ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ"

Transcript

1 ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ ΑΚΑΔ. ΥΠΟΤΡΟΦΟΣ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ ΔΕΥΤΕΡΟ - Διανύσματα - Πράξεις με πίνακες - Διαφορικός λογισμός (1D)

2 ΜΑΘΗΜΑΤΙΚΟ ΥΠΟΒΑΘΡΟ Άλγεβρα διανυσμάτων και πινάκων: Πίνακες και διανύσματα (ως μονοδιάστατοι πίνακες). Βασικές πράξεις πινάκων (πρόσθεση αντιστροφή). Εύρεση ιδιοτιμών ιδιοδιανυσμάτων πίνακα. Ανάλυση συναρτήσεων πολλών μεταβλητών: Ιδιότητες και κανόνες διαφόρισης. Ολική παράγωγος Μερικές παράγωγοι. Ανάπτυξη σε πολυωνυμική σειρά (Taylor). Τοπικά ακρότατα Κρίσιμα σημεία. 2

3 ΟΡΙΣΜΟΣ ΔΙΑΝΥΣΜΑΤΟΣ Ευθεία διάταξη n αριθμών. Χ = (x 1, x 2,, x n ). Γεωμετρική ερμηνεία: Ευθύγραμμο τμήμα του R n. Πράξεις με διανύσματα: Πράξεις με συντεταγμένες... Μέτρο X x x... x n Τριγωνική ανισότητα Εσωτερικό γινόμενο 2D X Y X Y. X Y x y. n k 1 k k 3D 3

4 ΟΡΙΣΜΟΣ ΠΙΝΑΚΑ Ορθογώνια διάταξη αριθμών στις m x n διαστάσεις. x Στοιχείο στη γραµµή i και τη στήλη j. Ανάστροφος πίνακας Χ Τ : T x xji (Αντί)Συμμετρικός πίνακας: T ( ) Προσαρτημένος πίνακας Χ C : Αφαιρούμε τη γραμμή i και τη στήλη j από τον Χ Διάνυσμα = Μονοδιάστατος πίνακας: k X x. k1 4

5 ΠΡΑΞΕΙΣ ΜΕ ΠΙΝΑΚΕΣ Ειδικές κατηγορίες πινάκων: Μηδενικός Όλα τα στοιχεία ίσα με 0. Τετραγωνικός Ίσος αριθμός γραμμών στηλών (m = n). Διαγώνιος Τετραγωνικός, μόνο τα διαγώνια στοιχεία 0. Μοναδιαίος Διαγώνιος, όλα τα μη μηδενικά στοιχεία = 1. Πράξεις με πίνακες Πράξεις με τα στοιχεία τους! Πρόσθεση Αφαίρεση m x n πινάκων: Αντίθετος πίνακας ενός m x n πίνακα: X x. Γραμμική υπέρθεση: X Y x y z. X Y x y. 5

6 ΠΡΑΞΕΙΣ ΜΕ ΠΙΝΑΚΕΣ (συν.) Πολλαπλασιασμός τετραγωνικών πινάκων. Κατ αντιστοιχία με εσωτερικό γινόμενο διανυσμάτων: X Y x y. Αντίστροφος πίνακας: Χ -1 Χ = Ι. n k 1 ik kj Αντίστροφος = Ανάστροφος Ορθογώνιος πίνακας. Θετικά ορισμένος Υ T X Υ> 0 για κάθε Υ 0 ϵ R n. Θετικά ημιορισμένος Υ T X Υ 0 για κάθε Υ 0 ϵ R n. 6

7 ΠΑΡΑΔΕΙΓΜΑ ΠΡΩΤΟ Αν o πίνακας Χ επαληθεύει τη σχέση Χ 2 = Χ, δείξτε ότι την ίδια σχέση επαληθεύει και ο πίνακας Ι - Χ, καθώς και ότι ο Χ επαληθεύει την ιδιότητα X k = Χ (k 3). Στο πρώτο ζητούμενο, αρκεί να δείξουμε ότι (Ι - Χ) 2 = Ι - Χ. Ι Χ 2 = Ι Χ Ι Χ = Ι 2 Ι Χ Χ Ι + Χ 2 = Ι 2Χ + Χ = Ι Χ. Στο δεύτερο ερώτημα, παρατηρούμε τα ακόλουθα: Συνεπώς, η λύση απαιτεί χρήση της μεθόδου επαγωγής: 1 Απόδειξη για το μικρότερο k (=3) Χ 3 = Χ 2 Χ = Χ Χ = Χ 2 = Χ. 2 Παραδοχή της ισχύος για τυχαία τιμή k = n Χ n = Χ. 3 Απόδειξη για k = n + 1 Χ n+1 = Χ n Χ = Χ Χ = Χ 2 = Χ. 7

8 ΠΑΡΑΔΕΙΓΜΑ ΔΕΥΤΕΡΟ Να βρείτε για ποιές τιμές των α 1, α 2, α 3, α 4 ο πίνακας Α = α 1 α 2 α 3 α 4 είναι αντιστρέψιμος, καθώς και τον Α -1. Για να υπάρχει ο Α -1, πρέπει να ισχύει ότι Α 0: Οι προσαρτημένοι πίνακες είναι ίσοι με: Ο υπολογισμός του αντίστροφου πίνακα ολοκληρώνεται: 8

9 ΔΙΑΓΩΝΙΟΠΟΙΗΣΗ ΠΙΝΑΚΑ Περαιτέρω απλοποίηση συμμετρικών πινάκων. Ορισμός διαγωνιοποίησης πίνακα: Κάθε συμμετρικός πίνακας αναλύεται ως Χ = U T D U, όπου U ορθογώνιος πίνακας των ιδιοδιανυσμάτων του Χ και D διαγώνιος πίνακας με στοιχεία τις ιδιοτιμές του Χ. Υπολογισμός ιδιοτιμών ιδιοδιανυσμάτων: Επίλυση του προβλήματος ιδιοτιμών λι Χ = 0 Χ Ξ = λξ. Οι θετικά ορισμένοι πίνακες έχουν ιδιοτιμές > 0. Οι θετικά ημιορισμένοι πίνακες έχουν ιδιοτιμές 0. 9

10 ΠΑΡΑΔΕΙΓΜΑ ΤΡΙΤΟ Να υπολογιστεί το c ώστε να αποτελεί ιδιοδιάνυσμα του πίνακα Α = c το διάνυσμα Χ = Χ ιδιοδιάνυσμα του Α Yπάρχει λ ϵ R ώστε Α Χ = λχ. Κάνουμε τις απαιτούμενες πράξεις (πρόβλημα ιδιοτιμών):. Απάντηση: Όταν c = 5/2, μια ιδιοτιμή του Α είναι ίση με 3 και έχει ως αντίστοιχο ιδιοδιάνυσμα το διάνυσμα Χ. 10

11 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ (1D) Σχετική μεταβολή της τιμής μιας συνάρτησης ως προς τις αλλαγές της τιμής της μεταβλητής. Κλίση εφαπτόμενης γραμμής στη γραφική παράσταση. Καλύτερη γραμμική προσέγγιση στο εν λόγω σημείο. Ορισμός της παραγώγου: Η f(x): R R είναι διαφορίσιμη στο x 0 αν και μόνο αν υπάρχει το πεπερασμένο όριο lim x x 0 f x f x 0 x x 0, το οποίο ονομάζεται παράγωγος df/dx = f (x) της f στο x 0. 11

12 ΒΑΣΙΚΕΣ ΙΔΙΟΤΗΤΕΣ (1D) 12

13 ΕΡΩΤΗΣΕΙΣ - ΣΥΖΗΤΗΣΗ Διανύσματα Πράξεις με πίνακες Διαφορικός λογισμός (1D) 13

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ ΠΡΩΤΟ - Διατύπωση προβλημάτων - Κατηγορίες εφαρμογών - Πράξεις με πίνακες ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ (in short) Που

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ ΑΚΑΔ. ΥΠΟΤΡΟΦΟΣ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ ΤΡΙΤΟ - Διαφορικός λογισμός (3D) - Πολυωνυμικό ανάπτυγμα - Τοπικά ακρότατα ΜΑΘΗΜΑΤΙΚΟ ΥΠΟΒΑΘΡΟ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ ΔΕΥΤΕΡΟ - Διαφορικός λογισμός - Πολυωνυμικό ανάπτυγμα - Τοπικά ακρότατα ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ 2 ΠΑΡΑΓΩΓΟΣ

Διαβάστε περισσότερα

ΚΕΦ.6:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ. ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ

ΚΕΦ.6:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ. ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ ΚΕΦ:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ Τετραγωνικές μορφές: Συναρτήσεις με τύπο Q ν α ι j j, j [ ] ν α α ν αν α νν ν Τ Χ ΑΧ Για παράδειγμα εάν v Q α + α + α + α α + α + α + α δηλ a a a a α + α + α

Διαβάστε περισσότερα

1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό

1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό 1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό 1.1 Όρια ακολουθιών Λέμε ότι η ακολουθία { n } συγκλίνει με όριο R αν για κάθε ϵ > 0 υπάρχει ακέραιος N = N(ϵ) τέτοιος ώστε (1.1) n < ϵ για κάθε n > N, και

Διαβάστε περισσότερα

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι)

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι) 77 78 7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7. ΕΙΣΑΓΩΓΗ Η Άλγεβρα των μητρών οι πινάκων είναι ιδιαίτερα χρήσιμη για την επίλυση συστημάτων καθώς επίσης στις επιστήμες της οικονομετρίας και της στατιστικής. ΟΡΙΣΜΟΣ: Μήτρα

Διαβάστε περισσότερα

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1 Τετραγωνικό μοντέλο συνάρτησης Τετραγωνικά μοντέλα Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo Για συνάρτηση μιας

Διαβάστε περισσότερα

0 + a = a + 0 = a, a k, a + ( a) = ( a) + a = 0, 1 a = a 1 = a, a k, a a 1 = a 1 a = 1,

0 + a = a + 0 = a, a k, a + ( a) = ( a) + a = 0, 1 a = a 1 = a, a k, a a 1 = a 1 a = 1, I ΠΙΝΑΚΕΣ 11 Σώμα 111 Ορισμός: Ενα σύνολο k εφοδιασμένο με δύο πράξεις + και ονομάζεται σώμα αν ικανοποιούνται οι παρακάτω ιδιότητες: (Α (α (Προσεταιριστική ιδιότητα της πρόσθεσης (a + b + c = a + (b +

Διαβάστε περισσότερα

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1 Τετραγωνικό μοντέλο συνάρτησης Τετραγωνικά μοντέλα Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Για συνάρτηση μιας

Διαβάστε περισσότερα

( 1)( 3) ( ) det( ) (1 )( 1 ) ( 2)( 2) pl( ) det( L ) (5 )( 7 ) ( 1) ( ) det( M ) (1 )(1 )

( 1)( 3) ( ) det( ) (1 )( 1 ) ( 2)( 2) pl( ) det( L ) (5 )( 7 ) ( 1) ( ) det( M ) (1 )(1 ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 9 Ιουνίου 0 Θέμα Δίδονται οι πίνακες K= 5 4, L=, M=. 9 7 A) (8 μονάδες) Για κάθε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΣ 121: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟΥ 3

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΣ 121: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟΥ 3 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΣ 11: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟΥ 3 1. Να βρείτε τις ιδιοτιμές και τα ιδιοδιανύσματα των πιο κάτω πινάκων: 1 0 3 1 1 1 1 1 3 1 1 4 a b.

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ Ονοματεπώνυμο:......... Α.Μ....... Ετος... ΑΙΘΟΥΣΑ:....... I. (περί τις 55μ. = ++5++. Σωστό ή Λάθος: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - //8 ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ (αʹ Αν AB = BA όπου A, B τετραγωνικά και

Διαβάστε περισσότερα

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις 1. Εισαγωγή Δίνεται η συνάρτηση μεταφοράς = = 1 + 6 + 11 + 6 = + 6 + 11 + 6 =. 2 Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις L = 0 # και L $ % &'

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-9) ΜΕΡΟΣ 7: ΙΔΙΟΤΙΜΕΣ & ΙΔΙΟΔΙΑΝΥΣΜΑΤΑ ΔΙΑΓΩΝΙΟΠΟΙΗΣΗ ΠΙΝΑΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΑΠΟ ΤΙΣ ΠΑΡΑΔΟΣΕΙΣ

Διαβάστε περισσότερα

Σημειώσεις διαλέξεων: Βελτιστοποίηση πολυδιάστατων συνεχών συναρτήσεων 1 / 20

Σημειώσεις διαλέξεων: Βελτιστοποίηση πολυδιάστατων συνεχών συναρτήσεων 1 / 20 Σημειώσεις διαλέξεων: Βελτιστοποίηση πολυδιάστατων συνεχών συναρτήσεων Ισαάκ Η Λαγαρής 1 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιον Ιωαννίνων 1 Με υλικό από το υπό προετοιμασία βιβλίο των: Βόγκλη,

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πίνακες Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Πίνακες Μητρώα Πίνακας: Ορθογώνια διάταξη αριθμών σε γραμμές και στήλες

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πίνακες Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Πίνακες Μητρώα Πίνακας: Ορθογώνια διάταξη αριθμών σε γραμμές και στήλες

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 2008

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 2008 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 8 Ημερομηνία παράδοσης της Εργασίας: Φεβρουαρίου 8 Πριν από την λύση κάθε άσκησης καλό

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

1. a. Έστω b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα του A Έστω A και ( x) [ x]

1. a. Έστω b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα του A Έστω A και ( x) [ x] σκήσεις Ασκήσεις Ιδιοτιμές και ιδιοδιανύσματα Βασικά σημεία Ορισμός ιδιοτιμών και ιδιοδιανυσμάτων, υπολογισμός τους Ιδιόχωροι, διάσταση ιδιόχωρου, εύρεση βάσης ιδιόχωρου Σε διακεκριμένες ιδιοτιμές αντιστοιχούν

Διαβάστε περισσότερα

Ασκήσεις2 8. ; Αληθεύει ότι το (1, 0, 1, 2) είναι ιδιοδιάνυσμα της f ; b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης 3 3

Ασκήσεις2 8. ; Αληθεύει ότι το (1, 0, 1, 2) είναι ιδιοδιάνυσμα της f ; b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης 3 3 Ασκήσεις 8 Ασκήσεις Ιδιοτιμές και ιδιοδιανύσματα Βασικά σημεία Ορισμός ιδιοτιμων και ιδιοδιανυσμάτων, υπολογισμός τους Σε διακεκριμένες ιδιοτιμές αντιστοιχούν γραμμικά ανεξάρτητα ιδιοδιανύσματα Αν ΑΧ=λΧ,

Διαβάστε περισσότερα

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα.

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα. Ασκήσεις 0 Ασκήσεις Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα o H -στήλη του P P είναι E αν και μόνο αν η -στήλη του P είναι ιδιοδιάνυσμα του που αντιστοιχεί στην ιδιοτιμή

Διαβάστε περισσότερα

Ιδιάζουσες τιμές πίνακα. y έχουμε αντίστοιχα τις σχέσεις : Αυτές οι παρατηρήσεις συμβάλλουν στην παραγοντοποίηση ενός πίνακα

Ιδιάζουσες τιμές πίνακα. y έχουμε αντίστοιχα τις σχέσεις : Αυτές οι παρατηρήσεις συμβάλλουν στην παραγοντοποίηση ενός πίνακα Ιδιάζουσες τιμές πίνακα Επειδή οι πίνακες που παρουσιάζονται στις εφαρμογές είναι μη τετραγωνικοί, υπάρχει ανάγκη να βρεθεί μία μέθοδος που να «μελετά» τους μη τετραγωνικούς με «μεθόδους και ποσά» που

Διαβάστε περισσότερα

ΜΑΣ121: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ I Εαρινό εξάμηνο , Διδάσκων: Γιώργος Γεωργίου ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ, Διάρκεια: 2 ώρες 18 Νοεμβρίου, 2017

ΜΑΣ121: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ I Εαρινό εξάμηνο , Διδάσκων: Γιώργος Γεωργίου ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ, Διάρκεια: 2 ώρες 18 Νοεμβρίου, 2017 ΜΑΣ: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ I Εαρινό εξάμηνο 07-08, Διδάσκων: Γιώργος Γεωργίου ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ, Διάρκεια: ώρες 8 Νοεμβρίου, 07 Δίνονται 4 προβλήματα που αντιστοιχούν σε 0 μονάδες με άριστα το 00! ΟΝΟΜΑ: Αρ.

Διαβάστε περισσότερα

Χαρακτηριστική Εξίσωση Πίνακα

Χαρακτηριστική Εξίσωση Πίνακα Έστω ο n nτετραγωνικός πίνακας A της μορφής a L a M O M an L a όπου aij, i n, j n πραγματικές σταθερές Ονομάζουμε χαρακτηριστική εξίσωση του πίνακα A την εξίσωση A λi, όπου I ο n n μοναδιαίος πίνακας και

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΕΙΣΑΓΩΓΙΚΟ ΜΑΘΗΜΑ - Θεμελιώδεις έννοιες - Επισκόπηση ύλης - Χρήσιμες πληροφορίες ΤΑΥΤΟΤΗΤΑ ΜΑΘΗΜΑΤΟΣ Μάθημα επιλογής

Διαβάστε περισσότερα

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις Ασκήσεις 5 Βασικά σημεία Ιδιότητες ιδιόχωρων: Έστω,, Ισχύουν τα εξής Ασκήσεις Διαγωνίσιμες Γραμμικές Απεικονίσεις κάποιες διακεκριμένες ιδιοτιμές της γραμμικής απεικόνισης : V V, όπου o Αν v v 0, όπου

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 1

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai2018/lai2018html Παρασκευή 12 Οκτωβρίου

Διαβάστε περισσότερα

Διαγωνοποίηση μητρών. Στοιχεία Γραμμικής Άλγεβρας

Διαγωνοποίηση μητρών. Στοιχεία Γραμμικής Άλγεβρας Διαγωνοποίηση μητρών Στοιχεία Γραμμικής Άλγεβρας Όμοιες μήτρες Ορισμός: Οι τετραγωνικές μήτρες Α=[α ij ] nxn & B=[b ij ] nxn όμοιες (Α~Β): αν υπάρχει ομαλή μήτρα Ρ τ.ώ. Β = Ρ -1 Α Ρ A~B Β~ Α Ρ ομαλή μήτρα

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)

Διαβάστε περισσότερα

Κεφάλαιο 7 Ορθογώνιοι Πίνακες

Κεφάλαιο 7 Ορθογώνιοι Πίνακες Κεφάλαιο 7 Ορθογώνιοι Πίνακες Εσωτερικό Γινόμενο και ορθογωνιότητα Έστω V ένας διανυσματικός χώρος, υπόχωρος του n. Κάθε συνάρτηση ορισμένη στο VV (την οποία θα συμβολίζουμε με ) ορίζει ένα εσωτερικό γινόμενο

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑ ΠΙΝΑΚΩΝ. (ii) Αν ο Β m+1, με m N, αντιστρέφεται, τότε και ο Β αντιστρέφεται

ΕΝΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑ ΠΙΝΑΚΩΝ. (ii) Αν ο Β m+1, με m N, αντιστρέφεται, τότε και ο Β αντιστρέφεται ΕΝΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑ ΠΙΝΑΚΩΝ 1) Έστω A, Β Μ n (R) τέτοιοι, ώστε A + Β = Ι n. Να δείξετε ότι : A = A 2 κκκ Β = Β 2 ΑΑ = Ο 2) Έστω A, Β Μ n (R), με A = A 2 και ΑΑ + ΒΒ = Ο. Να δειχθεί ότι ΑΑ = ΒΒ

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος

Διαβάστε περισσότερα

1 ιαδικασία διαγωνιοποίησης

1 ιαδικασία διαγωνιοποίησης ιαδικασία διαγωνιοποίησης Εστω V ένας R-διανυσματικός χώρος (ή έναςc-διανυσματικός χώρος) διάστασης n. Είναι γνωστό ότι κάθε διάνυσμα (,,..., n ) του χώρου V μπορεί να παρασταθεί και σαν πίνακας στήλη

Διαβάστε περισσότερα

Τα διανύσματα xy, R είναι κάθετα αν και μόνο αν x y 0. Για το εσωτερικό γινόμενο των διανυσμάτων. Το ορθογώνιο συμπλήρωμα ενός υπόχωρου

Τα διανύσματα xy, R είναι κάθετα αν και μόνο αν x y 0. Για το εσωτερικό γινόμενο των διανυσμάτων. Το ορθογώνιο συμπλήρωμα ενός υπόχωρου ΤΥΠΟΛΟΓΙΟ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Ο ανάστροφος πίνακας του [ j ] σημειώνεται με [ j ] (δηλαδή οι γραμμές γίνονται στήλες αντίστροφα Ιδιότητες: ( ( B B ( R ( B B Ο αντίστροφος ενός τετραγωνικού πίνακα [ j ]

Διαβάστε περισσότερα

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0.

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0. Ασκήσεις4 46 Ασκήσεις 4 Τριγωνίσιμες γραμμικές απεικονίσεις, Θεώρημα των Cayley-Hamilton Βασικά σημεία Ορισμός τριγωνίσιμου πίνακα, ορισμός τριγωνίσιμης γραμμικής απεικόνισης Κριτήριο τριγωνισιμότητας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)

Διαβάστε περισσότερα

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 07, 2 Μαρτίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Συμμετρικοί και θετικά ορισμένοι πίνακες. Η ανάλυση Cholesky 2. Νόρμες

Διαβάστε περισσότερα

2 3x 5x x

2 3x 5x x ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕ ΚΑΤΕΥΘΥΝΣΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΑΣΚΗΣΕΙΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Ι ΙΩΑΝΝΗΣ Σ ΣΤΑΜΑΤΙΟΥ ΣΑΜΟΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ

Διαβάστε περισσότερα

Εισαγωγικές έννοιες. Κατηγορίες προβλημάτων (σε μια διάσταση) Προβλήματα εύρεσης μεγίστου. Συμβολισμοί

Εισαγωγικές έννοιες. Κατηγορίες προβλημάτων (σε μια διάσταση) Προβλήματα εύρεσης μεγίστου. Συμβολισμοί Κατηγορίες προβλημάτων (σε μια διάσταση) Εισαγωγικές έννοιες Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Το πρόβλημα

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος 6/6/06 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 0 Δίνεται ο πίνακας A =. Nα υπολογίσετε την βαθμίδα του και να βρείτε τη διάσταση και από μία βάση α) του μηδενοχώρου

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 9: Γεωμετρία του Χώρου των Μεταβλητών, Υπολογισμός Αντιστρόφου Μήτρας Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος 3

Περιεχόμενα. Πρόλογος 3 Πρόλογος Η χρησιμότητα της Γραμμικής Άλγεβρας είναι σχεδόν αυταπόδεικτη. Αρκεί μια ματιά στο πρόγραμμα σπουδών, σχεδόν κάθε πανεπιστημιακού τμήματος θετικών επιστημών, για να διαπιστώσει κανείς την παρουσία

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: Ιανουαρίου 6 Ηµεροµηνία Παράδοσης της Εργασίας από

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10 Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 0 Επαναληπτικες Ασκησεις ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθοι Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laiihtml

Διαβάστε περισσότερα

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ Στέλιος Τζωρτζάκης 1 3 4 Ο διανυσματικός χώρος των φυσικών καταστάσεων Η έννοια

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΙΙ ΜΑΘΗΜΑ 1-2-ΠΙΝΑΚΕΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΠΑΝΗΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΙΙ ΜΑΘΗΜΑ 1-2-ΠΙΝΑΚΕΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΠΑΝΗΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΙΙ ΜΑΘΗΜΑ 1-2-ΠΙΝΑΚΕΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2010-2011 ΠΑΝΗΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΙΝΑΚΑΣ Ένας πίνακας Α με στοιχεία από το σύνολο F (συνήθως θεωρούμε τα σύνολα

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy 4 Εισαγωγή Kεφάλαιο 4 Συστήματα διαφορικών εξισώσεων Εστω διανυσματικό πεδίο F : : F = Fr, όπου r x, και είναι η ταχύτητα στο σημείο πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουμε τις τροχιές κίνησης των

Διαβάστε περισσότερα

Αντίστροφη & Ιδιάζουσα μήτρα. Στοιχεία Γραμμικής Άλγεβρας

Αντίστροφη & Ιδιάζουσα μήτρα. Στοιχεία Γραμμικής Άλγεβρας Αντίστροφη & Ιδιάζουσα μήτρα Στοιχεία Γραμμικής Άλγεβρας Γιατί όμως μελετάμε τις μήτρες Συνήθως τα επιστημονικά δεδομένα (παρατηρήσεις, αποτελέσματα πειραμάτων κ.λπ.) οργανώνονται σε γραμμές και σε στήλες,

Διαβάστε περισσότερα

8.1 Διαγωνοποίηση πίνακα

8.1 Διαγωνοποίηση πίνακα Κεφάλαιο 8 Κανονικές μορφές από 6 Κεφάλαιο 8 Κ Α Ν Ο Ν Ι Κ Ε Σ Μ Ο Ρ Φ Ε Σ 8. Διαγωνοποίηση πίνακα Ορισμός 8.α Ένας πίνακας M n ( ) oνομάζεται διαγωνοποιήσιμος στο αν υπάρχει αντιστρέψιμος πίνακας P M

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 05 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση.. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος

Διαβάστε περισσότερα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παράδειγμα Να βρείτε τις ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα του πίνακα A 4. Επίσης να προσδιοριστούν οι ιδιοχώροι και οι γεωμετρικές πολλαπλότητες των ιδιοτιμών.

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Ορίζουσα Gram και οι Εφαρµογές της Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 65 11 Η Ορίζουσα Gram και

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

Κεφάλαιο 6 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 6 Ιδιοτιμές και Ιδιοδιανύσματα Κεφάλαιο 6 Ορισμοί Έστω Α ένας πίνακας με πραγματικά στοιχεία Ο πραγματικός ή μιγαδικός αριθμός λ καλείται ιδιοτιμή του πίνακα Α εάν υπάρχει μη μηδενικό διάνυσμα v με πραγματικά ή μιγαδικά στοιχεία τέτοιο

Διαβάστε περισσότερα

ΠΛΗ ΛΥΣΕΙΣ ΕΡΓ_2 ΣΕΛ. 1/11

ΠΛΗ ΛΥΣΕΙΣ ΕΡΓ_2 ΣΕΛ. 1/11 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: Νοεμβρίου 007 Ημερομηνία παράδοσης της Εργασίας: 4 Δεκεμβρίου 007 Πριν από την λύση κάθε άσκησης καλό

Διαβάστε περισσότερα

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΤΜΗΜΑ ΔΙΕΘΝΟΥΣ ΕΜΠΟΡΙΟΥ ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΑ: ) ΠΙΝΑΚΕΣ ) ΟΡΙΖΟΥΣΕΣ ) ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4) ΠΑΡΑΓΩΓΟΙ ΜΑΡΙΑ ΡΟΥΣΟΥΛΗ ΚΕΦΑΛΑΙΟ ΠΙΝΑΚEΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΟΡΙΣΜΟΣ Πίνακας

Διαβάστε περισσότερα

Μαθηματικά ΜΕΡΟΣ 5 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΜΕ ΠΙΝΑΚΕΣ

Μαθηματικά ΜΕΡΟΣ 5 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΜΕ ΠΙΝΑΚΕΣ Μαθηματικά ΜΕΡΟΣ 5 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΜΕ ΠΙΝΑΚΕΣ Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΣΥΣΤΗΜΑ 2Χ2 ΜΕ ΠΙΝΑΚΕΣ Έστω το σύστημα εξισώσεων 2Χ2 (2 εξισώσεις

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Επανάληψη: Μαθηματικά

Δυναμική Μηχανών I. Επανάληψη: Μαθηματικά Δυναμική Μηχανών I 2 1 Επανάληψη: Μαθηματικά 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Συμβολισμοί Μεταβλητών

Διαβάστε περισσότερα

21 a 22 a 2n. a m1 a m2 a mn

21 a 22 a 2n. a m1 a m2 a mn Παράρτημα Α Βασική γραμμική άλγεβρα Στην ενότητα αυτή θα παρουσιαστούν με συνοπτικό τρόπο βασικές έννοιες της γραμμικής άλγεβρας. Ο στόχος της ενότητας είναι να αποτελέσει ένα άμεσο σημείο αναφοράς και

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 2 η Ημερομηνία Αποστολής στον Φοιτητή: 28 Νοεμβρίου 2011

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 2 η Ημερομηνία Αποστολής στον Φοιτητή: 28 Νοεμβρίου 2011 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 8 Νοεμβρίου 0 Ημερομηνία παράδοσης της Εργασίας: 6 Ιανουαρίου 0 Οι ασκήσεις

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ορθοκανονικοποίηση, Ορίζουσες, Ιδιοτιμές και Ιδιοδιανύσματα Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ , Β= 1 y, όπου y 0. , όπου y 0.

ΑΠΑΝΤΗΣΕΙΣ , Β= 1 y, όπου y 0. , όπου y 0. ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ 9 Ιουνίου 8:-: ΑΠΑΝΤΗΣΕΙΣ Θέμα (Α) ( 5 μονάδες) Δίδονται οι πίνακες Α=,

Διαβάστε περισσότερα

Πίνακες Γραμμικά Συστήματα

Πίνακες Γραμμικά Συστήματα Πίνακες Γραμμικά Συστήματα 1. Είδη Πινάκων Οι πίνακες είναι ένα χρήσιμο μαθηματικό εργαλείο, με εφαρμογές και διασυνδέσεις σε πολλές επιστήμες. Η σημαντικότερη εφαρμογή των πινάκων είναι στην επίλυση συστημάτων

Διαβάστε περισσότερα

Κεφάλαιο 2 Πίνακες - Ορίζουσες

Κεφάλαιο 2 Πίνακες - Ορίζουσες Κεφάλαιο Πίνακες - Ορίζουσες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο 3 ο Τρίμηνο ο Τρίμηνο Είδος

Διαβάστε περισσότερα

Ασκήσεις4 48. P AP τριγωνικό. Αφού δείξτε ότι ο A δεν είναι διαγωνίσιμος, βρείτε αντιστρέψιμο A 1 3 1

Ασκήσεις4 48. P AP τριγωνικό. Αφού δείξτε ότι ο A δεν είναι διαγωνίσιμος, βρείτε αντιστρέψιμο A 1 3 1 Ασκήσεις4 48 Ασκήσεις4 Τριγωνισιμότητα Βασικά σημεία Ορισμός τριγωνίσιμου πίνακα, ορισμός τριγωνίσιμης γραμμικής απεικόνισης Θεώρημα: είναι τριγωνίσιμος αν και μόνο αν ( x ) γινόμενο πρωτοβάθμιων παραγόντων

Διαβάστε περισσότερα

Ορισμοί και πράξεις πινάκων

Ορισμοί και πράξεις πινάκων Ορισμοί και πράξεις πινάκων B.. Εισαγωγή Κατά την εύρεση των μαθηματικών μοντέλων των σύγχρονων δυναμικών συστημάτων, διαπιστώνεται ότι οι διαφορικές εξισώσεις που εμπλέκονται μπορούν να γίνουν πολύ περίπλοκες

Διαβάστε περισσότερα

Στοχαστικά Σήματα και Τηλεπικοινωνιές

Στοχαστικά Σήματα και Τηλεπικοινωνιές Στοχαστικά Σήματα και Τηλεπικοινωνιές Ενότητα 2: Ανασκόπηση Στοιχείων Γραμμικής Άλγεβρας Καθηγητής Κώστας Μπερμπερίδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ και Πληροφορικής Σκοποί ενότητας Παρουσίαση/υπενθύμιση

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ O z είναι πραγματικός, αν και μόνο αν Ο z είναι φανταστικός, αν και μόνο αν β) Αν και να αποδείξετε ότι ο αριθμός είναι πραγματικός, ενώ ο αριθμός είναι φανταστικός. 9. Να βρείτε το γεωμετρικό τόπο των

Διαβάστε περισσότερα

a ) a ) = lim f( a + h u ) f( a ) = lim (2) h = 0 f( a + h u ) f( a ) hdf( a )( u ) lim = 0 lim u ) f( a + h lim = 0 u ) = 0 lim = Df( a )( u ) lim

a ) a ) = lim f( a + h u ) f( a ) = lim (2) h = 0 f( a + h u ) f( a ) hdf( a )( u ) lim = 0 lim u ) f( a + h lim = 0 u ) = 0 lim = Df( a )( u ) lim 1 ΑΝΑΛΥΣΗ ΙΙ Κατευθυνόμενη Παράγωγος Κατευθυνόμενη Παράγωγος: Ορισμός 1: Εστω f : U R 2 R μία πραγματική συνάρτηση δύο μεταβλητών με U ανοικτό, a = (a, b) U και u = (u, v) μία κατεύθυνση του R 2 (δηλαδή

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β ΠΕΡΙΤΤΟΙ Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii8/laii8html Παρασκευή 4 Ιουνίου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1Ο : ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Διάνυσμα Θέσης ενός σημείου Αν θεωρήσουμε ένα οποιοδήποτε σημείο Ο του επιπέδου ως σημείο αναφοράς (ακόμα

Διαβάστε περισσότερα

Για την κατανόηση της ύλης αυτής θα συμβουλευθείτε επίσης το: βοηθητικό υλικό που υπάρχει στη

Για την κατανόηση της ύλης αυτής θα συμβουλευθείτε επίσης το: βοηθητικό υλικό που υπάρχει στη ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 η Ημερομηνία Αποστολής στον Φοιτητή: Φεβρουαρίου Ημερομηνία παράδοσης της Εργασίας: 6 Μαρτίου Πριν από την λύση κάθε άσκησης καλό είναι να

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

Θέμα 1. με επαυξημένο 0 1 1/ 2. πίνακα. και κλιμακωτή μορφή αυτού

Θέμα 1. με επαυξημένο 0 1 1/ 2. πίνακα. και κλιμακωτή μορφή αυτού ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΗΣ Ιουλίου 0 Θέμα α) (Μον.6) Να βρεθεί η τιμή του πραγματικού

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΤΗ ΔΙΕΘΝΗ ΦΟΙΤΗΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΜΑΘΗΜΑΤΙΚΩΝ ΟΜΑΔΑ Α

ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΤΗ ΔΙΕΘΝΗ ΦΟΙΤΗΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΜΑΘΗΜΑΤΙΚΩΝ ΟΜΑΔΑ Α ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΤΗ 7 Ιουνίου 008 ΔΙΕΘΝΗ ΦΟΙΤΗΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΜΑΘΗΜΑΤΙΚΩΝ Να απαντήσετε σε 3 θέματα από την ομάδα

Διαβάστε περισσότερα

Γραμμική Άλγεβρα II. Ασκήσεις με Υποδείξεις - Απαντήσεις. Περιεχόμενα

Γραμμική Άλγεβρα II. Ασκήσεις με Υποδείξεις - Απαντήσεις. Περιεχόμενα Γραμμική Άλγεβρα II Ασκήσεις με Υποδείξεις - Απαντήσεις ΜΜ Περιεχόμενα Ασκήσεις0: Όμοιοι Πίνακες Ασκήσεις: Πολυώνυμα 6 Ασκήσεις: Ιδιοτιμές και Ιδιοδιανύσματα Ασκήσεις: Διαγωνισιμότητα Ασκήσεις4: Τριγωνισιμότητα

Διαβάστε περισσότερα

Μήτρες Ειδικές μήτρες. Στοιχεία Γραμμικής Άλγεβρας

Μήτρες Ειδικές μήτρες. Στοιχεία Γραμμικής Άλγεβρας Μήτρες Ειδικές μήτρες Στοιχεία Γραμμικής Άλγεβρας Το διάνυσμα ως μήτρα Είδαμε ότι ένα διάνυσμα u = (u 1, u 2, u 3 ) μπορεί να γραφεί και ως μήτρα 3x1, δηλ. μήτρα με 3 γραμμές x 1 στήλη: 1 η γραμμή 2 η

Διαβάστε περισσότερα

Εάν A = τότε ορίζουμε την ορίζουσα του πίνακα ως τον αριθμό. det( A) = = ( 2)4 3 1 = 8 3 = 11. τότε η ορίζουσά του πίνακα ισούται με

Εάν A = τότε ορίζουμε την ορίζουσα του πίνακα ως τον αριθμό. det( A) = = ( 2)4 3 1 = 8 3 = 11. τότε η ορίζουσά του πίνακα ισούται με Κεφάλαιο Ορίζουσες Βασικοί ορισμοί a b Εάν A τότε ορίζουμε την ορίζουσα του πίνακα ως τον αριθμό a b ad bc Συμβολίζουμε την ορίζουσα του πίνακα και ως A Εάν A τότε ( ) 8 Εάν a a a A a a a a a a τότε η

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Διδάσκων: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Διδάσκων: Ι. Λυχναρόπουλος /8/5 Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Διδάσκων: Ι. Λυχναρόπουλος Άσκηση (Μονάδες.5) Υπολογίστε το διπλό ολοκλήρωμα / I y dyd συντεταγμένες. Επίσης σχεδιάστε το χωρίο ολοκλήρωσης. Λύση: Το

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 13 ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15 ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 17 1. Εισαγωγή 17 2. Πραγματικές συναρτήσεις διανυσματικής μεταβλητής

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΣΑΝΑΤΛΙΣΜΥ Β ΛΥΚΕΙΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΥ Να δώσετε τους ορισμούς: διάνυσμα, μηδενικό διάνυσμα, μέτρο διανύσματος, μοναδιαίο διάνυσμα Διάνυσμα AB ονομάζεται ένα ευθύγραμμο

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. Να εξετάσετε αν είναι ίσες οι συναρτήσεις f, g όταν: x x 2 x x. x x g x. ln x ln x 1 και

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. Να εξετάσετε αν είναι ίσες οι συναρτήσεις f, g όταν: x x 2 x x. x x g x. ln x ln x 1 και Α ΟΜΑΔΑ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Να εξετάσετε αν είναι ίσες οι συναρτήσεις, όταν: () με R και (). Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ Το πεδίο ορισμού της είναι A R. Επομένως A A R Α Θα εξετάσουμε αν για κάθε R ισχύει.

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Παραγοντοποιήσεις Πινάκων και Γραµµικών Απεικονίσεων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 82 13 Παραγοντοποιήσεις

Διαβάστε περισσότερα

( 1)( 3) ( ) det( ) (1 )( 1 ) ( 2)( 2) pl( ) det( L ) (5 )( 7 ) ( 1) ( ) det( M ) (1 )(1 )

( 1)( 3) ( ) det( ) (1 )( 1 ) ( 2)( 2) pl( ) det( L ) (5 )( 7 ) ( 1) ( ) det( M ) (1 )(1 ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 9 Ιουνίου Θέμα Δίδονται οι πίνακες K= 5, L=, M=. 9 7 A) (8 μονάδες) Για κάθε ένα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 4 Ιουνίου 009 Θέμα (0 μονάδες) α) (7 μον) Για τις διάφορες τιμές του k R, να λυθεί το σύστημα y+ kz =

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα

Ομογενή Συστήματα Ορισμός Ενα σύστημα λέγεται ομογενές αν όλοι οι σταθεροί όροι του (δηλαδή οι όροι του δεξιού μέλους του συστήματος) είναι μηδέν.

Ομογενή Συστήματα Ορισμός Ενα σύστημα λέγεται ομογενές αν όλοι οι σταθεροί όροι του (δηλαδή οι όροι του δεξιού μέλους του συστήματος) είναι μηδέν. Ομογενή Συστήματα Ορισμός Ενα σύστημα λέγεται ομογενές αν όλοι οι σταθεροί όροι του (δηλαδή οι όροι του δεξιού μέλους του συστήματος) είναι μηδέν. Ομογενή Συστήματα Ορισμός Ενα σύστημα λέγεται ομογενές

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 5 Ιουλίου 2009

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 5 Ιουλίου 2009 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 5 Ιουλίου 009 Θέμα (0 μονάδες) Έστω U = (, y, z, w) = z, y = w υποσύνολο του και V ο υπόχωρος

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση f παραγωγίσιµη σ ένα διάστηµα (α, β), µε εξαίρεση ίσως ένα σηµείο του, στο

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ 8// Γ ΕΡΓΑΣΙΑ Μαθηµατικά για την Πληροφορική Ι (ΘΕ ΠΛΗ Η ύλη της εργασίας είναι παράγραφοι 6 και 6 από τη Γραµµική Άλγεβρα και Ενότητες,,, από τον Λογισµό

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Πίνακες ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 12 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας και της άλγεβρας των πινάκων. Το ϕυλλάδιο

Διαβάστε περισσότερα

Στοχαστικά Σήµατα και Εφαρµογές

Στοχαστικά Σήµατα και Εφαρµογές Στοχαστικά Σήµατα & Εφαρµογές Ανασκόπηση Στοιχείων Γραµµικής Άλγεβρας ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής ιανύσµατα Ορίζουµετοδιάνυσµα µε Ν στοιχεία

Διαβάστε περισσότερα