµατα Περιεχόµενα διαλέξεων 1ης εβδοµάδας Εισαγωγή Η έννοια της επικοινωνιας Ιστορική αναδροµή οµή και πόροι τηλεπικοινωνιακού συστήµατος οµή τηλεπικοινωνιακού

Διαβάστε περισσότερα

Επαναληπτικές μέθοδοι

Επαναληπτικές μέθοδοι Επαναληπτικές μέθοδοι Η μέθοδος της διχοτόμησης και η μέθοδος Regula Fals που αναφέραμε αξιοποιούσαν το κριτήριο του Bolzano, πραγματοποιώντας διαδοχικές υποδιαιρέσεις του διαστήματος [α, b] στο οποίο,

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΕΦΑΡΜΟΓΗΔΙΟΙΚΗΤΙΚΗΣΕΠΙΣΤΗΜΗΣ:

Διαβάστε περισσότερα

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία Υπεύθυνος: Δρ. Κολιός Σταύρος Θεωρία Συνόλων Σύνολο: Το σύνολο εκφράζει μία συλλογή διακριτών μονάδων οποιασδήποτε φύσης.

Διαβάστε περισσότερα

ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. ΛΥΣΕΙΣ 3 ης. Άσκηση 1. , z1. Παρατηρούµε ότι: z0 = z5. = + ) και. β) 1 ος τρόπος: Έστω z = x+ iy, x, = x + y.

ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. ΛΥΣΕΙΣ 3 ης. Άσκηση 1. , z1. Παρατηρούµε ότι: z0 = z5. = + ) και. β) 1 ος τρόπος: Έστω z = x+ iy, x, = x + y. ΛΥΣΕΙΣ ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ Άσκηση 6 6 Λύση: α) 7z + z (cosπ + isi π ) π+ kπ π+ kπ Κατά συνέπεια z (cos + isi ), k,,, 5 Παίρνουµε τις ρίζες 6 6 z (cos + isi ) ( + i ) + i, π π 6 6 6 z (cos + isi ) (cos

Διαβάστε περισσότερα

Προφανώς, μια συνάρτηση μπορεί να μην είναι ούτε άρτια ούτε περιττή. Όμως, μπορεί να γραφεί σαν άθροισμα μιας άρτιας fe

Προφανώς, μια συνάρτηση μπορεί να μην είναι ούτε άρτια ούτε περιττή. Όμως, μπορεί να γραφεί σαν άθροισμα μιας άρτιας fe Άρτιο και Περιττό μέρος Συνάρτησης Προφανώς, μια συνάρτηση μπορεί να μην είναι ούτε άρτια ούτε περιττή. Όμως, μπορεί να γραφεί σαν άθροισμα μιας άρτιας e και μιας περιττής συνάρτησης, ως εξής: Αν e και,

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΣΤΟΙΧΕΙΑ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΝΙΚΟΛΑΟΥ ΙΩ ΔΑΡΑ ΕΠΙΚΟΥΡΟΥ ΚΑΘΗΓΗΤΗ ΣΤΡΑΤΙΩΤΙΚΗΣ ΣΧΟΛΗΣ ΕΥΕΛΠΙΔΩΝ ΣΤΟΙΧΕΙΑ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ ος ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΣΚΗΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΕΛΛΗΝΙΚΟ ΚΕΝΤΡΟ ΕΛΕΓΧΟΥ ΟΠΛΩΝ wwwarmscotrolfo 7 ΝΔΑΡΑΣ ΕΛΛΗΝΙΚΟ

Διαβάστε περισσότερα

5.9 ΘΕΤΙΚΑ ΟΡΙΣΜΕΝΟΙ ΠΙΝΑΚΕΣ ΚΑΙ ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ

5.9 ΘΕΤΙΚΑ ΟΡΙΣΜΕΝΟΙ ΠΙΝΑΚΕΣ ΚΑΙ ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΠΙΝΑΚΕΣ ΚΑΙ ΓΡΑΜΜΙΚΟΙ ΤΕΛΕΣΤΕΣ Α Β Δ J 1 =A+Γ και J 3 = Β Γ Ε Δ Ε Ζ d + c x + a + b y ac+ bd x y = R A έχουμε: 1 1 1 1 Για την εξίσωση ( ) ( ) ( ) ( ) A, B,, 0, E 0, Z A = c + d = ac+ bd Γ= a + b Δ= =

Διαβάστε περισσότερα

Κοινωνικοοικονομική Αξιολόγηση Επενδύσεων Διάλεξη 3 η. Αποτελεσματικότητα και Ευημερία

Κοινωνικοοικονομική Αξιολόγηση Επενδύσεων Διάλεξη 3 η. Αποτελεσματικότητα και Ευημερία Κοινωνικοοικονομική Αξιολόγηση Επενδύσεων Διάλεξη 3 η Αποτελεσματικότητα και Ευημερία Ζητήματα που θα εξεταστούν: Πότε και πως επιτυγχάνεται η οικονομική αποτελεσματικότητα Θεωρήματα των οικονομικών της

Διαβάστε περισσότερα

c All rights reserved

c All rights reserved ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ Υλοποίηση μηχανισμού κατάταξης δημοσιεύσεων σχετικών με βιομόρια micro-rna

Διαβάστε περισσότερα

Μερικές φορές δεν μπορούμε να αποφανθούμε για την τιμή του άπειρου αθροίσματος.

Μερικές φορές δεν μπορούμε να αποφανθούμε για την τιμή του άπειρου αθροίσματος. Σειρές Σειρές και μερικά αθροίσματα: Το πρόβλημα της άθροισης μιας σειράς άπειρων όρων είναι πολύ παλιό. Μερικές φορές μια τέτοια σειρά καταλήγει σε πεπερασμένο αποτέλεσμα, μερικές φορές απειρίζεται και

Διαβάστε περισσότερα

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ) Εικονικές Παράμετροι Μέχρι στιγμής είδαμε την εφαρμογή της μεθόδου Simplex σε προβλήματα όπου το δεξιό μέλος ήταν θετικό. Δηλαδή όλοι οι περιορισμοί ήταν της μορφής: όπου Η παραδοχή ότι b 0 μας δίδει τη

Διαβάστε περισσότερα

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 18: Επίλυση Γενικών Γραμμικών Προβλημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Οδηγός βέλτιστων πρακτικών Google+ Αποκλειστικές και εμπιστευτικές πληροφορίες της Google

Οδηγός βέλτιστων πρακτικών Google+ Αποκλειστικές και εμπιστευτικές πληροφορίες της Google Οδηγός βέλτιστων πρακτικών Google+ Αποκλειστικές και εμπιστευτικές πληροφορίες της Google Πίνακας περιεχομένων Διαμορφώστε την παρουσία σας στο Google+ Δημιουργήστε ένα προσωπικό προφίλ Google+ Δημιουργήστε

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Ψηφιακά Σ.Α.Ε: Περιγραφή στο Χώρο Κατάστασης Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης

Διαβάστε περισσότερα

Interpolation (1) Τρίτη, 3 Μαρτίου Σελίδα 1

Interpolation (1) Τρίτη, 3 Μαρτίου Σελίδα 1 Iterpolatio () Τρίτη, 3 Μαρτίου 05 9:46 πμ 05.03.03 Σελίδα 05.03.03 Σελίδα 05.03.03 Σελίδα 3 05.03.03 Σελίδα 4 05.03.03 Σελίδα 5 05.03.03 Σελίδα 6 05.03.03 Σελίδα 7 05.03.03 Σελίδα 8 05.03.03 Σελίδα 9

Διαβάστε περισσότερα

Λήψη αποφάσεων κατά Bayes

Λήψη αποφάσεων κατά Bayes Λήψη αποφάσεων κατά Bayes Σημειώσεις μαθήματος Thomas Bayes (1701 1761) Στυλιανός Χατζηδάκης ECE 662 Άνοιξη 2014 1. Εισαγωγή Οι σημειώσεις αυτές βασίζονται στο μάθημα ECE662 του Πανεπιστημίου Purdue και

Διαβάστε περισσότερα

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές Ένα τυχαίο π.γ.π. maximize/minimize z=c x Αx = b x 0 Τυπική μορφή του π.γ.π. maximize z=c x Αx = b x 0 b 0 είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς

Διαβάστε περισσότερα

Παράδειγμα σχεδιασμού και παρουσίασης μικροδιδασκαλίας

Παράδειγμα σχεδιασμού και παρουσίασης μικροδιδασκαλίας Παράδειγμα σχεδιασμού και παρουσίασης μικροδιδασκαλίας Στο τρίτο άρθρο αυτής της σειράς, η οποία αποτελεί μια πρώτη, μικρή απάντηση στις ανάγκες των εκπαιδευτών του σεμιναρίου της 12 ης & 13 ης Ιουνίου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4: ΙΔΙΟΤΙΜΕΣ ΚΑΙ ΙΔΙΟΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 4: ΙΔΙΟΤΙΜΕΣ ΚΑΙ ΙΔΙΟΔΙΑΝΥΣΜΑΤΑ ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ :. ΟΡΙΣΜΟΙ Δίνεται ο πίνακας Παρατηρήστε τι γίνεται όταν ποαπασιάζουμε τον Α με το διάνυσμα u u u παίρνουμε δηαδή ένα διάνυσμα ποαπάσιο του u. Η αναζήτηση διανυσμάτων που έχουν παρόμοια

Διαβάστε περισσότερα