ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ"

Transcript

1 Θ.Ε. ΠΛΗ31 (2005-6) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #1 Στόχος Η εργασία επικεντρώνεται σε θέματα προγραμματισμού για Τεχνητή Νοημοσύνη και σε πρακτικά θέματα εξάσκησης σε Κατηγορηματική Λογική. Θέμα 1: Απλές Αναζητήσεις Το παιχνίδι των σπίρτων ανάμεσα σε δύο παίκτες, Α και Β, που εναλλάσσονται ως προς τη σειρά με τον Α να ξεκινάει, παίζεται ως εξής: από ένα σωρό σπίρτων, ο παίκτης που έχει σειρά αφαιρεί 1, 2 ή 3 σπίρτα, με μία κίνηση. Αυτός που αφαιρεί το τελευταίο σπίρτο χάνει. Σημείωση: Το παραπάνω πρόβλημα ανήκει στην κατηγορία προβλημάτων που ονομάζονται παίγνια δύο παικτών ή με αντίπαλο (two-players or adversary games). Στα προβλήματα αυτά απαιτούνται δύο σύνολα τελετών δράσης, ένα για κάθε παίκτη. Γι αυτό, για τα προβλήματα αυτά υπάρχουν ειδικοί αλγόριθμοι (δηλ. τρόποι αναζήτησης), όπως οι Alpha-Beta και Minimax. Όμως, ιδιαίτερα σε απλά προβλήματα, όπως το παραπάνω, μπορούν να εφαρμοστούν και οι αλγόριθμοι αναζήτησης ενός παίκτη (ή λύτη), όπως αυτοί που παρουσιάζονται στο Κεφ. 2 του Τόμου Α. Στην περίπτωση αυτή, θεωρούμε ότι σε κάθε επίπεδο του παραγόμενου δένδρου εφαρμόζονται οι τελεστές του ενός παίκτη, αυτού που είναι η σειρά του να παίξει, και θα πρέπει στην αναπαράσταση μιας κατάστασης να λάβουμε υπ όψιν τον τρέχοντα παίκτη. Θέμα 1α. Δημιουργία χώρου αναζήτησης Ο αρχικός σωρός περιέχει 7 σπίρτα. 1. Βρείτε ένα τρόπο αναπαράστασης μιας κατάστασης. 2. Προσδιορίστε τους τελεστές δράσης. 3. Σχεδιάστε πλήρως ένα δένδρο αναζήτησης του προβλήματος. Η γραμμή πάνω από ένα γράμμα (Α ή Β) υποδηλώνει ότι ο αντίστοιχος παίχτης κερδίζει. Εναλλακτικά θα χρησιμοποιούμε το συμβολισμό Α για το νικητή (Α). Η αναγραφή μίας κατάστασης σε κύκλο υποδηλώνει ότι έχει αναπτυχθεί πλήρως σε άλλο σημείο του σχήματος. Παρατηρείστε ότι η πλήρης σχεδίαση του δέντρου αναζήτησης απαντά τα ερωτήματα περί αναπαράστασης κατάστασης και περί τελεστών δράσης.

2 Θέμα 1β. Αναζήτηση-κατά-βάθος 1. Αν εφαρμόσετε αναζήτηση-κατά-βάθος στο δένδρο που σχεδιάσατε, ποιος είναι ο αριθμός των μεταβάσεων μέχρι να φτάσετε σε τελική κατάσταση; Πόσες διαφορετικές καταστάσεις επισκέπτεστε; 2. Το παραπάνω δένδρο μπορεί να κατασκευαστεί με διάφορους τρόπους, π.χ. αν αλλάζουμε τη σειρά εφαρμογής των τελεστών δράσης. Σχεδιάστε τα διαφορετικά δένδρα που προκύπτουν και βρείτε σε ποια περίπτωση από όλες έχουμε τον μικρότερο και σε ποια τον μεγαλύτερο αριθμό μεταβάσεων. (Στην απάντησή σας σχεδιάστε μόνο τα δέντρα που απαιτούνται για την απάντηση.) 1. Για το σχεδιασμένο δέντρο, χρειάζονται 3 μεταβάσεις και επισκεπτόμαστε 4 καταστάσεις (μονοπάτι: Α7, Β4, Α1, Β ) 2. Υπάρχουν 3 τελεστές δράσης, άρα υπάρχουν 6 διαφορετικοί τρόποι (προτεραιότητα, σειρά) εφαρμογής τους: 1-2-3, 1-3-2, 2-1-3, 2-3-1, 3-1-2, Το δέντρο που σχεδιάστηκε παραπάνω υπονοεί τη χρήση της σειράς Βεβαίως, και με χρήση της σειράς πάλι 3 μεταβάσεις θα χρειαζόμασταν (με άλλο μονοπάτι). Αν «διαβάσουμε» το παραπάνω δέντρο από δεξιά προς αριστερά μας βολεύει στο να σκεφτούμε τη σειρά που (επειδή η κατά-βάθος αναζήτηση αργεί επειδή «αφαιρεί» ένα σπίρτο τη φορά) για να μας φέρει σε τελική κατάσταση απαιτεί 7 μεταβάσεις και επισκέπτεται 8 καταστάσεις (μονοπάτι: Α7, Β6, Α5, Β4, Α3, Β2, Α1, Β ). Θέμα 1γ. Αναζήτηση-κατά-πλάτος (Είναι απόλυτα σκόπιμο να προσπαθήσετε να απαντήσετε στο θέμα 1γ αφού ασχοληθείτε με το 1β.) 1. Αν εφαρμόσετε αναζήτηση-κατά- πλάτος στο δένδρο που σχεδιάσατε, ποιος είναι ο αριθμός των μεταβάσεων μέχρι να φτάσετε σε τελική κατάσταση; Πόσες διαφορετικές καταστάσεις επισκέπτεστε; Απαντήστε για την περίπτωση του μικρότερου αριθμού μεταβάσεων. 2. Υπολογίστε το μεγαλύτερο αριθμό μεταβάσεων. 1. Για το σχεδιασμένο δέντρο, χρειάζονται 13 μεταβάσεις και επισκεπτόμαστε 10 διαφορετικές καταστάσεις (μονοπάτι: Α7, Β4, Β5, Β6, Α1, Α2, Α3, Α2, Α3, Α4, Α3, Α4, Α5, Β ) 2. Παρατηρούμε από το δέντρο ότι η πρώτη τελική κατάσταση που θα εντοπιστεί είναι η «αριστερότερα σχεδιασμένη» Β, την οποία όμως αυτή το φορά θα επισκεφτούμε τελευταία από όλες τις καταστάσεις του ίδιου επιπέδου. Άρα θα χρειαστούμε x x 3 x 3 = 39 μεταβάσεις για το παραπάνω δέντρο. 2. Παρατηρούμε από το δέντρο ότι η πρώτη τελική κατάσταση είναι αυτή που φαίνεται στο παρακάτω σχήμα (άρα έχουμε 3 για το 1 ο επίπεδο, 3 x 3 = 9 για το 2 ο επίπεδο και = 9 για το 3 ο επίπεδο, σύνολο 21 μεταβάσεις):

3 Θέμα 1δ. Αναζήτηση με ευρετικό και Α* Έστω το ευρετικό «Επέλεξε την διαδρομή που μεγιστοποιεί τον αριθμό των σπίρτων που έχουν αφαιρεθεί». Ξεκινώντας από την αρχική κατάσταση και χρησιμοποιώντας τον Α*, με ποια σειρά επισκεπτόμαστε τους κόμβους του χώρου κατάστασης, μέχρι να φτάσουμε σε τελική κατάσταση; Η απάντησή σας πρέπει να τεκμηριώνεται με τις διαδοχικές τιμές που παίρνουν στα διάφορα σημεία εκτέλεσης του αλγορίθμου οι λίστες «Ανοικτές» και «Κλειστές» που αναφέρονται στις σελίδες 48 και 49 του βιβλίου ΤΝΕΣ (περιγραφή Α*). Αφού το ευρετικό «... μεγιστοποιεί τον αριθμό των σπίρτων που έχουν αφαιρεθεί», εργαζόμαστε με βάση την ελαχιστοποίηση των σπίρτων που έχουν μείνει (συνάρτηση h). Η απόσταση από μία κατάσταση στη γειτονική της θεωρείται ότι έχει κόστος 1 (υπολογισμός συνάρτησης g). Η συνάρτηση g είναι προφανώς η απόσταση από τη μία κατάσταση στη γειτονική της. Ανοικτές: [Α7], Κλειστές: [] Ανοικτές: [], Κλειστές: [Α7] Ανοικτές: [], Κλειστές: [Α7], Διάδοχοι: [Β4, Β5, Β6] Ανοικτές: [], Κλειστές: [Α7], Διάδοχοι: [f(β4)=1+4, f(β5)=1+5, f(β6)=1+6] Ανοικτές: [Β4, Β5, Β6], Κλειστές: [Α7], Διάδοχοι: [] Ανοικτές: [Β5, Β6], Κλειστές: [Α7, Β4], Διάδοχοι: [] Ανοικτές: [Β5, Β6], Κλειστές: [Α7, Β4], Διάδοχοι: [A1, A2, A3] Ανοικτές: [Β5, Β6], Κλειστές: [Α7, Β4], Διάδοχοι: [f(a1)=2+1, f(a2)=2+2, f(a3)=2+3] Ανοικτές: [Β5, Β6, A1, A2, A3], Κλειστές: [Α7, Β4], Διάδοχοι: [] Ανοικτές: [Β5, Β6, A2, A3], Κλειστές: [Α7, Β4, A1], Διάδοχοι: [] Ανοικτές: [Β5, Β6, A2, A3], Κλειστές: [Α7, Β4, A1], Διάδοχοι: [Β ]

4 Θέμα 2: Αναζήτηση κατά βάθος Δίνεται το παρακάτω γενεαλογικό δένδρο Θέμα 2α. Δημιουργία χώρου καταστάσεων Να αναπαραστήσετε το παραπάνω δένδρο καταστάσεων χρησιμοποιώντας την δηλωτική γλώσσα προγραμματισμού SWI-Prolog (http://www.swi-prolog.org/). Συμβουλή: Χρησιμοποιήστε το κατηγόρημα tree/3. tree(cathy,michael,melody). tree(michael,charles,hazel). tree(melody,jim,eleanor). tree(charles,nil,nil). tree(hazel,nil,nil). tree(jim,nil,nil). tree(eleanor,nil,nil). Θέμα 2β. Δημιουργία μηχανισμού διαπέρασης Δημιουργείστε κανόνες Prolog που θα υλοποιούν διαπέραση όλων των κόμβων του δένδρου με ταυτόχρονη εκτύπωσή τους, με τον τρόπο που γίνεται στην κατά βάθος αναζήτηση (depth-first search).

5 print_tree(x):- tree(x,y,z), write(x), nl, print_tree(y), print_tree(z). print_tree(x):-tree(x,nil,nil). go:-print_tree(t). 1?- go. cathy michael charles hazel melody jim eleanor Yes Θέμα 3: Αναζήτηση υπόπτου Η άτυχη Σουζάνα βρέθηκε από την αστυνομία δολοφονημένη, με τσακισμένο το κεφάλι από αμβλύ όργανο. Τα πρόσωπα της ιστορίας είναι ο Άλαν, 35 ετών, χασάπης και «κλεφτρόνι», ο Τζον, 25 ετών, ποδοσφαιριστής, που συνδέεται συναισθηματικά τόσο με τη δολοφονημένη Σουζάνα όσο και με τη Μπάρμπαρα, κομμώτρια, 22 ετών και παντρεμένη με τον πενηντάρη και κουτσό μαραγκό Μπερτ. Σε σχετική έρευνα ανακαλύφθηκε στο σπίτι του Τζον ένα περίστροφο. Η αστυνομία θεωρεί ως πιθανά κίνητρα τη ληστεία και τη ζήλεια. Θέμα 3α. Αναπαράσταση γεγονότων του προβλήματος

6 Να αναπαραστήσετε τα γεγονότα του προβλήματος χρησιμοποιώντας την δηλωτική γλώσσα προγραμματισμού SWI-Prolog (http://www.swi-prolog.org/), λαμβάνοντας υπόψη τα παρακάτω: Χρησιμοποιήστε τα ακόλουθα κατηγορήματα: person/4, had_affair/2, motive/1, owns/2. Τα τέσσερα ορίσματα του person/4 αναφέρονται στο όνομα, ηλικία, φύλο και ιδιότητα του προσώπου που περιγράφει, π.χ. person(john,25,m,football_player). Τα δύο ορίσματα του had_affair/2 δηλώνουν τα πρόσωπα που έχουν/είχαν δεσμό. Δίνεται το όργανο με το οποίο σκοτώθηκε η Σουζάνα, δηλ. killed_with(susan,club). Ο Μπερτ υποκαθιστά το χαμένο του πόδι με ένα ξύλινο. Δίνονται οι εξής υποθέσεις κοινής λογικής operates_identically(wooden_leg,club). operates_identically(bar,club). operates_identically(pair_of_scissors,knife). operates_identically(football_boot,club). % Τύποι ισχυρισμών και υποθέσεων από % την έρευνα της αστυνομίας. person(john,25,m,football_player). /*m:male*/ person(allan,35,m,butcher). person(barbara,22,f,hairdresser). /*f:female*/ person(bert,50,m,carpenter). person(allan,35,m,pickpocket). had_affair(barbara,john). had_affair(barbara,bert). had_affair(susan,john). killed_with(susan,club). motive(money). motive(jealousy). owns(bert,wooden_leg). owns(john,pistol). % Υποθέσεις κοινής λογικής operates_identically(wooden_leg,club). operates_identically(bar,club). operates_identically(pair_of_scissors,knife).

7 operates_identically(football_boot,club). Θέμα 3β. Αναπαράσταση κανόνων κοινής λογικής Περιγράψτε με προτάσεις Κατηγορηματικής Λογικής και κώδικα Prolog, χρησιμοποιώντας το κατηγόρημα owns_probably/2 καθώς και κατηγορήματα από το Θέμα 2α, την παρακάτω κοινά αποδεκτή γνώση: Ένας ποδοσφαιριστής κατέχει πιθανώς μπότα ποδοσφαίρου (το σενάριο αναφέρεται στο αμερικάνικο ποδόσφαιρο) Οποιοσδήποτε μπορεί να κατέχει ένα ψαλίδι. Οποιοσδήποτε μπορεί να κατέχει ένα μαχαίρι. Όποιος κατέχει ένα αντικείμενο τότε πιθανώς κατέχει αυτό το αντικείμενο. Προτάσεις Κατηγορηματικής Λογικής ( ( ) ( )) ( ( ) ( )) ( ( ) ( )) ( ( ) ( )) xyz,, owns_probably x,football_boot person xyz,,,football_player xyzw,,, owns_probably x, pair_of_scissors person xyzw,,, xyzw,,, owns_probably x, knife person xyzw,,, xy, owns_probably x, y owns xy, Κώδικας SWI-Prolog owns_probably(x,football_boot):- person(x,_,_,football_player). owns_probably(x,pair_of_scissors):- person(x,_,_,_). owns_probably(x,knife):- person(x,_,_,_). owns_probably(x,object):- owns(x,object). Θέμα 3γ. Αναπαράσταση κανόνων επίλυσης του προβλήματος Δημιουργείστε κανόνες επίλυσης του προβλήματος θεωρώντας ότι υπάρχουν δύο τύποι υπόπτων: α) ύποπτοι με βάση τη δυνατότητα να διαπράξουν τον φόνο, και β) ύποπτοι με βάση το κίνητρό τους. Οι υποθέσεις για τα κίνητρα του φόνου είναι οι εξής: Κάποιος Χ είναι ύποπτος με βάση τη δυνατότητα να διαπράξει τον φόνο αν το αντικείμενο με το οποίο σκοτώθηκε η Σουζάνα έχει την ίδια λειτουργία (ίδια αποτελέσματα) με κάποιο άλλο αντικείμενο Υ και ο Χ πιθανώς κατέχει το αντικείμενο Υ. Κάποιος Χ είναι ύποπτος με βάση το κίνητρό του αν 1. το κίνητρο είναι η ζήλεια, ο Χ είναι άνδρας και είχε δεσμό με τη Σουζάνα 2. το κίνητρο είναι η ζήλεια, ο Χ είναι γυναίκα και είχε δεσμό κάποιον ο οποίος είχε ταυτόχρονα δεσμό με τη Σουζάνα 3. το κίνητρο είναι τα χρήματα και ο Χ είναι «κλεφτρόνι».

8 Ο πιο πιθανός ύποπτος είναι αυτός που είναι ταυτόχρονα ύποπτος με βάση τη δυνατότητα και το κίνητρο να διαπράξει τον φόνο. Συμβουλή: Χρησιμοποιήστε τα ακόλουθα κατηγορήματα: suspect_by_capability/1, suspect_by_motive/1, mostly_suspected/1. Συνεχίζοντας το πρόγραμμα που δίνεται στην ενδεικτική επίλυση του 2α, έχουμε: % Υποθέσεις για τα κίνητρα φόνου. % Δύο τύποι υπόπτων: % α. ύποπτοι με βάση τη δυνατότητα να % διαπράξουν τον φόνο % β. ύποπτοι με βάση το κίνητρό τους suspect_by_capability(x):- killed_with(susan,weapon), operates_identically(object,weapon), owns_probably(x,object). suspect_by_motive(x):- motive(jealousy), person(x,_,m,_), had_affair(susan,x). suspect_by_motive(x):- motive(jealousy), person(x,_,f,_), had_affair(x,man), had_affair(susan,man). suspect_by_motive(x):- motive(money), person(x,_,_,pickpocket) % Μη πιθανοθεωρητική υπόθεση κοινής λογικής mostly_suspected(x):- suspect_by_capability(x), suspect_by_motive(x). Θέμα 3δ. Εκτέλεση του προγράμματος Εκτελέστε το παραπάνω πρόγραμμα κάνοντας κατάλληλα ερωτήματα (queries) ώστε να βρίσκει α) τους υπόπτους με βάση τη δυνατότητα να διαπράξουν τον φόνο β) τους υπόπτους με βάση το κίνητρό τους γ) τον πιο πιθανό ύποπτο.

9 1?- suspect_by_capability(x). X = bert ; X = john ; No 2?- suspect_by_motive(x). X = john ; X = barbara ; X = allan ; No 3?- mostly_suspected(x). X = john Yes Κριτήρια αξιολόγησης: Θέμα 1. Απλές Αναζητήσεις 40 1.α. Δημιουργία χώρου καταστάσεων 10 1.β. Αναζήτηση-κατά-βάθος 10 1.γ. Αναζήτηση-κατά-πλάτος 10 1.δ. Αναζήτηση με ευρετικό και Α* 10 Θέμα 2. Αναζήτηση κατά βάθος 20 2.α. Δημιουργία χώρου καταστάσεων 10 2.β. Δημιουργία μηχανισμού διαπέρασης 10 Θέμα 3. Αναζήτηση υπόπτου 40 3.α. Αναπαράσταση γεγονότων του προβλήματος 10 3.β. Αναπαράσταση κανόνων κοινής λογικής 15 3.γ. Αναπαράσταση κανόνων επίλυσης του προβλήματος 10 3.δ. Εκτέλεση του προγράμματος 5 ΣΥΝΟΛΟ 100 Ο συνολικός βαθμός θα διαιρεθεί δια 10, ώστε να προκύψει ο τελικός βαθμός της εργασίας.

10 Τρόπος Ημερομηνία Παράδοσης Η εργασία σας θα πρέπει να έχει φτάσει στον Καθηγητή-Σύμβουλό σας μέχρι την Κυριακή 27/11/2005 ώρα 23:59. Περιμένουμε όλες οι εργασίες να αποσταλούν μέσω και να είναι γραμμένες σε επεξεργαστή κειμένου MSWord. Τα τμήματα κώδικα θα βρίσκονται σε ξεχωριστά αρχεία θ αναφέρονται στο κείμενο της εργασίας. Στον Καθηγητή-Σύμβουλό σας, σε κάθε περίπτωση, στέλνετε ΕΝΑ μόνο αρχείο (συμπιεσμένο). Δεν θα δοθεί παράταση στην παράδοση της εργασίας πέραν της ως άνω αναφερόμενης ημέρας και ώρας, για κανένα λόγο. Την Τρίτη 29/11/2005 ώρα 14:00, θα δημοσιευθεί πρότυπη απάντηση για την επίλυση της εργασίας στο διαδίκτυο. Καλή Επιτυχία!

Επίλυση προβλημάτων με αναζήτηση

Επίλυση προβλημάτων με αναζήτηση Επίλυση προβλημάτων με αναζήτηση Αναζήτηση σημαίνει την εύρεση μιας λύσης (τελικής κατάστασης) ενός προβλήματος διά της συνεχούς δημιουργίας (νέων) καταστάσεων με την εφαρμογή των διαθέσιμων ενεργειών

Διαβάστε περισσότερα

(α) Ζητείται να αναπαρασταθεί η παραπάνω γνώση σε Prolog, ώστε να δημιουργηθεί αντίστοιχο πρόγραμμα.

(α) Ζητείται να αναπαρασταθεί η παραπάνω γνώση σε Prolog, ώστε να δημιουργηθεί αντίστοιχο πρόγραμμα. 1. Δίνονται τα εξής γεγονότα «Ο Παύλος είναι πατέρας του Γιάννη και της Γεωργίας» και «Η Ελένη είναι μητέρα της Μαρίας και του Πέτρου». Επίσης, μας δίνεται και η εξής γνώση τύπου κανόνα, που αφορά το πότε

Διαβάστε περισσότερα

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Τεχνητή Νοημοσύνη 06 Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Εισαγωγικά (1/3) Τα προβλήματα όπου η εξέλιξη των καταστάσεων εξαρτάται από δύο διαφορετικά σύνολα τελεστών μετάβασης που εφαρμόζονται

Διαβάστε περισσότερα

Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων

Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων Π Π Τ Μ Τ Μ Η/Υ Π Δ Μ Π Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων Φοιτητής: Ν. Χασιώτης (AM: 0000) Καθηγητής: Ι. Χατζηλυγερούδης 22 Οκτωβρίου 2010 ΑΣΚΗΣΗ 1. Δίνεται

Διαβάστε περισσότερα

Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e

Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e Άσκηση 1 Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e Υπάρχουν τρία μαύρα τετραγωνάκια (b), τρία άσπρα (w) και ένα κενό (e). Η σπαζοκεφαλιά έχει τις ακόλουθες

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης.

Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης. Ανάλογα με το αν ένας αλγόριθμος αναζήτησης χρησιμοποιεί πληροφορία σχετική με το πρόβλημα για να επιλέξει την επόμενη κατάσταση στην οποία θα μεταβεί, οι αλγόριθμοι αναζήτησης χωρίζονται σε μεγάλες κατηγορίες,

Διαβάστε περισσότερα

Κεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση

Κεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση Κεφάλαιο 5 Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων

Διαβάστε περισσότερα

Θεωρία Λήψης Αποφάσεων

Θεωρία Λήψης Αποφάσεων Θεωρία Λήψης Αποφάσεων Ενότητα 8: Αναζήτηση με Αντιπαλότητα Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.) Αναζήτηση

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1 Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 4 ης διάλεξης 4.1. (α) Αποδείξτε ότι αν η h είναι συνεπής, τότε h(n

Διαβάστε περισσότερα

PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ"

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ" ΜΕΡΟΣ ΔΕΥΤΕΡΟ Υπεύθυνος Καθηγητής Λυκοθανάσης Σπυρίδων Ακαδημαικό Έτος:

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ 1. ίνεται το γνωστό πρόβληµα των δύο δοχείων: «Υπάρχουν δύο δοχεία

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/ Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Επίλυση προβληµάτων. Αλγόριθµοι Αναζήτησης

Επίλυση προβληµάτων. Αλγόριθµοι Αναζήτησης Επίλυση προβληµάτων! Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Γενικά " Τεχνητή

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 6η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

4 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

4 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων 4 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 3 3 η Άσκηση... 4 4 η Άσκηση... 5 5 η Άσκηση... 6 6 η Άσκηση... 7 Χρηματοδότηση... 8 Σημείωμα Αναφοράς... 9 Σημείωμα

Διαβάστε περισσότερα

Περιεχόμενα του Παιχνιδιού

Περιεχόμενα του Παιχνιδιού Ε υρώπη, 1347. Μεγάλη καταστροφή πρόκειται να χτυπήσει. Ο Μαύρος Θάνατος πλησιάζει την Ευρώπη και μέσα στα επόμενα 4-5 χρόνια ο πληθυσμός της θα μείνει μισός. Οι παίκτες αποικούν στις διάφορες περιοχές

Διαβάστε περισσότερα

ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1

ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1 ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1 Θέματα μελέτης Πρόβλημα αναζήτησης σε γραφήματα Αναζήτηση κατά βάθος (Depth-first search DFS) Αναζήτηση κατά πλάτος (Breadth-first search BFS) 2 Γράφημα (graph) Αναπαράσταση συνόλου

Διαβάστε περισσότερα

Τσάπελη Φανή ΑΜ: 2004030113. Ενισχυτική Μάθηση για το παιχνίδι dots. Τελική Αναφορά

Τσάπελη Φανή ΑΜ: 2004030113. Ενισχυτική Μάθηση για το παιχνίδι dots. Τελική Αναφορά Τσάπελη Φανή ΑΜ: 243113 Ενισχυτική Μάθηση για το παιχνίδι dots Τελική Αναφορά Περιγραφή του παιχνιδιού Το παιχνίδι dots παίζεται με δύο παίχτες. Έχουμε έναν πίνακα 4x4 με τελείες, και σκοπός του κάθε παίχτη

Διαβάστε περισσότερα

Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις

Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Άσκηση 1 Γράψτε μία αναδρομική συνάρτηση που θα παίρνει ως παράμετρο ένα δείκτη στη ρίζα ενός δυαδικού δένδρου και θα επιστρέφει το βαθμό του

Διαβάστε περισσότερα

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος.

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος. 1. Δώστε τον ορισμό του προβλήματος. 2. Σι εννοούμε με τον όρο επίλυση ενός προβλήματος; 3. Σο πρόβλημα του 2000. 4. Σι εννοούμε με τον όρο κατανόηση προβλήματος; 5. Σι ονομάζουμε χώρο προβλήματος; 6.

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Γραφήματα. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Γραφήματα. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Γραφήματα Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Γραφήματα Κατευθυνόμενο Γράφημα Ένα κατευθυνόμενο γράφημα G είναι ένα ζευγάρι (V, E) όπου V είναι ένα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ31 (2004-5) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #3 Στόχος Στόχος αυτής της εργασίας είναι η απόκτηση δεξιοτήτων σε θέματα που αφορούν τα Τεχνητά Νευρωνικά Δίκτυα και ποιο συγκεκριμένα θέματα εκπαίδευσης και υλοποίησης.

Διαβάστε περισσότερα

Αυτόνομοι Πράκτορες. Εργασία εξαμήνου. Μάθηση του παιχνιδιού British square με χρήση Temporal Difference(TD) Κωνσταντάκης Γιώργος

Αυτόνομοι Πράκτορες. Εργασία εξαμήνου. Μάθηση του παιχνιδιού British square με χρήση Temporal Difference(TD) Κωνσταντάκης Γιώργος Αυτόνομοι Πράκτορες Εργασία εξαμήνου Μάθηση του παιχνιδιού British square με χρήση Temporal Difference(TD) Κωνσταντάκης Γιώργος 2010030090 Περιγραφή του παιχνιδιού Το British square είναι ένα επιτραπέζιο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 20 Σεπτεµβρίου 2004 ιάρκεια: 3 ώρες (15:00-18:00)

Διαβάστε περισσότερα

Δάσους Δάσους Συστατικών Διαδρομής Σπιτιού Ξορκιών Δάσους Διαδρομής Δάσους πλευρά Δάσους ανοιχτή Διαδρομής Σπιτιού

Δάσους Δάσους Συστατικών Διαδρομής Σπιτιού Ξορκιών Δάσους Διαδρομής Δάσους πλευρά Δάσους ανοιχτή Διαδρομής Σπιτιού Ξεφεύγοντας από τα γαμψά νύχια της Μπάμπα Γιάγκα, καταφέρνετε να αποδράσετε από το σπίτι του. Τότε η μάγισσα ξεκινάει να σας κυνηγάει πάνω στο ιπτάμενο καζάνι της! Για να αποδράσετε, πρέπει να κάνετε τρία

Διαβάστε περισσότερα

ΕΡΩΤΗΜΑΤΑ σε ΑΝΑΖΗΤΗΣΗ

ΕΡΩΤΗΜΑΤΑ σε ΑΝΑΖΗΤΗΣΗ ηµήτρης Ψούνης ΠΛΗ31, Απαντήσεις Ερωτήσεων Quiz - ΑΝΑΖΗΤΗΣΗ 1 ΕΡΩΤΗΜΑΤΑ σε ΑΝΑΖΗΤΗΣΗ ΕΡΩΤΗΜΑ 1 Έστω h µία παραδεκτή ευρετική συνάρτηση. Είναι η συνάρτηση h ½ παραδεκτή; a. Ναι, πάντα. b. Όχι, ποτέ. c.

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 1 Δύο επιχειρήσεις Α και Β, μοιράζονται το μεγαλύτερο μερίδιο της αγοράς για ένα συγκεκριμένο προϊόν. Καθεμία σχεδιάζει τη νέα της στρατηγική για τον επόμενο χρόνο, προκειμένου να αποσπάσει πωλήσεις

Διαβάστε περισσότερα

53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σ Α Β Β Α Ϊ Δ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η

53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σ Α Β Β Α Ϊ Δ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η 53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σ Α Β Β Α Ϊ Δ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η ΠΑΓΚΡΑΤΙ: Φιλολάου & Εκφαντίδου 26 : 210/76.01.470 210/76.00.179 ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 6 ης διάλεξης

Ασκήσεις μελέτης της 6 ης διάλεξης Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 6 ης διάλεξης 6.1. (α) Το mini-score-3 παίζεται όπως το score-4,

Διαβάστε περισσότερα

Β Ομάδα Ασκήσεων "Λογικού Προγραμματισμού" Ακαδημαϊκού Έτους

Β Ομάδα Ασκήσεων Λογικού Προγραμματισμού Ακαδημαϊκού Έτους Page 1 of 10 ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Β Ομάδα Ασκήσεων "Λογικού Προγραμματισμού" Ακαδημαϊκού Έτους 2015-16 Οι ασκήσεις της ομάδας αυτής πρέπει

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ22 Περίοδος 2012-2013 ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ # 3 Στόχος Βασικό στόχο της 3 ης εργασίας αποτελεί η κατανόηση των συστατικών στοιχείων των δικτύων Η/Υ (Κεφάλαιο 1), η εξοικείωση με τις αρχιτεκτονικές δικτύων

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι;

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; ΘΕΜΑΤΑ ΔΕΝΔΡΩΝ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΠΛΗ0 ΑΣΚΗΣΗ Για τις ερωτήσεις - θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; Β Ε Α 6 Δ 5 9 8 0 Γ 7 Ζ Η. Σ/Λ Δυο από τα συνδετικά

Διαβάστε περισσότερα

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση Κεφάλαιο ο: Δικτυωτή Ανάλυση. Εισαγωγή Η δικτυωτή ανάλυση έχει παίξει σημαντικό ρόλο στην Ηλεκτρολογία. Όμως, ορισμένες έννοιες και τεχνικές της δικτυωτής ανάλυσης είναι πολύ χρήσιμες και σε άλλες επιστήμες.

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π.

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π. Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων CO.RE.LAB. ΣΗΜΜΥ - Ε.Μ.Π. Άσκηση 1 η : Παιχνίδι επιλογής ακμών Έχουμε ένα ακυκλικό κατευθυνόμενο γράφο, μια αρχική κορυφή και δυο παίκτες. Οι παίκτες διαδοχικά

Διαβάστε περισσότερα

Αλγόριθμοι Τυφλής Αναζήτησης

Αλγόριθμοι Τυφλής Αναζήτησης Τεχνητή Νοημοσύνη 04 Αλγόριθμοι Τυφλής Αναζήτησης Αλγόριθμοι Τυφλής Αναζήτησης (Blind Search Algorithms) Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει αξιολόγηση των καταστάσεων.

Διαβάστε περισσότερα

Παραδείγματα μεταβλητών

Παραδείγματα μεταβλητών Παραδείγματα μεταβλητών Παράδειγμα Bouncing Balls: Στη σκηνή υπάρχουν τρείς μπάλες και κάθε μία έχει διαφορετικό μέγεθος από τις άλλες. Όλες οι μπάλες χοροπηδούν ταυτόχρονα προς όλες τις κατευθύν-σεις.

Διαβάστε περισσότερα

Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ )

Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ ) Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ. 25 48) Τι είναι αλγόριθμος; Γ ΛΥΚΕΙΟΥ Αλγόριθμος είναι μία πεπερασμένη σειρά ενεργειών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο χρονικό διάστημα,

Διαβάστε περισσότερα

www.onlineclassroom.gr

www.onlineclassroom.gr ΑΣΚΗΣΗ 3 (ΜΟΝΑΔΕΣ 25) Σε ένα αγώνα ποδοσφαίρου οι προπονητές των δύο αντίπαλων ομάδων αποφάσισαν ότι έχουν 4 και 3 επιλογές συστήματος, αντίστοιχα. Η αναμενόμενη διαφορά τερμάτων δίνεται από τον παρακάτω

Διαβάστε περισσότερα

Ε ανάληψη. Προβλήµατα ικανο οίησης εριορισµών. ορισµός και χαρακτηριστικά Ε ίλυση ροβληµάτων ικανο οίησης εριορισµών

Ε ανάληψη. Προβλήµατα ικανο οίησης εριορισµών. ορισµός και χαρακτηριστικά Ε ίλυση ροβληµάτων ικανο οίησης εριορισµών ΠΛΗ 405 Τεχνητή Νοηµοσύνη Αναζήτηση µε Αντι αλότητα Adversarial Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Προβλήµατα ικανο οίησης εριορισµών ορισµός και

Διαβάστε περισσότερα

ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ÌïëëÜ Ì. Á μýô Á.Ì. : 5 moll@moll.r ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΜΑΘΗΜΑ : ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΙΑΔΙΚΤΥΟ (ΕΡΓΑΣΤΗΡΙΟ) Ε ΕΞΑΜΗΝΟ ΕΙΣΗΓΗΤΕΣ: Χαϊδόγιαννος Χαράλαμπος ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

Διαβάστε περισσότερα

δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας

δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας Θεωρία Παιγνίων Μελέτη στοιχείων που χαρακτηρίζουν καταστάσεις ανταγωνιστικής άλληλεξάρτησης με έμφαση στη διαδικασία λήψης αποφάσεων περισσοτέρων από ένα ληπτών απόφασης (αντιπάλων). Παίγνια δύο παικτών

Διαβάστε περισσότερα

Περιγραφή Προβλημάτων

Περιγραφή Προβλημάτων Τεχνητή Νοημοσύνη 02 Περιγραφή Προβλημάτων Φώτης Κόκκορας Τμ.Τεχν/γίας Πληροφορικής & Τηλ/νιών - ΤΕΙ Λάρισας Παραδείγματα Προβλημάτων κύβοι (blocks) Τρεις κύβοι βρίσκονται σε τυχαία διάταξη πάνω στο τραπέζι

Διαβάστε περισσότερα

Ε ανάληψη. Παιχνίδια παιχνίδια ως αναζήτηση. Βέλτιστες στρατηγικές στρατηγική minimax. Βελτιώσεις κλάδεµα α-β

Ε ανάληψη. Παιχνίδια παιχνίδια ως αναζήτηση. Βέλτιστες στρατηγικές στρατηγική minimax. Βελτιώσεις κλάδεµα α-β ΠΛΗ 405 Τεχνητή Νοηµοσύνη Παιχνίδια Τύχης Παιχνίδια Ατελούς Πληροφόρησης Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Παιχνίδια παιχνίδια ως αναζήτηση Βέλτιστες στρατηγικές

Διαβάστε περισσότερα

Καροτοκυνηγός. Αντικείμενα

Καροτοκυνηγός. Αντικείμενα Καροτοκυνηγός Το παιχνίδι λαμβάνει χώρα σε ένα κτήμα, όπου στη δεξιά του πλευρά του υπάρχει ένα χωράφι με καρότα τα οποία οριοθετούνται από μια λευκή ευθεία γραμμή αριστερά τους (βλ. επόμενη εικόνα). Το

Διαβάστε περισσότερα

ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε.

ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. Θέματα Εξετάσεων Εξεταστικής Σεπτεμβρίου στο μάθημα «ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ» ΔΙΔΑΣΚΩΝ: Δρ. Ηλ. Μηχ. & Τ.Υ. Αριστομένης Θανόπουλος Ημερομηνία: 12 / 2 / 2015

Διαβάστε περισσότερα

4.6 Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού)

4.6 Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού) . Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού) Η πετυχημένη διοίκηση των μεγάλων έργων χρειάζεται προσεχτικό προγραμματισμό, σχεδιασμό και συντονισμό αλληλοσυνδεόμενων δραστηριοτήτων (εργσιών).

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Τελικές εξετάσεις Παρασκευή 4 Ιουλίου 2014, 18:00-21:00

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Τελικές εξετάσεις Παρασκευή 4 Ιουλίου 2014, 18:00-21:00 ΘΕΜΑ 1 ο (2 μονάδες) ΠΑΝΕΠΙΣΤΗΜΙ ΜΑΚΕΔΝΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΣΜΕΝΗΣ ΠΛΗΡΦΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΗΜΣΥΝΗ Τελικές εξετάσεις Παρασκευή 4 Ιουλίου 2014, 18:00-21:00 Δίνεται ο παρακάτω χάρτης πόλεων της Ρουμανίας με τις μεταξύ

Διαβάστε περισσότερα

Σκοπός του παιχνιδιού. Περίληψη

Σκοπός του παιχνιδιού. Περίληψη Σκοπός του παιχνιδιού Είστε διαβολάκια στην Κόλαση, στο διαλλειμά σας από τα βασανιστήρια των χαμένων ψυχών. Ασφαλώς και έχει πάρα πολύ ζέστη, κι έτσι κάθεστε στο μπαρ του Πανδοχείου Τελική Κρίση.Αποφασίσατε

Διαβάστε περισσότερα

εγχειρίδιο κανόνων & σεναρίων Πριν ξεκινήσετε το πρώτο σας παιχνίδι, πρέπει να αφαιρέσετε τα κομμάτια από τα χαρτονένια πλαίσια.

εγχειρίδιο κανόνων & σεναρίων Πριν ξεκινήσετε το πρώτο σας παιχνίδι, πρέπει να αφαιρέσετε τα κομμάτια από τα χαρτονένια πλαίσια. Τα άγνωστα νησιά του Κατάν απλώνονται μπροστά σας. Μερικά μακριά στον ορίζοντα, κάποια άλλα χαμένα στην πυκνή ομίχλη. Άλλα σχεδιασμένα στους χάρτες, κι άλλα γνωστά μόνο από μύθους και ιστορίες. Κάποια

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I.

ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I. ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I. Γενικά Σε μαθήματα όπως η επιχειρησιακή έρευνα και ή λήψη αποφάσεων αναφέραμε τις αποφάσεις κάτω από συνθήκες βεβαιότητας, στις οποίες και εφαρμόζονται κυρίως οι τεχνικές της επιχειρησιακής

Διαβάστε περισσότερα

Οι βασικές λειτουργίες (ή πράξεις) που γίνονται σε μια δομή δεδομένων είναι:

Οι βασικές λειτουργίες (ή πράξεις) που γίνονται σε μια δομή δεδομένων είναι: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Μια δομή δεδομένων στην πληροφορική, συχνά αναπαριστά οντότητες του φυσικού κόσμου στον υπολογιστή. Για την αναπαράσταση αυτή, δημιουργούμε πρώτα ένα αφηρημένο μοντέλο στο οποίο προσδιορίζονται

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014 Επιμέλεια: Ομάδα Διαγωνισμάτων από το Στέκι των Πληροφορικών Θέμα Α A1. Να γράψετε στο τετράδιό σας τους

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη Ι. Εργαστηριακή Άσκηση 4-6. Σγάρμπας Κυριάκος. Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστων

Τεχνητή Νοημοσύνη Ι. Εργαστηριακή Άσκηση 4-6. Σγάρμπας Κυριάκος. Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστων Τεχνητή Νοημοσύνη Ι Εργαστηριακή Άσκηση 4-6 Σγάρμπας Κυριάκος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστων ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ

Διαβάστε περισσότερα

Πελάτες φθάνουν στο ταμείο μιας τράπεζας Eνα μόνο ταμείο είναι ανοικτό Κάθε πελάτης παρουσιάζεται με ένα νούμερο - αριθμός προτεραιότητας Όσο ο

Πελάτες φθάνουν στο ταμείο μιας τράπεζας Eνα μόνο ταμείο είναι ανοικτό Κάθε πελάτης παρουσιάζεται με ένα νούμερο - αριθμός προτεραιότητας Όσο ο Ουρές προτεραιότητας Πελάτες φθάνουν στο ταμείο μιας τράπεζας Eνα μόνο ταμείο είναι ανοικτό Κάθε πελάτης παρουσιάζεται με ένα νούμερο - αριθμός προτεραιότητας Όσο ο αριθμός είναι μεγάλος, τόσο οι πελάτες

Διαβάστε περισσότερα

Ευφυείς Τεχνολογίες Πράκτορες

Ευφυείς Τεχνολογίες Πράκτορες Ευφυείς Τεχνολογίες Πράκτορες Ενότητα 2: Αναπαράσταση Γνώσης και Επίλυση Προβλημάτων Δημοσθένης Σταμάτης mos@it.tith.gr www.it.tith.gr/~mos Μαθησιακοί Στόχοι της ενότητας 2 Πως ορίζεται ένα πρόβλημα στα

Διαβάστε περισσότερα

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΜΕΡΟΣ ΕΥΤΕΡΟ Πολίτη Όλγα Α.Μ. 4528 Εξάµηνο 8ο Υπεύθυνος Καθηγητής Λυκοθανάσης

Διαβάστε περισσότερα

Σκοπός του παιχνιδιού Σκοπός του παιχνιδιού είναι να τοποθετήσει πρώτος ο παίκτης όλα τα πλακίδιά του στο τραπέζι.

Σκοπός του παιχνιδιού Σκοπός του παιχνιδιού είναι να τοποθετήσει πρώτος ο παίκτης όλα τα πλακίδιά του στο τραπέζι. Σκοπός του παιχνιδιού Σκοπός του παιχνιδιού είναι να τοποθετήσει πρώτος ο παίκτης όλα τα πλακίδιά του στο τραπέζι. Βασικοί Κανόνες Τα πλακίδια ανακατεύονται και τοποθετούνται με την όψη προς τα κάτω στο

Διαβάστε περισσότερα

Τίτλος Διδακτικού Σεναρίου

Τίτλος Διδακτικού Σεναρίου Τίτλος Διδακτικού Σεναρίου Οι εντολές ελέγχου εάν τότε & εάν τότε αλλιώς στο Scratch 2.0, μέσα από τη δημιουργία διαδραστικού παιχνιδιού. Φάση 4 Δημιουργία Διαδραστικού Παιχνιδιού Χρόνος Υλοποίησης: 1

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ουρές Προτεραιότητας. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ουρές Προτεραιότητας. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Ουρές Προτεραιότητας Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρά Προτεραιότητας Το πρόβλημα Έχουμε αντικείμενα με κλειδιά και θέλουμε ανά πάσα στιγμή

Διαβάστε περισσότερα

ΚΟΡΥΦΑΙΟ ΦΡΟΝΤΙΣΤΗΡΙΟ korifeo.gr Μάθημα :Προγραμματισμός Εξεταζόμενη ύλη : 2o, 3o,4o,5o κεφάλαιο ΘΕΜΑ 1 ο

ΚΟΡΥΦΑΙΟ ΦΡΟΝΤΙΣΤΗΡΙΟ korifeo.gr Μάθημα :Προγραμματισμός Εξεταζόμενη ύλη : 2o, 3o,4o,5o κεφάλαιο ΘΕΜΑ 1 ο ΚΟΡΥΦΑΙΟ ΦΡΟΝΤΙΣΤΗΡΙΟ korifeo.gr Μάθημα :Προγραμματισμός Εξεταζόμενη ύλη : 2o, 3o,4o,5o κεφάλαιο ΘΕΜΑ 1 ο Α. Να χαρακτηρίσετε τις παρακάτω προτάσεις ως σωστές ή λανθασμένες. 1. Μια μεταβλητή μπορεί να

Διαβάστε περισσότερα

Κεφάλαιο 7 ο Βασικές Έννοιες Προγραμματισμού (σελ )

Κεφάλαιο 7 ο Βασικές Έννοιες Προγραμματισμού (σελ ) Κεφάλαιο 7 ο Βασικές Έννοιες Προγραμματισμού (σελ. 147 159) Για τις γλώσσες προγραμματισμού πρέπει να έχουμε υπόψη ότι: Κάθε γλώσσα προγραμματισμού σχεδιάζεται για συγκεκριμένο σκοπό, δίνοντας ιδιαίτερη

Διαβάστε περισσότερα

13/5/2015 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ. Δομές Δεδομένων. Ουρές Προτεραιότητας

13/5/2015 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ. Δομές Δεδομένων. Ουρές Προτεραιότητας ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ Δομές Δεδομένων Τι θα δούμε Ουρές προτεραιότητας Πράξεις Διωνυμικές Ουρές Διωνυμικά Δέντρα Διωνυμικοί Σωροί Ουρές Fibonacci Αναπαράσταση Πράξεις Ανάλυση Συγκρίσεις Ουρές προτεραιότητας

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΣΕΠΤΕΜΒΡΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 ΘΕΜΑ

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 2009 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΜΑ 1 ο Η Περιφέρεια Κεντρικής Μακεδονίας σχεδιάζει την ανάπτυξη ενός συστήματος αυτοκινητοδρόμων

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΙΛΟΓΗΣ 1) Ποιοι είναι οι τελεστές σύγκρισης και

Διαβάστε περισσότερα

Κεφάλαιο 2.3: Προγραμματισμός. Επιστήμη ΗΥ Κεφ. 2.3 Καραμαούνας Πολύκαρπος

Κεφάλαιο 2.3: Προγραμματισμός. Επιστήμη ΗΥ Κεφ. 2.3 Καραμαούνας Πολύκαρπος Κεφάλαιο 2.3: Προγραμματισμός 1 2.3.1 Αναφορά σε γλώσσες προγραμματισμού και «Προγραμματιστικά Υποδείγματα» 2.3.1.1 Πρόγραμμα και Γλώσσες Προγραμματισμού Πρόγραμμα: σύνολο εντολών που χρειάζεται να δοθούν

Διαβάστε περισσότερα

6 ος ΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ «ΚΑΡΑΘΕΟΔΩΡΗ» 14 ΝΟΕΜΒΡΙΟΥ 2015 Α ΓΥΜΝΑΣΙΟΥ

6 ος ΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ «ΚΑΡΑΘΕΟΔΩΡΗ» 14 ΝΟΕΜΒΡΙΟΥ 2015 Α ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΡΟΔΟΠΗΣ Φιλίππου 33 69 13 ΚΟΜΟΤΗΝΗ Τηλ. 5310805 Πρόεδρος εξεταστικού 697335814 e-mail: emerodopis@gmail.com ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 Βρείτε την ισορροπία των ακόλουθων παιγνίων απαλείφοντας διαδοχικά τις κυριαρχούµενες στρατηγικές.

ΑΣΚΗΣΗ 1 Βρείτε την ισορροπία των ακόλουθων παιγνίων απαλείφοντας διαδοχικά τις κυριαρχούµενες στρατηγικές. ΑΣΚΗΣΗ 1 Βρείτε την ισορροπία των ακόλουθων παιγνίων απαλείφοντας διαδοχικά τις κυριαρχούµενες στρατηγικές. Α 1 Α 2 Α 3 Β 1 Β 2 Β 3 1, -1 0, 0-1, 0 0, 0 0, 6 10, -1 2, 0 10, -1-1, -1 Α 1 Α 2 Α 3 Β 1 Β

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2011 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Σε ένα διαγωνισμό για την κατασκευή μίας καινούργιας γραμμής του

Διαβάστε περισσότερα

Φύλλο Εργασίας: Βασικά Σχήματα σχεδίαση βασικών σχημάτων χειρισμός σχημάτων διάταξη λογικές πράξεις με μονοπάτια γέμισμα και πινελιά

Φύλλο Εργασίας: Βασικά Σχήματα σχεδίαση βασικών σχημάτων χειρισμός σχημάτων διάταξη λογικές πράξεις με μονοπάτια γέμισμα και πινελιά Φύλλο Εργασίας: Βασικά Σχήματα σχεδίαση βασικών σχημάτων χειρισμός σχημάτων διάταξη λογικές πράξεις με μονοπάτια γέμισμα και πινελιά σύννεφο διπλασιάστε τον κύκλο (Ctrl-D) επαναλάβετε τους διπλασιασμούς

Διαβάστε περισσότερα

1 Εισαγωγή στις Συνδυαστικές Δημοπρασίες - Combinatorial Auctions

1 Εισαγωγή στις Συνδυαστικές Δημοπρασίες - Combinatorial Auctions ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 Συμπληρωματικές σημειώσεις για τον μηχανισμό VCG 1 Εισαγωγή στις Συνδυαστικές

Διαβάστε περισσότερα

Tεχνητή Νοημοσύνη Εφαρμογές

Tεχνητή Νοημοσύνη Εφαρμογές ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΟΔΗΓΟΣ ΣΠΟΥΔΩΝ ΓΙΑ ΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Tεχνητή Νοημοσύνη Εφαρμογές ΠΛΗ31 ΠΑΤΡΑ 2003 Πριν αρχίσετε τη μελέτη του έντυπου αυτού, είναι απαραίτητο να διαβάσετε προσεκτικά τον

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Εισαγωγικά ΘΕ ΠΛΗ 204-5 ONLINE ΕΡΓΑΣΙΑ E2- Η Online Εργασία Ε2- αποτελεί (όπως περιγράφεται αναλυτικότερα και στον Οδηγό Σπουδών της Θ.Ε. που σας έχει διατεθεί) συμπληρωματική άσκηση στα πλαίσια της Γραπτής

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 3 ο. Πίνακες. Επικοινωνία:

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 3 ο. Πίνακες. Επικοινωνία: Πίνακες Επικοινωνία: spzygouris@gmail.com Να δοθεί ο ορισμός του όρου «δεδομένα». Δεδομένα αποτελούν οποιαδήποτε στοιχεία μπορούν να εξαχθούν από τη διατύπωση του προβλήματος και η επιλογή τους εξαρτάται

Διαβάστε περισσότερα

ΠΡΟΕΤΟΙΜΑΣΙΑ ΣΚΟΠΟΣ ΤΟΥ ΠΑΙΧΝΙΔΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ

ΠΡΟΕΤΟΙΜΑΣΙΑ ΣΚΟΠΟΣ ΤΟΥ ΠΑΙΧΝΙΔΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ του Uwe Rosenberg για 2 παίκτες, ηλικίας 13 και άνω ΣΚΟΠΟΣ ΤΟΥ ΠΑΙΧΝΙΔΙΟΥ Χάβρη. Ήρθε η στιγμή να κατασκευάσετε το εσωτερικό της λιμάνι. Οι παίκτες κατασκευάζουν και χρησιμοποιούν 32 διαφορετικά κτίρια,

Διαβάστε περισσότερα

Πανεπιστήµιο Αιγαίου Τµήµα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστηµάτων. 3η Άσκηση Logical Effort - Ένα ολοκληρωµένο παράδειγµα σχεδίασης

Πανεπιστήµιο Αιγαίου Τµήµα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστηµάτων. 3η Άσκηση Logical Effort - Ένα ολοκληρωµένο παράδειγµα σχεδίασης Πανεπιστήµιο Αιγαίου Τµήµα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστηµάτων Εισαγωγή σε VLSI 3η Άσκηση Logical Effort - Ένα ολοκληρωµένο παράδειγµα σχεδίασης Μανόλης Καλλίγερος (kalliger@aegean.gr)

Διαβάστε περισσότερα

Δραστηριότητα: Εγκλεισμός

Δραστηριότητα: Εγκλεισμός Δραστηριότητα: Εγκλεισμός Ηλικίες στις οποίες έχει χρησιμοποιηθεί με επιτυχία: Προαπαιτούμενες Ικανότητες: Χρόνος: Εστίαση Μέγεθος Ομάδας 11 - ενήλικες Καμία Τι είναι αλγόριθμος Αλγόριθμοι αναζήτησης:

Διαβάστε περισσότερα

Σενάριο 16: Ο κόσμος του Robby

Σενάριο 16: Ο κόσμος του Robby Σενάριο 16: Ο κόσμος του Robby Φύλλο Εργασίας Τίτλος: Ο κόσμος του Robby Γνωστικό Αντικείμενο: Εφαρμογές Πληροφορικής-Υπολογιστών Διδακτική Ενότητα: Διερευνώ - Δημιουργώ Ανακαλύπτω, Συνθετικές εργασίες.

Διαβάστε περισσότερα

Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης

Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης Δένδρα στα οποία κάθε κόμβος μπορεί να αποθηκεύει ένα ή περισσότερα κλειδιά. Κόμβος με d διακλαδώσεις : k 1 k 2 k 3 k 4 d-1 διατεταγμένα κλειδιά d διατεταγμένα παιδιά

Διαβάστε περισσότερα

Κεφάλαιο 6. Ικανοποίηση Περιορισµών. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 6. Ικανοποίηση Περιορισµών. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 6 Ικανοποίηση Περιορισµών Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Ικανοποίηση Περιορισµών Ένα πρόβληµα ικανοποίησης περιορισµών (constraint

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2)

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2) Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Κανονικές Εκφράσεις (1.3) Τυπικός Ορισμός Ισοδυναμία με κανονικές γλώσσες Μη Κανονικές

Διαβάστε περισσότερα

1 ΠΡΟΒΛΗΜΑΤΑ ΤΝ ΚΑΙ LISP

1 ΠΡΟΒΛΗΜΑΤΑ ΤΝ ΚΑΙ LISP 1 ΠΡΟΒΛΗΜΑΤΑ ΤΝ ΚΑΙ LISP 1.1 Αναζήτηση και Στρατηγικές Αναζήτησης Ένας τρόπος επίλυσης προβληµάτων µε µεθόδους Τεχνητής Νοηµοσύνης (ΤΝ) είναι η αναζήτηση λύσης (search). Σύµφωνα µ αυτήν, ένα πρόβληµα παριστάνεται

Διαβάστε περισσότερα

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι

Διαβάστε περισσότερα

Σχεδιασμός Ψηφιακών Εκπαιδευτικών Εφαρμογών ΙI

Σχεδιασμός Ψηφιακών Εκπαιδευτικών Εφαρμογών ΙI Σχεδιασμός Ψηφιακών Εκπαιδευτικών Εφαρμογών ΙI Εργασία 1 ΣΤΟΙΧΕΙΑ ΦΟΙΤΗΤΡΙΑΣ: Τσελίγκα Αρετή, 1312009161, Στ εξάμηνο, κατεύθυνση: Εκπαιδευτική Τεχνολογία και Διαπολιτισμική Επικοινωνία Το γνωστικό αντικείμενο

Διαβάστε περισσότερα

A7.2 Δημιουργία Απλής Γραφικής Εφαρμογής σε Περιβάλλον Scratch

A7.2 Δημιουργία Απλής Γραφικής Εφαρμογής σε Περιβάλλον Scratch A7.2 Δημιουργία Απλής Γραφικής Εφαρμογής σε Περιβάλλον Scratch Τι θα μάθουμε σήμερα: Να ενεργοποιούμε το λογισμικό Scratch Να αναγνωρίζουμε τα κύρια μέρη του περιβάλλοντος του Scratch Να δημιουργούμε/εισάγουμε/τροποποιούμε

Διαβάστε περισσότερα

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 3 Αλγόριθµοι Τυφλής Αναζήτησης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Τυφλής Αναζήτησης Οι αλγόριθµοι τυφλής αναζήτησης (blind

Διαβάστε περισσότερα

Το Κ2 είναι ένα παιχνίδι για 1 έως 5 παίκτες, ηλικίας 8 ετών και άνω, με διάρκεια περίπου 60 λεπτά.

Το Κ2 είναι ένα παιχνίδι για 1 έως 5 παίκτες, ηλικίας 8 ετών και άνω, με διάρκεια περίπου 60 λεπτά. ΟΔΗΓΙΕΣ Το Κ2 είναι το δεύτερο ψηλότερο βουνό στον κόσμο (μετά το Έβερεστ) με ύψος 8.611 μέτρα από τη στάθμη της θάλασσας. Θεωρείται, επίσης, ένα από τα δυσκολότερα βουνά άνω των 8.000 μέτρων. Το Κ2 ποτέ

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Δέντρα Αναζήτησης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Αναζήτηση Θέλουμε να διατηρήσουμε αντικείμενα με κλειδιά και να μπορούμε εκτός από

Διαβάστε περισσότερα

ΕΓΧΕΙΡΙΔΙΟ ΚΑΝΟΝΩΝ ΕΝΑ ΠΑΙΧΝΙΔΙ ΑΝΤΑΓΩΝΙΣΜΟΥ ΓΙΑ 2 ΩΣ 4 ΠΑΙΚΤΕΣ

ΕΓΧΕΙΡΙΔΙΟ ΚΑΝΟΝΩΝ ΕΝΑ ΠΑΙΧΝΙΔΙ ΑΝΤΑΓΩΝΙΣΜΟΥ ΓΙΑ 2 ΩΣ 4 ΠΑΙΚΤΕΣ ΕΓΧΕΙΡΙΔΙΟ ΚΑΝΟΝΩΝ ΕΝΑ ΠΑΙΧΝΙΔΙ ΕΞΕΡΕΥΝΗΣΗΣ ΑΝΤΑΓΩΝΙΣΜΟΥ & ΠΕΡΙΠΕΤΕΙΑΣ ΓΙΑ 2 ΩΣ 4 ΠΑΙΚΤΕΣ Credits 2012 Σχεδιαστές: Παραγωγή: Εικονογράφηση: Jose Pascual Εκτύπωση: Priority Soluciones Graficas - Eduardo

Διαβάστε περισσότερα

1 Η εναλλάσσουσα ομάδα

1 Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Όπως είδαμε η συνάρτηση g : S { } είναι ένας επιμορφισμός ομάδων. Ο πυρήνας Ke g {σ S / g σ } του επιμορφισμού συμβολίζεται με A περιέχει όλες τις άρτιες μεταθέσεις

Διαβάστε περισσότερα

Πληροφορική 2. Τεχνητή νοημοσύνη

Πληροφορική 2. Τεχνητή νοημοσύνη Πληροφορική 2 Τεχνητή νοημοσύνη 1 2 Τι είναι τεχνητή νοημοσύνη; Τεχνητή νοημοσύνη (AI=Artificial Intelligence) είναι η μελέτη προγραμματισμένων συστημάτων τα οποία μπορούν να προσομοιώνουν μέχρι κάποιο

Διαβάστε περισσότερα

ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ

ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ (ΜΕ ΒΑΣΗ ΤΟ ΚΕΦ. 6 ΤΟΥ ΒΙΒΛΙΟΥ «ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ» ΤΩΝ ΒΛΑΧΑΒΑ, ΚΕΦΑΛΑ, ΒΑΣΙΛΕΙΑ Η, ΚΟΚΚΟΡΑ & ΣΑΚΕΛΛΑΡΙΟΥ) Ι. ΧΑΤΖΗΛΥΓΕΡΟΥ ΗΣ ΠΡΟΒΛΗΜΑΤΑ ΙΚΑΝΟΠΟΙΗΣΗΣ ΠΕΡΙΟΡΙΣΜΩΝ Είναι γνωστές µερικές

Διαβάστε περισσότερα

ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. Ε ανάληψη. πεπερασµένα χρονικά περιθώρια ανά κίνηση. απευθείας αξιολόγηση σε ενδιάµεσους κόµβους

ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. Ε ανάληψη. πεπερασµένα χρονικά περιθώρια ανά κίνηση. απευθείας αξιολόγηση σε ενδιάµεσους κόµβους ΠΛΗ 405 Τεχνητή Νοηµοσύνη Παιχνίδια Τύχης Λογικοί Πράκτορες Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Περιορισµοί χρόνου πεπερασµένα χρονικά περιθώρια ανά κίνηση

Διαβάστε περισσότερα

Συνδυαστικά Λογικά Κυκλώματα

Συνδυαστικά Λογικά Κυκλώματα Συνδυαστικά Λογικά Κυκλώματα Ένα συνδυαστικό λογικό κύκλωμα συντίθεται από λογικές πύλες, δέχεται εισόδους και παράγει μία ή περισσότερες εξόδους. Στα συνδυαστικά λογικά κυκλώματα οι έξοδοι σε κάθε χρονική

Διαβάστε περισσότερα

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή Ισορροπημένα Δένδρα Μπορούμε να επιτύχουμε για κάθε λειτουργία; χρόνο εκτέλεσης Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή μετά από Περιστροφές x αριστερή περιστροφή από το x y α β y

Διαβάστε περισσότερα

Δομές Δεδομένων. Ενότητα 13: B-Δέντρα/AVL-Δέντρα. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων

Δομές Δεδομένων. Ενότητα 13: B-Δέντρα/AVL-Δέντρα. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων Ενότητα 13: B-Δέντρα/AVL-Δέντρα Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε

Διαβάστε περισσότερα

Πληρουορική Γ Γσμμασίοσ

Πληρουορική Γ Γσμμασίοσ Πληρουορική Γ Γσμμασίοσ Προγραμματισμός και Αλγόριθμοι Από το και τημ Χελώμα στημ Ευριπίδης Βραχνός http://evripides.mysch.gr/ 2014 2015 1 Προγραμματισμός Ζάννειο Πρότυπο Πειραματικό Γυμνάσιο Πειραιά Ενότητα:

Διαβάστε περισσότερα