4.6 Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "4.6 Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού)"

Transcript

1 . Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού) Η πετυχημένη διοίκηση των μεγάλων έργων χρειάζεται προσεχτικό προγραμματισμό, σχεδιασμό και συντονισμό αλληλοσυνδεόμενων δραστηριοτήτων (εργσιών). Για να γίνει αυτό, αλγόριθμοι βασισμένοι στη χρησιμοποίηση των δικτύων αναπτύχθηκαν κυρίως στο τέλος της δεκαετίας του 0. Μια από τις πιο γνωστές μεθόδους είναι η μέθοδος του κρίσιμου μονοπατιού (Critical Path Method - CPM). Αν και αρχικά η CPM χρησιμοποιήθηκε στην αξιολόγηση των προγραμμάτων έρευνας και ανάπτυξης στη συνέχεια χρησιμοποιήθηκε για τον έλεγχο πολλών άλλων ειδικών περιπτώσεων. Για παράδειγμα χρησιμοποιήθηκε σε έργα προγραμματισμού κατασκευών, προγραμματισμού ηλεκτρονικών υπολογιστών, σχεδίασης προγραμμάτων συντήρησης, εγκατάστασης συτημάτων Η/Υ κ.α. Η μέθοδος αυτή εφαρμόστηκε επίσης στην παραγωγή κινηματογραφικών ταινιών, σε προεκλογικές εκστρατείες καθώς και σε σύνθετες χειρουργικές επεμβάσεις. Η CPM χρησιμοποιεί ένα δίκτυο για την γραφική αναπαράσταση των αλληλεξαρτήσεων μεταξύ των δραστηριοτήτων (εργασιών) του έργου, όπως αυτό του σχήματος. που δείχνει το αρχικό δίκτυο για την κατασκευή ενός σπιτιού. Η δικτυωτή αυτή αναπαράσταση δείχνει όλες τις προτεραιότητες των αλληλεξαρτήσεων όσον αφορά τη σειρά με την οποία πρέπει να γίνουν οι εργασίες. Εσκαφή Θεμελίων Κατασκευή Θεμελίων 0 Αγορά Κεραμιδιών Αγορά Τούβλων Κατασκευή Τοίχων 0 Κατασκευή Οροφής Ηλεκτρολογικές εγκαταστάσεις Βάψιμο του σπιτιού Σχήμα. Κάθε τόξο του δικτύου αντιπροσωπεύει μια δραστηριότητα, που είναι μια εργασία που απαιτείται από το έργο (π.χ. κατασκευή σπιτιού). Κάθε κόμβος αντιπροσωπεύει ένα γεγονός, που συνήθως ορίζεται ως τη χρονική στιγμή κατά την οποία τελειώνουν όλες οι δραστηριότητες που κατευθύνονται στον κόμβο αυτό. Τα τόξα δείχνουν την ακολουθία με την

2 οποία πρέπει να γίνουν τα γεγονότα. Ακόμα, ένα γεγονός πρέπει να προηγείται της έναρξης των δραστηριοτήτων που ξεκινούν από αυτό τον κόμβο. Ο κόμβος προς τον οποίο οδηγούνται όλες οι δραστηριότητες είναι το γεγονός του τέλους του προγραμματισμού έργου (π.χ. η κατασκευή του σπιτιού). Τα διακεκομμένα τόξα δεν αντιπροσωπεύουν πραγματικές δραστηριότητες, αλλά σχέσεις προτεραιότητας που ονομάζονται εικονικές δραστηριότητες. Για παράδειγμα υπάρχει μια εικονική δραστηριότητα από τον κόμβο στον κόμβο, αφού η κατασκευή της οροφής δεν μπορεί να αρχίσει πριν κατασκευασθούν οι τοίχοι. Μετά την κατασκευή του δικτύου για ένα έργο, το επόμενο βήμα είναι η εκτίμηση του χρόνου που χρειάζεται για καθεμία δραστηριότητα. Οι εκτιμήσεις αυτές για το παρδειγμά μας είναι οι αριθμοί που βρίσκονται δίπλα στα τόξα του σχήματος. (στο συγκεκριμένο παράδειγμα η μονάδα του χρόνου είναι η ημέρα). Οι χρόνοι αυτοί χρησιμοποιούνται για να υπολογιστούν δύο βασικές ποσότητες για κάθε γεγονός, ο νωρίτερος χρόνος του και ο αργότερος χρόνος του. Ο νωρίτερος χρόνος για ένα γεγονός είναι ο εκτιμηθείς χρόνος κατά τον οποίο θα πραγματοποιηθεί το γεγονός, εφόσον οι προηγούμενες δραστηριότητες αρχίσουν όσο το δυνατό γρηγορότερα. Οι νωρίτεροι χρόνοι βρίσκονται εφόσον κάνουμε ένα προς τα εμπρός πέρασμα διαμέσου του δικτύου. Αρχίζοντας με τα αρχικά γεγονότα και εργαζόμενοι προς την κατεύθυνση των τελικών γεγονότων, υπολογίζουμε διαδοχικά το χρόνο στον οποίο θα πραγματοποιηθεί κάθε γεγονος, αν κάθε άμεσα προηγούμενο γεγονός πραγματοποιηθεί στον νωρίτερο χρόνο του και κάθε ενδιάμεση δραστηριότητα καταναλώνει μόνο τον εκτιμηθέντα χρόνο της, σύμφωνα με την διαδικασία που παρουσιάζεται στο πίνακα. (η διαδικασία εφαρμόζεται στο δίκτυο εργασιών.). Γεγονός Άμεσα προηγούμενο Νωρίτερος χρόνος + Μέγιστος νωρίτερος γεγονός Χρόνος δραστηριότητας χρόνος Πίνακας.: Υπολογισμός νωρίτερων χρόνων Επομένως ο νωρίτερος χρόνος στον οποίο μπορεί να τελειώσει το έργο (η κατασκευή του σπιτιού) είναι ημέρες. Ο αργότερος χρόνος για ένα γεγονός είναι ο εκτιμηθείς χρόνος κατά τον οποίο μπορεί να πραγματοποιηθεί το γεγονός, χωρίς να καθυστερήσει η αποπεράτωση του έργου πέρα από τον ενωρίτερο χρόνο του.

3 Οι αργότεροι χρόνοι βρίσκονται διαδοχικά για τα γεγονότα, κάνοντας ένα προς τα πίσω πέρασμα διαμέσου του δικτύου. Αρχίζοντας με τα τελικά γεγονότα και εργαζόμενοι προς την κατεύθυνση των αρχικών γεγονότων, υπολογίζουμε κάθε φορά τον χρόνο κατά τον οποίο μπορεί να πραγματοποιηθεί το γεγονός, αν κάθε άμεσα επόμενο γεγονός πραγματοποιείται στον αργότερο χρόνο του και κάθε ενδιάμεση δραστηριότητα καταναλώνει μόνο τον εκτιμηθέντα χρόνο της, σύμφωνα με την διαδικασία που παρουσιάζεται στο πίνακα. (η διαδικασία εφαρμόζεται στο δίκτυο εργασιών.) με νωρίτερο χρόνο για την αποπεράτωση του έργου τις ημέρες. Γεγονός Άμεσα επόμενο Αργότερος χρόνος - Ελάχιστος αργότερος γεγονός Χρόνος δραστηριότητας χρόνος Πίνακας.: Υπολογισμός αργότερων χρόνων Ο χαλαρός χρόνος για ένα γεγονός είναι η διαφορά μεταξύ του αργότερου και του νωρίτερου χρόνου του. Ο χαλαρός χρόνος για μια δραστηριότητα (i, j) είναι η διαφορά μεταξύ του αργότερου χρόνου του γεγονότος j και του αθροίσματος του ενωρίτερου χρόνου του γεγονότος i και του εκτιμηθέντος χρόνου της δραστηριότητας (i, j). Δηλαδή, υποθέτοντας ότι δεν αλλάζει τίποτα στο πρόγραμμα, ο χαλαρός χρόνος για ένα γεγονός είναι ο χρόνος που μπορεί να καθυστερήσει το γεγονός χωρίς να καθυστερήσει η αποπεράτωση του έργου, ενώ ο χαλαρός χρόνος για μια δραστηριότητα είναι ο χρόνος που μπορεί να καθυστερήσει η δραστηριότητα χωρίς να καθυστερήσει το έργο. Ο υπολογισμός των χαλαρών χρόνων για το δίκτυο εργασιών. παρουσιάζεται στον πίνακα.. 0 Γεγονός Χαλαρός χρόνος Δραστηριότητα Χαλαρός χρόνος = 0 (0, ) - (0 + ) =

4 - = (0, ) - (0 + ) = 0 - = 0 (0, ) - (0 + ) = - = 0 (, ) - ( - ) = - =0 (, ) - ( + 0) = 0 - = 0 (, ) - ( + 0) = 0 - = 0 (, ) - ( + ) = (, ) - ( + ) = 0 (, ) - ( + ) = 0 Πίνακας.: Υπολογισμός χαλαρών χρόνων Ένα κρίσιμο μονοπάτι (Critical Path) για ένα έργο είναι ένας δρόμος διαμέσου του δικτύου τέτοιος ώστε όλες οι δραστηριότητες του δρόμου να έχουν μηδενικούς χαλαρούς χρόνους. (Όλες οι δραστηριότες και τα γεγονότα που έχουν μηδενικούς χαλαρούς χρόνους πρέπει να βρίσκονται πάνω στο κρίσιμο μονοπάτι, ενώ τα άλλα δεν μπορούν). Παρατηρώντας τα δεδομένα του πίνακα. βλέπουμε ότι στο δίκτυο εργασιών. υπάρχει ένα μόνο κρίσιμο μονοπάτι το 0 το οποίο φαίνεται και στο σχήμα. με έντονα τόξα. 0 Εσκαφή Θεμελίων Αγορά Κεραμιδιών Αγορά Τούβλων Κατασκευή Οροφής Κατασκευή Θεμελίων Κατασκευή Τοίχων Ηλεκτρολογικέ ς εγκαταστάσεις Βάψιμο του σπιτιού Σχήμα. Παρατήρηση: Είναι δυνατόν σε κάποιο έργο να υπάρχουν περισότερα από ένα κρίσημα μονοπάτια. Για παράδειγμα αν στο δίκτυο εργασιών. ο χρόνος της δραστηριότητας (, ) είναι ημέρες αντί ημέρες, τότε στο δίκτυο εργασιών θα έχουμε δύο κρίσιμα μονοπάτια το 0 και το 0. 0

5 Έτσι με τη μέθοδο του κρίσιμου μονοπατιού μπορούμε να απαντήσουμε σε δύο κύρια ερωτήματα του διευθυντή του έργου: ποιος είναι ο ελάχιστος χρόνος που απαιτείται για την αποπεράτωση του έργου και ποιες εργασίες μπορούν να καθυστερήσουν και πόσο χωρίς να καθυστερήσει το έργο. Τέλος η πληροφορία σχετικά με τους νωρίτερους και τους αργότερους χρόνους, τους χαλαρούς χρόνους και το κρίσιμο μονοπάτι είναι μεγάλης σημασίας για τον διευθυντή του έργου, αφού μεταξύ των άλλων, μπορεί να διερευνήσει την επίδραση των πιθανών βελτιώσεων στο σχέδιο του έργου, να προσδιορίσει που πρέπει να δοθεί ιδιαίτερη προσοχή για να παραμείνει το έργο στα χρονικά πλαίσια που έχουν οριστεί και να εκτιμήσει την επίδραση διάφορων αλλαγών στο πρόγραμμα. Το πρόβλημα της εύρεσης του κρίσιμου μονοπατιού είναι πρόβλημα γραμμικού προγραμματισμού. Αυτό σημαίνει ότι μπορεί να διατυπωθεί σαν πρόβλημα γραμμικού προγραμματισμού και λύθει με τις γενικές μεθόδους επίλυσης προβλημάτων γραμμικού προγραμματισμού, αν και λόγω της ειδικής μορφής του, όπως είδαμε πιο πάνω,υπάρχουν ειδικοί αλγόριθμοι επίλυσής του. Για να εκφρασθεί το πρόβλημα της εύρεσης του κρίσιμου μονοπατιού για το δίκτυο εργασιών. σαν πρόβλημα γραμμικού προγραμματισμού πρέπει να οριστούν οι παρακάτω μεταβλητές απόφασης: και t 0 : να είναι η αρχή για τις δραστηριότητες (εργασίες) (0, ), (0, ), (0, ) t : να είναι η αρχή για την δραστηριότητα (εργασία) (, ) t : να είναι η αρχή για την δραστηριότητα (εργασία) (, ) t : να είναι η αρχή για τις δραστηριότητες (εργασίες) (, ), (, ) t : να είναι η αρχή για την δραστηριότητα (εργασία) (, ) t : να είναι η αρχή για την δραστηριότητα (εργασία) (, ) z : να είναι ο χρόνος αποπεράτωσης του έργου. Τότε έχουμε το ακόλουθο πρόβλημα γραμμικού προγραμματισμού με τους περιορισμούς και minimize z -t 0 +t -t 0 +t -t 0 +t -t +t -t +t 0 -t +t 0 -t +t -t +t -t +z

6 t 0, t, t, t, t, t, z 0. Ο κάθε περιορισμός αναπαριστά την σχέση προτεραιότητας συγκεκριμένων δραστηριοτήτων (εργασιών), π.χ. η δραστηριότητα (, ) δεν μπορεί να αρχίσει πριν από το τέλος της δραστηριότητας (, ) άρα έχουμε τον περιορισμό t t + -t + t. Η λύση του παραπάνω προβλήματος γραμμικού προγραμματισμού είναι: z = ημέρες και t 0 = 0, t =, t =, t =, t =, t =, Επομένως το κρίσιμο μονοπάτι για το δίκτυο εργασιών. είναι το 0.

7 . Ασκήσεις. Να διατυπωθούν ως προβλήματα ελάχιστου κόστος ροής τα παρακάτω δίκτυα: +0-0 και Να βρεθεί με τη χρήση γνωστού αλγορίθμου η συντομότερη διαδρομή στα παρακάτω δίκτυα: και

8 0 Να διατυπωθούν τα παραπάνω δίκτυα ως προβλήματα ελάχιστου κόστους ροής.. Σ ένα μικρό αλλά αναπτυσσόμενο αερόδρομιο η τοπική αεροπορική εταιρεία αγόρασε ένα νέο ελκυστήρα για τη μεταφορά των εμπορευμάτων από και προς τα αεροπλάνα. Σε τρία χρόνια θα εγκατασταθεί ένα μηχανικό σύστημα μεταφοράς αποσκευών και έτσι ο ελκυστήρας δεν θα χρειάζεται. Όμως, λόγω της χρησιμοποίησης το κόστος λειτουργίας και συντήρησης του ελκυστήρα θα αυξηθεί σημαντικά και ίσως είναι πιο οικονομικό να αντικατασταθεί μετά ένα ή δύο χρόνια. Ο παρακάτω πίνακας δίνει την καθαρή παρούσα αξία του συνολικού κόστος από την αγορά ενός ελκυστήρα στο τέλος του χρόνου i και πώλησή του στο τέλος του χρόνου j. j 0 i Το πρόβλημα είναι να προσδιοριστεί σε ποιο χρόνο πρέπει να αντικατασταθεί ο εκλυστήρας, για να ελαχιστοποιηθεί το συνολικό του κόστος. Διατυπώστε το παραπάνω πρόβλημα ως πρόβλημα της συντομότερης διαδρομής και λύστε το με τη βοήθεια ενός γνωστού αλγορίθμου.. Να βρεθεί το ελάχιστο ζευγνύον δένδρο σε καθένα από τα παρακάτω δίκτυα: 0

9 και 0. Μια επιχείρηση πρόκειται να αρχίσει σύντομα την κοπή δένδρων σε οκτώ περιοχές ενός μεγάλου δάσους. Για το λόγο αυτό θα πρέπει να ανοίξει ένα σύστημα χωματόδρομων έτσι, ώστε κάθε περιοχή να είναι προσιτή από κάποια άλλη. Η απόσταση μεταξύ κάθε ζεύγους περιοχών είναι: Απόσταση Περιοχή

10 Το πρόβλημα είναι να προσδιοριστούν τα ζεύγη των περιοχών μεταξύ των οποίων θα κατασκευασθούν οι χωματόδρομοι, που θα συνδέουν όλες τις περιοχές με τη μικρότερη δυνατή απόσταση. Διατυπώστε το παραπάνω πρόβλημα ωε πρόβλημα ελάχιστου ζευγνύοντος δένδρου και λύστε το με τη βοήθεια γνωστού αλγορίθμου.. Μια τράπεζα πρόκειται να συνδέσει τους τερματικούς σταθμούς Η/Υ των υποκαταστημάτων της με τον Η/Υ των κεντρικών της γραφείων, με τη χρήση μιας ειδικής τηλεφωνικής γραμμής. Η τηλεφωνική γραμμή από ένα υποκατάστημα δεν χρειάζεται να είναι άμεσα συνδεδεμένη με τα κεντρικά γραφεία. Μπορεί να συνδεθεί έμμεσα με ένα άλλο υποκατάστημα, το οποίο είναι άμεσα ή έμμεσα συνδεδεμένο με τα κεντρικά γραφεία. Φυσικά κάθε υποκατάστημα πρέπει να είναι συνδεδεμένο με τα κεντρικά γραφεία με κάποιου είδους σύνδεση. Η επιβάρυνση για την ειδική τηλεφωνική γραμμή είναι ανάλογη με την απόσταση μεταξύ κάθε ζεύγους γραφείων που είναι (σε χιλιόμετρα): Απόσταση Κεντρικό Υ Υ Υ Υ Υ Κεντρικό Υ Υ Υ Υ Υ Το πρόβλημα είναι να προσδιοριστούν τα ζεύγη των γραφείων που θα συνδεθούν με την τηλεφωνική γραμμή, έτσι ώστε να συνδεθεί το κάθε υποκατάστημα (άμεσα ή έμμεσα) με τα κεντρικά γραφεία με το ελάχιστο συνολικό κόστος. Διατυπώστε το παραπάνω πρόβλημα ωε πρόβλημα ελάχιστου ζευγνύοντος δένδρου και λύστε το με τη βοήθεια γνωστού αλγορίθμου.. Έστω ότι έχουμε τα δίκτυα: Πηγή Δέκτης

11 και Πηγή Δέκτης Να διατυπωθούν τα παραπάνω δίκτυα ως προβλήματα μέγιστης ροής.. Δίνεται το παρακάτω δίκτυο εργασιών. Υποθέστε ότι ο χρόνος που χρειάζεται κάθε εργασία (σε ημέρες) είναι σταθερός και ότι είναι ο αριθμός δίπλα σε κάθε τόξο. Βρείτε τον νωρίτερο χρόνο, τον αργότερο χρόνο και το χαλαρό χρόνο για κάθε γεγονός. Προσδιορίστε ακόμα το κρίσιμο μονοπάτι του δικτύου εργασιών. 0

12

3.12 Το Πρόβλημα της Μεταφοράς

3.12 Το Πρόβλημα της Μεταφοράς 312 Το Πρόβλημα της Μεταφοράς Σ αυτή την παράγραφο και στις επόμενες μέχρι το τέλος του κεφαλαίου θα ασχοληθούμε με μερικά σπουδαία είδη προβλημάτων γραμμικού προγραμματισμού Οι ειδικές αυτές περιπτώσεις

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2008 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΜΑ 1 ο Σε μία γειτονιά, η ζήτηση ψωμιού η οποία ανέρχεται σε 1400 φραντζόλες ημερησίως,

Διαβάστε περισσότερα

ΔΙΑΡΚΕΙΑ (εβδομάδες) A -- 6 B -- 2 C A 3 D B 2 E C 4 F D 1 G E,F 1 H G 6 I H 3 J H 1 K I,J 1 ΔΡΑΣΤΗΡΙΟΤΗΤΑ

ΔΙΑΡΚΕΙΑ (εβδομάδες) A -- 6 B -- 2 C A 3 D B 2 E C 4 F D 1 G E,F 1 H G 6 I H 3 J H 1 K I,J 1 ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΑΣΚΗΣΗ 1 Για την ολοκλήρωση ενός έργου απαιτείται η εκτέλεση ενός αριθμού δραστηριοτήτων. Οι δραστηριότητες αυτές, οι διάρκειές τους και οι περιορισμοί που υπάρχουν για την εκτέλεσή τους δίνονται στον

Διαβάστε περισσότερα

Το Πρόβλημα Μεταφοράς

Το Πρόβλημα Μεταφοράς Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού

Διαβάστε περισσότερα

Παράδειγμα δικτύου. Ορολογία (1) Ορολογία (2) Ορολογία (3) Δίκτυο με δεδομένα δυναμικότητας ροής στις ακμές

Παράδειγμα δικτύου. Ορολογία (1) Ορολογία (2) Ορολογία (3) Δίκτυο με δεδομένα δυναμικότητας ροής στις ακμές http://users.uom.gr/~acg Στοιχεία από τη Θεωρία Δικτύων Παράδειγμα δικτύου Τα δίκτυα είναι παντού (όπως και η Επιχειρησιακή Έρευνα) Τα δίκτυα είναι παντού (συνέχεια) Ένα δίκτυο είναι μία συλλογή κόμβων

Διαβάστε περισσότερα

ΕΡΓΑΛΕΙΑ ΧΡΟΝΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

ΕΡΓΑΛΕΙΑ ΧΡΟΝΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΕΡΓΑΛΕΙΑ ΧΡΟΝΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Δρ. Βασιλική Καζάνα Αναπλ. Καθηγήτρια ΤΕΙ Καβάλας, Τμήμα Δασοπονίας & Διαχείρισης Φυσικού Περιβάλλοντος Δράμας Εργαστήριο Δασικής Διαχειριστικής Τηλ. & Φαξ: 25210 60435

Διαβάστε περισσότερα

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει;

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει; ΜΑΘΗΜΑ 7 Κλήση αλγορίθμου από αλγόριθμο Αναδρομή Σ χ ο λ ι κ ο Β ι β λ ι ο ΥΠΟΚΕΦΑΛΑΙΟ 2.2.7: ΕΝΤΟΛΕΣ ΚΑΙ ΔΟΜΕΣ ΑΛΓΟΡΙΘΜΟΥ ΠΑΡΑΓΡΑΦΟI 2.2.7.5: Κλήση αλγορίθμου από αλγόριθμο 2.2.7.6: Αναδρομή εισαγωγη

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Τέταρτη Γραπτή Εργασία στην Επιχειρησιακή Έρευνα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Τέταρτη Γραπτή Εργασία στην Επιχειρησιακή Έρευνα ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2012-13 Τέταρτη Γραπτή Εργασία στην Επιχειρησιακή Έρευνα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2010-11 Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες

Διαβάστε περισσότερα

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1)

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Ένα πολυσταδιακό πρόβλημα που αφορά στον τριμηνιαίο προγραμματισμό για μία βιομηχανική επιχείρηση παραγωγής ελαστικών (οχημάτων) Γενικός προγραμματισμός

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Γραφική λύση προβλημάτων Γραμμικού Προγραμματισμού

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Γραφική λύση προβλημάτων Γραμμικού Προγραμματισμού ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Γραφική λύση προβλημάτων Γραμμικού Προγραμματισμού Πρόγραμμα Γενικό γραμμικό πρόβλημα με πολύγωνη περιοχή εφικτών λύσεων Να λυθεί το παρακάτω γραμμικό πρόγραμμα: ma z μ. π. 4

Διαβάστε περισσότερα

Μαθησιακές δυσκολίες ΙΙ. Παλαιγεωργίου Γιώργος Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας

Μαθησιακές δυσκολίες ΙΙ. Παλαιγεωργίου Γιώργος Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας Μαθησιακές δυσκολίες ΙΙ Παλαιγεωργίου Γιώργος Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας Μάρτιος 2010 Προηγούμενη διάλεξη Μαθησιακές δυσκολίες Σε όλες

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 1 Δύο επιχειρήσεις Α και Β, μοιράζονται το μεγαλύτερο μερίδιο της αγοράς για ένα συγκεκριμένο προϊόν. Καθεμία σχεδιάζει τη νέα της στρατηγική για τον επόμενο χρόνο, προκειμένου να αποσπάσει πωλήσεις

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος... 15 Σημείωμα του συγγραφέα... 18 Υποστηρικτικό υλικό... 22

Περιεχόμενα. Πρόλογος... 15 Σημείωμα του συγγραφέα... 18 Υποστηρικτικό υλικό... 22 Περιεχόμενα Πρόλογος........................................................ 15 Σημείωμα του συγγραφέα............................................ 18 Υποστηρικτικό υλικό................................................

Διαβάστε περισσότερα

Θ.Ε. ΠΛΗ24 ΑΚΑΔ. ΕΤΟΣ 2007-2008 ΠΡΩΤΗ ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ

Θ.Ε. ΠΛΗ24 ΑΚΑΔ. ΕΤΟΣ 2007-2008 ΠΡΩΤΗ ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Θ.Ε. ΠΛΗ24 ΑΚΑΔ. ΕΤΟΣ 2007-2008 ΠΡΩΤΗ ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Άσκηση 1 Διαχείριση τηλεφωνικού καταλόγου Να σχεδιάσετε ένα διάγραμμα περιπτώσεων χρήσης που να παριστάνει τις δυνατότητες που προσφέρει ένα σύγχρονο

Διαβάστε περισσότερα

2.1. ΑΠΛΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

2.1. ΑΠΛΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ . ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ( Linear Programming ) Ο Γραμμικός Προγραμματισμός είναι μια τεχνική που επιτρέπει την κατανομή των περιορισμένων πόρων μιας επιχείρησης με τον πιο

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ. Τι είναι αλγόριθμος

ΑΛΓΟΡΙΘΜΟΙ. Τι είναι αλγόριθμος ΑΛΓΟΡΙΘΜΟΙ Στο σηµείωµα αυτό αρχικά εξηγείται η έννοια αλγόριθµος και παραθέτονται τα σπουδαιότερα κριτήρια που πρέπει να πληρεί κάθε αλγόριθµος. Στη συνέχεια, η σπουδαιότητα των αλγορίθµων συνδυάζεται

Διαβάστε περισσότερα

Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1

Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1 Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1 Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ.Χατζόπουλος 2 Δένδρο αναζήτησης είναι ένας ειδικός τύπος δένδρου που χρησιμοποιείται για να καθοδηγήσει την αναζήτηση μιας

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βήματα προς τη δημιουργία εκτελέσιμου κώδικα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βήματα προς τη δημιουργία εκτελέσιμου κώδικα Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βήματα προς τη δημιουργία εκτελέσιμου κώδικα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Βήματα προς τη δημιουργία εκτελέσιμου κώδικα

Διαβάστε περισσότερα

Α2. Να γράψετε στο τετράδιό σας τους αριθμούς της Στήλης Α και δίπλα τα γράμματα της Στήλης Β που τους αντιστοιχούν.

Α2. Να γράψετε στο τετράδιό σας τους αριθμούς της Στήλης Α και δίπλα τα γράμματα της Στήλης Β που τους αντιστοιχούν. ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ /Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 03-11-2013 ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-8 και δίπλα τη λέξη Σωστό, αν είναι

Διαβάστε περισσότερα

Κατανα λωση-αποταμί ευση- Επε νδυση

Κατανα λωση-αποταμί ευση- Επε νδυση Κατανα λωση-αποταμί ευση- Επε νδυση Προβλήματα και εφαρμογές 1. Για καθένα από τα ακόλουθα ζεύγη ποιο ομόλογο θα περιμένατε να πληρώσει το χαμηλότερο επιτόκιο; α) Ένα ομόλογο του δημοσίου της Γερμανίας

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες ΕΙΣΑΓΩΓΗ Βασικές έννοιες Σε ένα ερωτηματολόγιο έχουμε ένα σύνολο ερωτήσεων. Μπορούμε να πούμε ότι σε κάθε ερώτηση αντιστοιχεί μία μεταβλητή. Αν θεωρήσουμε μια ερώτηση, τα άτομα δίνουν κάποιες απαντήσεις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 3 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑΤΑ

ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 3 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑΤΑ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 3 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑΤΑ ΘΕΜΑ 1 ο Τα δεδομένα της στήλης Grade (Αρχείο Excel, Φύλλο Ask1) αναφέρονται στη βαθμολογία 63 φοιτητών που έλαβαν μέρος σε

Διαβάστε περισσότερα

ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. Ε ανάληψη. δοµή δεδοµένων για κατασκευή ευρετικών συναρτήσεων Ο αλγόριθµος GraphPlan

ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. Ε ανάληψη. δοµή δεδοµένων για κατασκευή ευρετικών συναρτήσεων Ο αλγόριθµος GraphPlan ΠΛΗ 405 Τεχνητή Νοηµοσύνη Σχεδιασµός και ράση στον Πραγµατικό Κόσµο Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Γραφήµατα σχεδιασµού δοµή δεδοµένων για κατασκευή

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΗΜΕΙΩΣΕΙΣ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΗΜΕΙΩΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΗΜΕΙΩΣΕΙΣ Δ.Α.Π. Ν.Δ.Φ.Κ. ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ www.dap-papei.gr ΠΑΡΑΔΕΙΓΜΑ 1 ΑΣΚΗΣΗ 1 Η FASHION Α.Ε είναι μια από

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ31 (2005-6) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #1 Στόχος Η εργασία επικεντρώνεται σε θέματα προγραμματισμού για Τεχνητή Νοημοσύνη και σε πρακτικά θέματα εξάσκησης σε Κατηγορηματική Λογική. Θέμα 1: Απλές Αναζητήσεις

Διαβάστε περισσότερα

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν την τέταρτη εργασία της ενότητας ΔΕΟ13

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν την τέταρτη εργασία της ενότητας ΔΕΟ13 Άσκηση 1 η 4 η Εργασία ΔEO13 Ακολουθούν ενδεικτικές ασκήσεις που αφορούν την τέταρτη εργασία της ενότητας ΔΕΟ13 Μια βιομηχανική επιχείρηση χρησιμοποιεί ένα εργοστάσιο (Ε) για την παραγωγή των προϊόντων

Διαβάστε περισσότερα

Κεφάλαιο 5: Στρατηγική χωροταξικής διάταξης

Κεφάλαιο 5: Στρατηγική χωροταξικής διάταξης K.5.1 Γραμμή Παραγωγής Μια γραμμή παραγωγής θεωρείται μια διάταξη με επίκεντρο το προϊόν, όπου μια σειρά από σταθμούς εργασίας μπαίνουν σε σειρά με στόχο ο κάθε ένας από αυτούς να κάνει μια ή περισσότερες

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

Κεφάλαιο 7. Τρισδιάστατα Μοντέλα

Κεφάλαιο 7. Τρισδιάστατα Μοντέλα Κεφάλαιο 7. 7.1 ομές εδομένων για Γραφικά Υπολογιστών. Οι δομές δεδομένων αποτελούν αντικείμενο της επιστήμης υπολογιστών. Κατά συνέπεια πρέπει να γνωρίζουμε πώς οργανώνονται τα γεωμετρικά δεδομένα, προκειμένου

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ"

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ" ΜΕΡΟΣ ΔΕΥΤΕΡΟ Υπεύθυνος Καθηγητής Λυκοθανάσης Σπυρίδων Ακαδημαικό Έτος:

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 15: O αλγόριθμος SIMPLE

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 15: O αλγόριθμος SIMPLE ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 15: O αλγόριθμος SIMPLE Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε τις θέσεις που

Διαβάστε περισσότερα

Η EΝΝΟΙΑ ΠΡΟΒΛΗΜΑ ΚΑΤΑΝΟΗΣΗ ΠΡΟΒΛΗΜΑΤΟΣ. Ορισμός. 1.1 Τι ονομάζουμε πρόβλημα;

Η EΝΝΟΙΑ ΠΡΟΒΛΗΜΑ ΚΑΤΑΝΟΗΣΗ ΠΡΟΒΛΗΜΑΤΟΣ. Ορισμός. 1.1 Τι ονομάζουμε πρόβλημα; ΑΝΑΛΥΣΗ Π 1 ΡΟΒΛΗΜΑΤΟΣ Η EΝΝΟΙΑ ΠΡΟΒΛΗΜΑ 1.1 Τι ονομάζουμε πρόβλημα; Ορισμός Πρόβλημα ονομάζουμε μια κατάσταση η οποία χρήζει αντιμετώπισης, απαιτεί λύση, η δε λύση της δεν είναι γνωστή, ούτε προφανής.

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Να γράψετε τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή ή τη λέξη ΛΑΘΟΣ, αν είναι λανθασμένη.

ΘΕΜΑ Α Α1. Να γράψετε τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή ή τη λέξη ΛΑΘΟΣ, αν είναι λανθασμένη. ΜΑΘΗΜΑ / ΤΑΞΗ : Ανάπτυξη Εφαρμογών ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ Α Α1. Να γράψετε τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή ή τη λέξη ΛΑΘΟΣ, αν είναι λανθασμένη.

Διαβάστε περισσότερα

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Τεχνητή Νοημοσύνη 06 Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Εισαγωγικά (1/3) Τα προβλήματα όπου η εξέλιξη των καταστάσεων εξαρτάται από δύο διαφορετικά σύνολα τελεστών μετάβασης που εφαρμόζονται

Διαβάστε περισσότερα

Operations Management Διοίκηση Λειτουργιών

Operations Management Διοίκηση Λειτουργιών Operations Management Διοίκηση Λειτουργιών Διδάσκων: Δρ. Χρήστος Ε. Γεωργίου xgr@otenet.gr 1 η εβδομάδαμαθημάτων 1 1 ο Μέρος SYLLABUS ΕΞΕΤΑΣΕΙΣ ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ 2 Κριτήρια αξιολόγησης εργασίας 1.

Διαβάστε περισσότερα

Προσομοίωση ΚΕΦΑΛΑΙΟ 7

Προσομοίωση ΚΕΦΑΛΑΙΟ 7 ΚΕΦΑΛΑΙΟ 7 Προσομοίωση 7.1 Συστήματα και πρότυπα συστημάτων 7.2 Η διαδικασία της προσομοίωσης 7.3 Ανάπτυξη προτύπων διακριτών γεγονότων 7.4 Τυχαίοι αριθμοί 7.5 Δείγματα από τυχαίες μεταβλητές 7.6 Προσομοίωση

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 9 ΕΝΩΣΗ ΞΕΝΩΝ ΣΥΝΟΛΩΝ ( ΟΜΕΣ UNION-FIND)

ΕΝΟΤΗΤΑ 9 ΕΝΩΣΗ ΞΕΝΩΝ ΣΥΝΟΛΩΝ ( ΟΜΕΣ UNION-FIND) ΕΝΟΤΗΤΑ 9 ΕΝΩΣΗ ΞΕΝΩΝ ΣΥΝΟΛΩΝ ( ΟΜΕΣ UNION-FIND) Ένωση Ξένων Συνόλων (Disjoint Sets with Union) S 1,, S k : ξένα υποσύνολα ενός συνόλου U δηλ., S i S j =, αν i j, και S 1 S k = U. Λειτουργίες που θέλουµε

Διαβάστε περισσότερα

Παρακαλώ διαβάστε πρώτα τις πιο κάτω οδηγίες:

Παρακαλώ διαβάστε πρώτα τις πιο κάτω οδηγίες: Παρακαλώ διαβάστε πρώτα τις πιο κάτω οδηγίες:. Η εξέταση διαρκεί 5 h (πέντε ώρες). Υπάρχουν τρεις ερωτήσεις και κάθε μια από αυτές βαθμολογείται με 0 βαθμούς.. Χρησιμοποιήστε μόνο το στυλό που υπάρχει

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 10β: Αλγόριθμοι Γραφημάτων-Γραφήματα- Αναπαράσταση Γραφημάτων- Διερεύνηση Πρώτα σε Πλάτος (BFS) Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το

Διαβάστε περισσότερα

Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον

Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον Κεφάλαιο 6ο Εισαγωγή στον Προγραµµατισµό Μέρος Πρώτο (6.1, 6.2 και 6.3) Α. Ερωτήσεις Σωστού Λάθους 1. Η γλώσσα µηχανής είναι µία γλώσσα υψηλού επιπέδου.

Διαβάστε περισσότερα

Διαχείριση Εφοδιαστικής Αλυσίδας

Διαχείριση Εφοδιαστικής Αλυσίδας Διαχείριση Εφοδιαστικής Αλυσίδας 7 η Διάλεξη: Δρομολόγηση & Προγραμματισμός (Routing & Scheduling) 015 Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Ατζέντα Εισαγωγή στις έννοιες Βασικές

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Τεχνολογία Ηλεκτρονικών

Διαβάστε περισσότερα

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης τόμος Καγκουρό Ελλάς 0 007 (ο πρώτος αριθµός σε µια γραµµή αναφέρεται στη σελίδα που αρχίζει το άρθρο και ο δεύτερος στη σελίδα που περιέχει τις απαντήσεις) Πρόλογος

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών Θεματική Ενότητα Διοίκηση Επιχειρήσεων & Οργανισμών ΔΕΟ 13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος 008-009 ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα) Να απαντηθούν 5

Διαβάστε περισσότερα

Η πολυνηματική γλώσσα προγραμματισμού Cilk

Η πολυνηματική γλώσσα προγραμματισμού Cilk Η πολυνηματική γλώσσα προγραμματισμού Cilk Β Καρακάσης Ερευνητικά Θέματα Υλοποίησης Γλωσσών Προγραμματισμού Μεταπτυχιακό Μάθημα (688), ΣΗΜΜΥ Νοέμβριος 2009 Β Καρακάσης (CSLab, NTUA) ΣΗΜΜΥ, Μετ/κό 688 9/2009

Διαβάστε περισσότερα

Εισαγωγή στην έννοια του Αλγορίθμου

Εισαγωγή στην έννοια του Αλγορίθμου Εισαγωγή στην έννοια του Αλγορίθμου ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ Νίκος Μιχαηλίδης, Πληροφορικός ΠΕ19 ΣΧΟΛΕΙΟ 2 ο Πρότυπο Πειραματικό Γυμνάσιο Θεσσαλονίκης Θεσσαλονίκη, 24 Φεβρουαρίου 2015 1. Συνοπτική περιγραφή της

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011 ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011 ΤΕΧΝΟΛΟΓΙΑ Τ.Σ. (ΙΙ) ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα: Μηχανουργική Τεχνολογία Ημερομηνία

Διαβάστε περισσότερα

Εισαγωγή στην Ρομποτική

Εισαγωγή στην Ρομποτική Τμήμα Μηχανολογίας Τ.Ε.Ι. Κρήτης Εισαγωγή στην Ρομποτική 1 Γενική περιγραφή ρομποτικού βραχίονα σύνδεσμοι αρθρώσεις αρπάγη Περιστροφική Πρισματική Βάση ρομποτικού βραχίονα 3 Βασικές ρομποτικές αρθρώσεις

Διαβάστε περισσότερα

ΑΡΘΡΟ: Επισκεφθείτε το Management Portal της Specisoft: Κοστολόγηση με βάση τις δραστηριότητες Activity Based Costing (ABC)

ΑΡΘΡΟ: Επισκεφθείτε το Management Portal της Specisoft: Κοστολόγηση με βάση τις δραστηριότητες Activity Based Costing (ABC) Specisoft ΑΡΘΡΟ: Επισκεφθείτε το Management Portal της Specisoft: Κοστολόγηση με βάση τις δραστηριότητες Activity Based Costing (ABC) Από Γιώργο Μανουσόπουλο, Οικονομολόγo, Συνεργάτη της Specisoft Επισκεφθείτε

Διαβάστε περισσότερα

Όνομα : Επώνυμο: Τάξη : Καθηγητής : Ημ/νία : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ (18-11-2012) Γ3, Γ4 ΑΝ Α < Β ΤΟΤΕ ΑΛΛΙΩΣ ΤΕΛΟΣ_ΑΝ

Όνομα : Επώνυμο: Τάξη : Καθηγητής : Ημ/νία : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ (18-11-2012) Γ3, Γ4 ΑΝ Α < Β ΤΟΤΕ ΑΛΛΙΩΣ ΤΕΛΟΣ_ΑΝ Όνομα : Επώνυμο: Τάξη : ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΛΑΤΕΙΑ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 13 - ΤΗΛ. 2108048919 ΠΛΑΤΕΙΑ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 29 - ΤΗΛ. 2108100606 www.dinamiko.gr, email: info@dinamiko.gr Καθηγητής

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΑΣΦΑΛΕΙΑΣ ΚΑΙ ΥΓΕΙΑΣ ΣΤΑ ΕΡΓΟΤΑΞΙΑ

ΔΙΑΧΕΙΡΙΣΗ ΑΣΦΑΛΕΙΑΣ ΚΑΙ ΥΓΕΙΑΣ ΣΤΑ ΕΡΓΟΤΑΞΙΑ ΔΙΑΧΕΙΡΙΣΗ ΑΣΦΑΛΕΙΑΣ ΚΑΙ ΥΓΕΙΑΣ ΣΤΑ ΕΡΓΟΤΑΞΙΑ Απαιτούμενες Ενέργειες στο Στάδιο Σχεδιασμού και Προγραμματισμού του Έργου ΥΠΟΥΡΓΕΙΟ ΕΡΓΑΣΙΑΣ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ Τμήμα Επιθεώρησης Εργασίας I. ΒΑΣΙΚΕΣ

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΠΡΟΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑ: ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ ΔΙΑΔΙΚΑΣΙΕΣ ΠΑΡΑΓΩΓΗΣ ΛΟΓΙΣΜΙΚΟΥ Διδάσκων: Γ. Χαραλαμπίδης,

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΩΝ

ΔΙΟΙΚΗΣΗ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΩΝ (Project Management) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl 1 Ορισμοί Έργου Έργο είναι μια σειρά από δραστηριότητες που διευθύνονται για την επίτευξη ενός επιθυμητού

Διαβάστε περισσότερα

ΤΕΛΕΣΤΙΚΟΣ ΕΝΙΣΧΥΤΗΣ - Λύσεις ασκήσεων στην ενότητα

ΤΕΛΕΣΤΙΚΟΣ ΕΝΙΣΧΥΤΗΣ - Λύσεις ασκήσεων στην ενότητα ΤΕΛΕΣΤΙΚΟΣ ΕΝΙΣΧΥΤΗΣ - Λύσεις ασκήσεων στην ενότητα 1. Να αναφέρετε τρεις τεχνολογικούς τομείς στους οποίους χρησιμοποιούνται οι τελεστικοί ενισχυτές. Τρεις τεχνολογικοί τομείς που οι τελεστικοί ενισχυτές

Διαβάστε περισσότερα

ιδάσκων: ηµήτρης Ζεϊναλιπούρ

ιδάσκων: ηµήτρης Ζεϊναλιπούρ Κεφάλαιο 1.3-1.4: Εισαγωγή Στον Προγραµµατισµό ( ιάλεξη 2) ιδάσκων: ηµήτρης Ζεϊναλιπούρ Περιεχόµενα Εισαγωγικές Έννοιες - Ορισµοί Ο κύκλος ανάπτυξης προγράµµατος Παραδείγµατα Πότε χρησιµοποιούµε υπολογιστή?

Διαβάστε περισσότερα

Εξισώσεις 2 ου βαθμού

Εξισώσεις 2 ου βαθμού Εξισώσεις 2 ου βαθμού Εξισώσεις 2 ου βαθμού Η εξίσωση της μορφής αχ 2 + βχ + γ = 0, α 0 λύνεται σύμφωνα με τον παρακάτω πίνακα. Δ = β 2 4αγ Η εξίσωση αχ 2 + βχ + γ = 0, α 0 αν Δ>0 αν Δ=0 αν Δ

Διαβάστε περισσότερα

Ορισμός: Έλλειψη είναι ένα σύνολο σημείων τέτοιων ώστε το άθροισμα των αποστάσεων κάθε σημείου από τις δύο εστίες να είναι σταθερό.

Ορισμός: Έλλειψη είναι ένα σύνολο σημείων τέτοιων ώστε το άθροισμα των αποστάσεων κάθε σημείου από τις δύο εστίες να είναι σταθερό. Η κατασκευή με τις δύο πινέζες και το νήμα Στη δραστηριότητα αυτή θα εξερευνήσετε ίσως την πλέον κοινή μέθοδο κατασκευής μιας έλλειψης. Προκειμένου να θέσετε το πλαίσιο για την κατασκευή αυτή, πρέπει να

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #: Εύρεση Ελαχίστων Μονοπατιών σε Γραφήματα που Περιλαμβάνουν και Αρνητικά Βάρη: Αλγόριθμος

Διαβάστε περισσότερα

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014)

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014) > Φυσική Β Γυμνασίου >> Αρχική σελίδα ΔΥΝΑΜΗ ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς μμ εε ααππααννττήή σσεει ιςς (σελ. 1) ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς χχωρρί ίςς ααππααννττήήσσεει ιςς (σελ. 5) ΙΑΒΑΣΕ

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #2: Πολυωνυμικοί Αλγόριθμοι, Εισαγωγή στα Γραφήματα, Αναζήτηση κατά Βάθος, Τοπολογική Ταξινόμηση

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ ΖΗΤΗΣΗΣ ΑΣΚΗΣΗ 1 Δίνεται ο παρακάτω πίνακας : Α. Να σχεδιάσετε την καμπύλη ζήτησης Β. Να βρεθεί η εξίσωση ζήτησης Γ.

ΕΞΙΣΩΣΕΙΣ ΖΗΤΗΣΗΣ ΑΣΚΗΣΗ 1 Δίνεται ο παρακάτω πίνακας : Α. Να σχεδιάσετε την καμπύλη ζήτησης Β. Να βρεθεί η εξίσωση ζήτησης Γ. ΕΞΙΣΩΣΕΙΣ ΖΗΤΗΣΗΣ ΑΣΚΗΣΗ 1 Δίνεται ο παρακάτω πίνακας : ΣΥΝΔΥΑΣΜΟΙ P Α 24 80 Β 35 64 Γ 45 50 Δ 55 36 Ε 60 29 Ζ 70 14 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 Α. Να σχεδιάσετε την καμπύλη

Διαβάστε περισσότερα

Προγραμματισμός Ροής Εργασιών Εισαγωγικά

Προγραμματισμός Ροής Εργασιών Εισαγωγικά Προγραμματισμός Ροής Εργασιών Εισαγωγικά «Έργο είναι μία μοναδική δέσμη συντονισμένων δραστηριοτήτων με σαφές σημείο έναρξης και λήξης, οι οποίες αναλαμβάνονται από ένα άτομο ή οργανισμό προκειμένου να

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 18 Dijkstra s Shortest Path Algorithm 1 / 12 Ο αλγόριθμος εύρεσης της συντομότερης διαδρομής του Dijkstra

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ Διδάσκουσα Δρ Β Καβακλή Χειμερινό Εξάμηνο 2001 Στόχοι του Μαθήματος! Ανάπτυξη αναλυτικής

Διαβάστε περισσότερα

Οι περιπτώσεις χρήσης

Οι περιπτώσεις χρήσης 1 Ελληνικό Ανοικτό Πανεπιστήµιο Οι περιπτώσεις χρήσης ρ. Πάνος Φιτσιλής 2 Περιεχόµενα Το µοντέλο των περιπτώσεων χρήσης Τα διαγράµµατα των περιπτώσεων χρήσης Λεκτική περιγραφή των περιπτώσεων χρήσης Τρόπος

Διαβάστε περισσότερα

O πύραυλος. Γνωστικό Αντικείμενο: Φυσική (Δύναμη Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου

O πύραυλος. Γνωστικό Αντικείμενο: Φυσική (Δύναμη Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου O πύραυλος Γνωστικό Αντικείμενο: Φυσική (Δύναμη Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου Χρονική Διάρκεια Προτεινόμενη χρονική διάρκεια σχεδίου εργασίας: 5 διδακτικές ώρες Διδακτικοί Στόχοι Οι

Διαβάστε περισσότερα

Τεχνολογικά Επιτεύγµατα. Πλεονεκτήµατα. Ορισµός Κατανεµηµένου Συστήµατος. Μειονεκτήµατα. E-03: Λειτουργικά Συστήµατα ΙΙ 6. Εαρινό Εξάµηνο 2005-06

Τεχνολογικά Επιτεύγµατα. Πλεονεκτήµατα. Ορισµός Κατανεµηµένου Συστήµατος. Μειονεκτήµατα. E-03: Λειτουργικά Συστήµατα ΙΙ 6. Εαρινό Εξάµηνο 2005-06 Τεχνολογικά Επιτεύγµατα Ε-03: Λειτουργικά Συστήµατα ΙΙ Εαρινό Εξάµηνο 2005-06 Ανάπτυξη ισχυρών µικροεπεξεργαστών ηµιουργία τοπικών δικτύων υψηλών ταχυτήτων «Εισαγωγή στα Κατανεµηµένα Λειτουργικά Συστήµατα»

Διαβάστε περισσότερα

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το 5/2 1 Παράδειγμα 2: Γράψε ένα κλάσμα που χρησιμοποιεί

Διαβάστε περισσότερα

Ταιριάσματα. Γράφημα. Ταίριασμα (matching) τέτοιο ώστε κάθε κορυφή να εμφανίζεται σε το πολύ μια ακμή του

Ταιριάσματα. Γράφημα. Ταίριασμα (matching) τέτοιο ώστε κάθε κορυφή να εμφανίζεται σε το πολύ μια ακμή του Ταιριάσματα Γράφημα Ταίριασμα (matching) Σύνολο ακμών τέτοιο ώστε κάθε κορυφή να εμφανίζεται σε το πολύ μια ακμή του Θέλουμε να βρούμε ένα μέγιστο ταίριασμα (δηλαδή με μέγιστο αριθμό ακμών) Ταιριάσματα

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑ.Λ. (ΟΜΑ Α Β ) ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΔΕΥΤΕΡΑ, 22 ΑΠΡΙΛΙΟΥ 201 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 5 Ο ΠΟΣΟΤΙΚΕΣ ΜΕΘΟ ΟΙ ΣΤΗΝ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (εργαστήριο) ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2012-2013-ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ

ΜΑΘΗΜΑ 5 Ο ΠΟΣΟΤΙΚΕΣ ΜΕΘΟ ΟΙ ΣΤΗΝ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (εργαστήριο) ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2012-2013-ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΜΑΘΗΜΑ 5 Ο ΠΟΣΟΤΙΚΕΣ ΜΕΘΟ ΟΙ ΣΤΗΝ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (εργαστήριο) ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2012-2013-ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΠΕΡΙΒΑΛΛΟΥΣΑΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ(DEA) Η ανάλυση DEA είναι πολύ ισχυρή και ιδιαίτερα διαδεδοµένη µέθοδο,

Διαβάστε περισσότερα

Συνδυαστικά Κυκλώματα

Συνδυαστικά Κυκλώματα 3 Συνδυαστικά Κυκλώματα 3.1. ΣΥΝΔΥΑΣΤΙΚΗ Λ ΟΓΙΚΗ Συνδυαστικά κυκλώματα ονομάζονται τα ψηφιακά κυκλώματα των οποίων οι τιμές της εξόδου ή των εξόδων τους διαμορφώνονται αποκλειστικά, οποιαδήποτε στιγμή,

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

Υλοποίηση ενός προγραμματιστικού κελύφους εργασίας

Υλοποίηση ενός προγραμματιστικού κελύφους εργασίας Τ.Ε.Ι ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΤΗΛΕΠΛΗΡΟΦΟΡΙΚΗΣ & ΔΙΟΙΚΗΣΗΣ Υλοποίηση ενός προγραμματιστικού κελύφους εργασίας Πτυχιακή εργασία του φοιτητή Γιαννακίδη Αποστόλη Επιβλέπων καθηγητής Τσούλος

Διαβάστε περισσότερα

6.1 Επεκτείνοντας το δίκτυο 6.2 Επιλεγόμενες τηλεφωνικές γραμμές modems Πλεονεκτήματα Μειονεκτήματα Βασική χρήση

6.1 Επεκτείνοντας το δίκτυο 6.2 Επιλεγόμενες τηλεφωνικές γραμμές modems Πλεονεκτήματα Μειονεκτήματα Βασική χρήση 6.1 Επεκτείνοντας το δίκτυο Τοπικά δίκτυα (LAN): επικοινωνία με περιορισμένη απόσταση κάλυψης (μικρή εμβέλεια) Δίκτυα Ευρείας Περιοχής (WAN): επικοινωνία σε ευρύτερη γεωγραφική κάλυψη. Από την άποψη του

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ 1 (Εργαστήριο)

Προγραμματισμός Η/Υ 1 (Εργαστήριο) Προγραμματισμός Η/Υ 1 (Εργαστήριο) Ενότητα 1: Εισαγωγή στη C - Αλγόριθμοι Καθηγήτρια Εφαρμογών: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

7ο ΕΡΓΑΣΤΗΡΙΟ AAAABBBBAAAAABBBBBBCCCCCCCCCCCCCCBBABAAAABBBBBBCCCCD

7ο ΕΡΓΑΣΤΗΡΙΟ AAAABBBBAAAAABBBBBBCCCCCCCCCCCCCCBBABAAAABBBBBBCCCCD ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2010 11 Ιστοσελίδα μαθήματος: http://eclass.teilam.gr/di288 1 Συμπίεση

Διαβάστε περισσότερα

Οδηγός Καλωδίωσης για Ευρυζωνικές Υπηρεσίες. Wiring Guide for Broadband Services

Οδηγός Καλωδίωσης για Ευρυζωνικές Υπηρεσίες. Wiring Guide for Broadband Services Οδηγός Καλωδίωσης για Ευρυζωνικές Υπηρεσίες Wiring Guide for Broadband Services Περιεχόμενα 1. Εισαγωγή 2. Παράλληλα συνδεδεμένες τηλεφωνικές πρίζες και η επίδρασή τους στην τεχνολογία VDSL2 3. Καλωδίωση

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ Μ. Γρηγοριάδου Ρ. Γόγουλου Ενότητα: Η Διδασκαλία του Προγραμματισμού Περιεχόμενα Παρουσίασης

Διαβάστε περισσότερα

ΕΣΔ 200: ΔΗΜΙΟΥΡΓΙΑ ΠΕΡΙΕΧΟΜΕΝΟΥ ΙΙ. Ακαδημαϊκό Έτος 2011 2012, Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης

ΕΣΔ 200: ΔΗΜΙΟΥΡΓΙΑ ΠΕΡΙΕΧΟΜΕΝΟΥ ΙΙ. Ακαδημαϊκό Έτος 2011 2012, Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΕΠΙΚΟΙΝΩΝΙΑΣ & ΣΠΟΥΔΩΝ ΔΙΑΔΙΚΤΥΟΥ ΕΣΔ 200: ΔΗΜΙΟΥΡΓΙΑ ΠΕΡΙΕΧΟΜΕΝΟΥ ΙΙ Ακαδημαϊκό Έτος 2011 2012, Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 006 Μάθημα : Τεχνολογία Ηλεκτρονικών Επικοινωνιών Τεχνολογία Ι, Πρακτικής Κατεύθυνσης

Διαβάστε περισσότερα

Το παραμύθι της Επιπεδίας

Το παραμύθι της Επιπεδίας Το παραμύθι της Επιπεδίας Ιστορία του J.Weeks, βασισμένη σε ιδέες του μυθιστορήματος Flatland: a romance in many dimensions, του E.A.Abbott, το οποίο δημοσιεύτηκε το 1884, και στο οποίο βασίστηκε το κινηματογραφικό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΕΒΔΟΜΟ ΑΚΑΘΑΡΙΣΤΟ ΕΓΧΩΡΙΟ ΠΡΟΙΟΝ. 1. Τι πρέπει να κατανοήσει o μαθητής

ΚΕΦΑΛΑΙΟ ΕΒΔΟΜΟ ΑΚΑΘΑΡΙΣΤΟ ΕΓΧΩΡΙΟ ΠΡΟΙΟΝ. 1. Τι πρέπει να κατανοήσει o μαθητής ΚΕΦΑΛΑΙΟ ΕΒΔΟΜΟ ΑΚΑΘΑΡΙΣΤΟ ΕΓΧΩΡΙΟ ΠΡΟΙΟΝ 1. Τι πρέπει να κατανοήσει o μαθητής Είναι το πρώτο κεφάλαιο που εξετάζει τα οικονομικά φαινόμενα από μια διαφορετική οπτική, τη μακροοικονομική, και προσεγγίζει

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

Ηποσοτικήέρευνα. (Θεμελιώδεις έννοιες)

Ηποσοτικήέρευνα. (Θεμελιώδεις έννοιες) Ηποσοτικήέρευνα (Θεμελιώδεις έννοιες) 1 Πειραματική έρευνα Ποσοτική έρευνα Πειραματική Ημι-πειραματική Αντιστροφής Περιγραφική Σύγκρισης Συσχέτισης Διαδοχικων Μ. 2 Μη Ισοδ..Ομ. Αντιστροφής Πειραματική

Διαβάστε περισσότερα

ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΟΣΟ ΣΥΝΘΗΚΗ ΕΠΑΝΑΛΑΒΕ.ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ. Κοκκαλάρα Μαρία ΠΕ19

ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΟΣΟ ΣΥΝΘΗΚΗ ΕΠΑΝΑΛΑΒΕ.ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ. Κοκκαλάρα Μαρία ΠΕ19 ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΟΣΟ ΣΥΝΘΗΚΗ ΕΠΑΝΑΛΑΒΕ.ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ Κοκκαλάρα Μαρία ΠΕ19 ΠΕΡΙΓΡΑΜΜΑ ΤΗΣ ΠΑΡΟΥΣΙΑΣΗΣ 1. Εισαγωγικά στοιχεία 2. Ένταξη του διδακτικού σεναρίου στο πρόγραμμα σπουδών 3. Οργάνωση της τάξης

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Διαβάστε περισσότερα

Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Λεξικό, Union Find ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαχείριση ιαμερίσεων Συνόλου Στοιχεία

Διαβάστε περισσότερα

Επιτάχυνση της Βαρύτητας g = 10m/s 2

Επιτάχυνση της Βαρύτητας g = 10m/s 2 ΛΥΚΕΙΟ ΑΚΡΟΠΟΛΗΣ ΠΡΟΤΕΙΟΜΕΕΣ ΑΠΑΤΗΣΕΙΣ Σχολική Χρονιά:2014-2015 αθμός :. ΔΙΑΓΩΙΣΜΑ κατ. ΣΧΕΔΙΑΣΜΟΣ ΔΥΑΜΕΩ-ΚΙΗΜΑΤΙΚΗ-ΔΥΑΜΙΚΗ-ΤΡΙΗ Υπ. Κηδεμόνα :.. Μάθημα : ΦΥΣΙΚΗ Όνομα μαθητή/τριας: Ημερομηνία : Τμήμα

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 4 ΔΙΚΤΥΑ (NETWORKS)

ΜΑΘΗΜΑ 4 ΔΙΚΤΥΑ (NETWORKS) ΜΑΘΗΜΑ 4 ΔΙΚΤΥΑ (NETWORKS) ΣΤΟΧΟΙ: 1. Δίκτυα Πληροφοριών 2. Πελάτης/Διακομιστής 3. Διαδίκτυο 4. Ενδοδίκτυο Και Ενδοδίκτυο Εξωτερικής Πρόσβασης 5. Μεταφορά Δεδομένων 6. Υπηρεσίες Σύνδεσης Με Το Διαδίκτυο

Διαβάστε περισσότερα

ΗΥ-460 Συστήµατα ιαχείρισης Βάσεων εδοµένων ηµήτρης Πλεξουσάκης Βασίλης Χριστοφίδης

ΗΥ-460 Συστήµατα ιαχείρισης Βάσεων εδοµένων ηµήτρης Πλεξουσάκης Βασίλης Χριστοφίδης Πανεπιστήµιο Κρήτης Τµήµα Επιστήµης Υπολογιστών ΗΥ-460 Συστήµατα ιαχείρισης Βάσεων εδοµένων ηµήτρης Πλεξουσάκης Βασίλης Χριστοφίδης Ονοµατεπώνυµο: Αριθµός Μητρώου: Επαναληπτική Εξέταση (3 ώρες) Ηµεροµηνία:

Διαβάστε περισσότερα

Η Επίδραση των Capital Controls στο Β-C Ηλεκτρονικό Εμπόριο και Ηλ. Τραπεζική

Η Επίδραση των Capital Controls στο Β-C Ηλεκτρονικό Εμπόριο και Ηλ. Τραπεζική Η Επίδραση των Capital Controls στο Β-C Ηλεκτρονικό Εμπόριο και Ηλ. Τραπεζική Καθ. Γεώργιος Δουκίδης Δρ. Κατερίνα Φραϊδάκη Εργαστήριο Ηλεκτρονικού Επιχειρείν και Ηλεκτρονικού Εμπορίου Οικονομικό Πανεπιστήμιο

Διαβάστε περισσότερα

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ 1. Τι καλείται ψευδοκώδικας; 2. Τι καλείται λογικό διάγραμμα; 3. Για ποιο λόγο είναι απαραίτητη η τυποποίηση του αλγόριθμου; 4. Ποιες είναι οι βασικές αλγοριθμικές δομές; 5. Να περιγράψετε τις

Διαβάστε περισσότερα