δημιουργία: επεξεργασία: Ν.Τσάντας

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας"

Transcript

1 Θεωρία Παιγνίων Μελέτη στοιχείων που χαρακτηρίζουν καταστάσεις ανταγωνιστικής άλληλεξάρτησης με έμφαση στη διαδικασία λήψης αποφάσεων περισσοτέρων από ένα ληπτών απόφασης (αντιπάλων). Παίγνια δύο παικτών μηδενικού αθροίσματος. Παίγνια δύο παικτών σταθερού αθροίσματος. Παίγνια n παικτών με n > 2. Παίγνια μη σταθερού αθροίσματος. 1

2 Βασικές Έννοιες Παίγνιο (game): Η κατάσταση εκείνη κατά την οποία δύο ή περισσότεροι ορθολογικοί παίκτες με αντικρουόμενους στόχους επιλέγουν τρόπους ενέργειας, δημιουργώντας συνθήκες ανταγωνιστικής αλληλεξάρτησης Στοιχεία παιγνίου: Παίκτης: αυτόνομη μονάδα λήψης απόφασης. Άτομο, ομάδα, επιχείρηση, κράτος κλπ. Προσπαθεί να βελτιστοποιήσει τη δική του ευημερία έναντι των αντιπάλων του βασιζόμενος στους κανόνες, στους πόρους και στις πληροφορίες που έχει στη διάθεσή του. Είναι ορθολογιστής. Υπάρχουν τουλάχιστον n 2 παίκτες. Για n = 2 Παίγνιο Δύο Παικτών. Στρατηγική: το σύνολο των κανόνων που ορίζουν τις εφικτές επιλογές τις οποίες δύναται να ακολουθεί σε κάθε κίνησή του ο παίκτης μέχρι το τέλος του παιγνίου. Αναζητούμε τις στρατηγικές που βελτιστοποιεί το στόχο του κάθε παίκτη. 2

3 o Αμιγής Στρατηγική: Κάθε παίκτης επιλέγει μία μόνο από τις δυνατές στρατηγικές του με πιθανότητα ίση με τη μονάδα. o Μικτή Στρατηγική: Περιλαμβάνει συνδυασμό στρατηγικών οι οποίες επιλέγονται με πιθανότητα μικρότερη της μονάδας. Πίνακας αποτελεσμάτων (πληρωμών, ανταμοιβών): Δείχνει τα αποτελέσματα του παιγνίου για κάθε συνδυασμό στρατηγικών. Λύση του παιγνίου: Η βέλτιστη στρατηγική όλων των παικτών. 3

4 Παίγνιο δύο παικτών μηδενικού αθροίσματος Δύο παίκτες: ο Α (παίκτης των σειρών) και ο Β (παίκτης των στηλών). Το παιχνίδι παρίσταται από τον πίνακα πληρωμών του παίκτη Α. Ο παίκτης Α διαθέτει m στρατηγικές. Ο παίκτης Β διαθέτει n στρατηγικές. Παίκτης Α Παίκτης Β Στρατηγικές 1 2 n 1 α 11 α 12 α 1n 2 α 21 α 22 α 2n m α m1 α m2 α mn Αν ο παίκτης Α επιλέξει τη στρατηγική Α i και ο παίκτης Β τη στρατηγική B j, τότε ο παίκτης Α κερδίζει α ij και ο παίκτης Β χάνει α ij. 4

5 Άλλα στοιχεία Οι δύο παίκτες είναι ορθολογιστές, επιλέγουν τις στρατηγικές τους με αποκλειστικό στόχο τη δική τους ευημερία βάσει των στοιχείων του πίνακα, δεν αντιδρούν συναισθηματικά. Τα στοιχεία του πίνακα αντιπροσωπεύουν κέρδος υπό την ευρεία έννοια Γενικά, είναι η χρησιμότητα (utility) για τον παίκτη Α από κάθε συνδυασμό δύο στρατηγικών. Αρχή κοινής γνώσης. Οι παίκτες γνωρίζουν τη δομή του πίνακα πληρωμών, γνωρίζουν ότι οι αντίπαλοί τους γνωρίζουν τη δομή αυτή, γνωρίζουν ότι οι αντίπαλοί τους γνωρίζουν ότι γνωρίζουν τη δομή αυτή, κ.ο.κ. Οι παίκτες επιλέγουν ταυτόχρονα στρατηγική, χωρίς να επικοινωνούν, χωρίς συνεργασία και χωρίς να έχουν ενημερωθεί εκ των προτέρων για την επιλογή του αντιπάλου τους. 5

6 Παράδειγμα 1 Δύο πολιτικοί επιλέγουν το κύριο θέμα το οποίο θα επικεντρώσουν την προσοχή τους σε τηλεοπτική συζήτηση (debate). Ο καθένας έχει τρεις βασικές επιλογές, όχι κατ ανάγκη ίδιες. Η σχετική αποτελεσματικότητα (αύξηση στις ψήφους του πολιτικού Α ως ποσοστό των συνολικών ψήφων) που θα προκύψει στο τέλος της συζήτησης, εξαρτάται από τους συνδυασμούς των θεμάτων που επιλέγουν και δίνεται στον ακόλουθο πίνακα πληρωμών για τον Α. Πίνακας πληρωμών για τον Α Πολιτικός Β Πολιτικός Α Στρατηγικές Β 1 Β 2 Β 3 Α Α Α

7 Οι παίκτες γνωρίζουν τη δομή του πίνακα, γνωρίζουν ότι οι αντίπαλοί τους το γνωρίζουν κ.ο.κ. Επιλέγουν ταυτοχρόνως στρατηγική χωρίς να επικοινωνούν, χωρίς συνεργασία και χωρίς να έχουν ενημερωθεί εκ των προτέρων για την επιλογή του αντιπάλου τους. Ποια στρατηγική πρέπει να επιλέξει κάθε πολιτικός?? Πίνακας πληρωμών για τον Β Πολιτικός Β Πολιτικός Α Στρατηγικές Α 1 Α 2 Α 3 Β Β Β

8 Διαγραφή υποδεέστερων στρατηγικών Μία στρατηγική είναι υποδεέστερη μίας άλλης (που ονομάζεται υπερέχουσα ή κυρίαρχη) όταν η κυρίαρχη στρατηγική είναι τουλάχιστον τόσο «καλή» όσο και η υποδεέστερη. B 1 B 2 B 3 B 1 B 2 B 3 A A A A A Ο ορθολογιστής παίκτης Α δεν εφαρμόζει ποτέ την στρατηγική 3. 8

9 Συνέχεια παραδείγματος 1 B 1 B 2 B 3 B 1 B 2 A A A A Ο ορθολογιστής παίκτης Β γνωρίζοντας ότι ο Α δεν θα εφαρμόσει ποτέ την στρατηγική 3 (και γνωρίζοντας ότι ο Α γνωρίζει ότι το γνωρίζει κ.ο.κ.) δεν εφαρμόζει ποτέ τη δική του στρατηγική 3 αφού είναι υποδεέστερη της 1 ης Προσοχή! Κατά τη διαδικασία απαλοιφής των υποδεεστέρων στρατηγικών, είναι δυνατό μία στρατηγική που αρχικά δεν ήταν υποδεέστερη, να καταστεί στη συνέχεια υποδεέστερη και να απομακρυνθεί από τον πίνακα πληρωμών. 9

10 Συνέχεια παραδείγματος 1 B 1 B 2 B 1 A A 1-1 A A 2 1 Ο παίκτης Β γνωρίζοντας ότι ο Α δεν θα εφαρμόσει ποτέ την στρατηγική 3 (και γνωρίζοντας ότι ο Α γνωρίζει ότι το γνωρίζει κ.ο.κ.) δεν εφαρμόζει ποτέ τη στρατηγική 2 αφού είναι υποδεέστερη της 1 ης στρατηγικής του. 10

11 Συνέχεια παραδείγματος 1 B 1 B 1 A 1-1 A 2 1 A 2 1 Γνωρίζοντας ο παίκτης Α ότι ο Β γνωρίζει όλα τα προηγούμενα, τότε δεν θα εφαρμόσει την 1 η στρατηγική του αφού είναι υποδεέστερη της 2 ης. Στο παράδειγμα, το σημείο ισορροπίας (saddle point) είναι εκείνο που προκύπτει όταν ο παίκτης Α εφαρμόζει τη 2 η στρατηγική του και ο Β την 1 η. Η πιθανή εφαρμογή άλλης στρατηγικής πέρα από το σημείο ισορροπίας, έχει απάντηση από τον αντίπαλο η οποία δυσχεραίνει τη θέση του. 11

12 Το σημείο ισορροπίας (οριακό σημείο) ονομάζεται τιμή του παιγνίου, συμβολίζεται με V (value of the game) και παρατηρούμε ότι είναι το μεγαλύτερο στη στήλη του και το μικρότερο στη σειρά του (saddle point, σαγματικό σημείο). B 1 B 2 B 3 row min A A * A column max 1* 7 3 V=1 Οι δύο άριστες -αμιγείς- στρατηγικές συνθέτουν τη λύση του παιγνίου σύμφωνα με την οποία το καλύτερο που μπορεί να πετύχει ο Α είναι κερδίσει 1% των ψήφων ενώ το καλύτερο που μπορεί να πετύχει ο Β είναι να χάσει 1% των ψήφων. 12

13 Στρατηγική maximin και minimax B 1 B 2 B 3 min A A * A max 1* 7 3 V=1 Maximin σημείο Minimax σημείο Ο αντικειμενικός σκοπός του Α είναι να μεγιστοποιήσει τα κέρδη του, και του Β να ελαχιστοποιήσει τη ζημιά του. Θα ισορροπήσουν εκεί όπου ο Α θα μεγιστοποιεί το ελάχιστο κέρδος του και ο Β θα ελαχιστοποιεί τη μέγιστη ζημιά του. Ουσιαστικά, ισορροπούν εκεί όπου και οι δύο ελαχιστοποιούν τη μέγιστη ζημιά που μπορούν να υποστούν. 13

14 ΣΥΜΠΕΡΑΣΜΑΤΙΚΑ, σύμφωνα με το κριτήριο minimax, σε ένα πίνακα πληρωμών για τον παίκτη Α, ο παίκτης Α επιλέγει, εκείνη τη στρατηγική που θα του δώσει το μεγαλύτερο από τα ελάχιστα των σειρών (maximin τιμή) και ο παίκτης Β επιλέγει εκείνη τη στρατηγική που θα του δώσει το ελάχιστο από τα μέγιστα των στηλών (minimax τιμή). Η maximin τιμή ονομάζεται κατώτερη τιμή και η minimax ανώτερη τιμή του παιγνίου. Όταν οι δύο τιμές ταυτίζονται το παίγνιο έχει λύση με αμιγείς στρατηγικές και η λύση είναι σταθερή (stable) δηλαδή υπάρχει ένα μοναδικό σημείο ισορροπίας που δίνει την τιμή του παιγνίου, V. 14

15 Παράδειγμα 2 B 1 B 2 B 3 min A A * A max 5 0* 6 V=0 Maximin σημείο Minimax σημείο Σύμφωνα με το κριτήριο minimax, και οι δύο παίκτες θα εφαρμόσουν τη 2 η στρατηγική τους. Το παίγνιο αυτό ονομάζεται δίκαιο (V=0). 15

16 Παίγνιο δύο παικτών σταθερού αθροίσματος Το άθροισμα των ανταμοιβών των παικτών είναι μία σταθερά c (θετική ή αρνητική). Τιμή της σταθεράς: θετική οι παίκτες μοιράζονται κάποια ανταμοιβή, αρνητική μοιράζονται κάποιο κόστος. Παίγνιο μηδενικού αθροίσματος c = 0. Παράδειγμα 3: Δύο ανταγωνιστικές επιχειρήσεις Α και Β μοιράζονται τις πωλήσεις ενός προϊόντος σε μία περιοχή. Ο συνολικός ετήσιος τζίρος των πωλήσεων είναι περίπου σταθερός και ανέρχεται στα 200 εκατομμύρια ευρώ. Κάθε μία επιχείρηση για να αποσπάσει πωλήσεις από την άλλη, εξετάζει τρία εναλλακτικά σενάρια μάρκετινγκ: (1) βελτίωση ποιότητας, (2) βελτίωση συσκευασίας, (3) αύξηση διαφημιστικής δαπάνης. Το κόστος των τριών λύσεων είναι περίπου ίδιο, αλλά υψηλό, οπότε μία μόνο στρατηγική θα εφαρμοστεί από κάθε επιχείρηση. Ακολουθεί ο πίνακας πληρωμών για την επιχείρηση Α. 16

17 Πίνακας πληρωμών παιγνίου σταθερού αθροίσματος c=200 Α Β Στρατηγικές Β 1 Β 2 Β 3 min Α Α Α * max * 130 V=120 π.χ. αν η Α επιλέξει την 1 η και η Β τη 3 η, η Α θα πραγματοποιήσει πωλήσεις 110 εκ. και η Β πωλήσεις 90 εκ. Η διαδικασία επίλυσης είναι ίδια με τα παίγνια μηδενικού αθροίσματος Σύμφωνα με το κριτήριο minimax, άριστη λύση είναι η: A A 3, B B 2 με V =

18 Μικτή Στρατηγική Παράδειγμα 4 (για λύση δες σελ. 45) Β Στρατηγικές Β 1 Β 2 Β 3 min Α * Α Α Α max 5 4 2* -2 2 Δεν υπάρχει σημείο ισορροπίας (ασταθής λύση). Η ανώτερη και η κατώτερη τιμή του παιγνίου είναι διαφορετικές, οπότε οι παίκτες δεν ισορροπούν σε ένα κοινό σημείο στο οποίο να ελαχιστοποιούν ταυτόχρονα τη μέγιστη ζημιά που μπορούν να πάθουν. Δηλαδή, γνωρίζοντας κάθε παίκτης τη δομή του πίνακα παρατηρεί ότι για κάθε στρατηγική του αντιπάλου του υπάρχει πάντα μία καλύτερη απάντηση. 18

19 Μεικτή Στρατηγική Κάθε παίκτης ακολουθεί με βάση κάποια κατανομή πιθανοτήτων τις στρατηγικές του, ώστε να μεγιστοποιεί το ελάχιστο προσδοκώμενο κέρδος του (να ελαχιστοποιεί τη μέγιστη προσδοκώμενη ζημιά του), ανεξάρτητα από τις επιλογές του αντιπάλου του. Η κατανομή πιθανοτήτων με βάση την οποία επιλέγει τις στρατηγικές του, ονομάζεται μικτή ή τυχαία maximin (minimax) στρατηγική. x i : η πιθανότητα ο παίκτης Α να εφαρμόσει τη στρατηγική Α i y j : η πιθανότητα ο παίκτης B να εφαρμόσει τη στρατηγική B j 19

20 Πρακτικά, κάθε παίκτης προσδιορίζει το πρόγραμμα βάσει του οποίου θα παίξει το παιγνίδι δίνοντας τέτοιες τιμές στις αντίστοιχες πιθανότητες ώστε να ισχύει ο παραπάνω κανόνας. Τα πιθανά προγράμματα-πολιτικές συμβολίζονται με διανύσματα πιθανοτήτων (x 1, x 2,, x m ) και (y 1, y 2,, y n ) και είναι οι μικτές στρατηγικές m i = 1 x i = 1 και = j n 1 y j = 1 Μία μικτή στρατηγική (x 1, x 2,, x m ) με κάποιο x i = 1 υποδεικνύει ότι εφαρμόζεται η αμιγής στρατηγική i (με πιθανότητα μονάδα). 20

21 Θεώρημα minimax για τις μικτές στρατηγικές Όταν εφαρμόζονται μεικτές στρατηγικές, τότε, για κάθε παίκτη υπάρχει πάντα μία άριστη μικτή στρατηγική (σύμφωνα με το κριτήριο minimax), που οδηγεί σε σταθερή λύση (σαγματικό σημείο), από το οποίο κανείς δεν θέλει να μετακινηθεί (κανένας παίκτης δεν μπορεί να βελτιώσει περεταίρω τη θέση του). V(A): το προσδοκώμενο κέρδος του Α V(B): η προσδοκώμενη ζημιά του Β V(A) = V(B) = V, το σημείο ισορροπίας για τις άριστες μικτές στρατηγικές (αναμενόμενη τιμή του παιγνίου): V = m n i= 1 j= 1 a ij x i y j 21

22 Εντοπισμός Μικτής Στρατηγικής - Περίπτωση 1 - Παίγνιο 2 2 Παράδειγμα 5 Α Β Στρατηγικές Β 1 Β 2 min Α Α * max 5* Δεν υπάρχει σημείο ισορροπίας με αμιγείς στρατηγικές. Ορίζουμε πιθανότητες εφαρμογής κάθε στρατηγικής από κάθε παίκτη και συνεχίζουμε για τον εντοπισμό των άριστων μικτών στρατηγικών και της προσδοκώμενης τιμής του παιγνίου. 22

23 Πιθανότητες για κάθε στρατηγική παραδείγματος 5 Α Στρατηγικές Β 1 y Β 2 (1-y) Α 1 x -2 6 Α 2 (1-x) 5 1 Β Προφανώς x=x 1, (1-x) = x 2 και y=y 1, (1-y) = y 2 Εντοπισμός άριστης μικτής στρατηγικής για παίκτη Α: Υπολογίζουμε τις αναμενόμενες πληρωμές στον παίκτη Α, V(A, B 1 ) και V(A, B 2 ), όταν ο παίκτης Β εφαρμόζει τις δύο πιθανές στρατηγικές του. (Επειδή ο Α θέλει το αναμενόμενο κέρδος του να είναι ανεξάρτητο από τη στρατηγική που θα επιλέξει ο Β) εξισώνουμε τις V(A, B 1 ) και V(A, B 2 ) και υπολογίζουμε έτσι τις πιθανότητες x και (1-x). Υπολογίζουμε το V(A) από μία εκ των V(A, B 2 ) ή V(A, B 2 ). 23

24 Εφαρμογή στο παράδειγμα 5 Εντοπισμός άριστης μικτής στρατηγικής για τον παίκτη Α Ο Α ακολουθεί τη στρατηγική Α 1 με πιθανότητα x, και τη στρατηγική Α 2 με πιθανότητα (1-x). Αν ο Β ακολουθήσει τη στρατηγική Β 1, το προσδοκώμενο κέρδος του παίκτη Α είναι: V(A, B 1 ) = -2 x + 5 (1-x) = -7x + 5. Αν όμως ο Β ακολουθήσει τη Β 2, τότε το αναμενόμενο κέρδος του Α είναι: V(A, B 2 ) = 6 x + 1 (1-x) = 5x + 1. Αφού πρέπει να ισχύει ότι V(A, B 1 ) = V(A, B 2 ), έχουμε για τον υπολογισμό της άριστης μικτής στρατηγικής του Α ότι: -7x + 5 = 5x + 1 δηλαδή 12x = 4, οπότε x=1/3, (1-x)=2/3 24

25 Εφαρμογή στο παράδειγμα 5 Αριστη μικτή στρατηγική για τον παίκτη Α (συνέχεια) Αυτό σημαίνει ότι ο Α θα πρέπει να ακολουθεί τη στρατηγική Α 1 με πιθανότητα x 1 = 1/3 και την Α 2 με πιθανότητα x 2 = 2/3. Προσδοκώμενο κέρδος του Α: V(A) = -2 1/ /3 = 6 1/ /3 =8/3 (αντικατάσταση στο V(A, B 1 ) ή στο V(A, B 2 )). Το αναμενόμενο αυτό κέρδος είναι ανεξάρτητο της μικτής στρατηγικής που χρησιμοποιεί ο παίκτης Β. π.χ. έστω ότι ο Β ακολουθεί (όχι την άριστη μικτή του στρατηγική που δεν βρέθηκε ακόμη) την τυχαία μικτή στρατηγική: για τη Β 1 : y=1/4 και για τη Β 2 : (1-y)=3/4, τότε: V(A)=(1/4)(-2 1/ /3) + (3/4)(6 1/ /3) = 8/3. 25

26 Εντοπισμός άριστης στρατηγικής για τον παίκτη B Ο Β ακολουθεί τη στρατηγική Β 1 με πιθανότητα y, και τη στρατηγική B 2 με πιθανότητα (1-y). Αν ο A ακολουθήσει τη στρατηγική A 1, το προσδοκώμενο κέρδος του παίκτη B είναι: V(B, A 1 ) = -2 y + 6 (1-y). Αν ο Α ακολουθήσει την Α 2, τότε το αναμενόμενο κέρδος του Β είναι: V(Β, Α 2 ) = 5 y + 1 (1-y). Για να ελαχιστοποιεί ο Β τη μέγιστη ζημιά που μπορεί να υποστεί θα πρέπει: V(Β, Α1) = V(Β, Α2), οπότε είναι: -2y + 6(1-y) = 5y + 1(1-y) δηλαδή 12y = 5 που δίνει y=5/12, (1-y)=7/12. 26

27 Εντοπισμός άριστης στρατηγικής για τον παίκτη B (συνέχεια) Αυτό σημαίνει ότι ο Β θα πρέπει να ακολουθεί τη στρατηγική Β 1 με πιθανότητα y 1 = 5/12 και την B 2 με πιθανότητα y 2 = 7/12. Προσδοκώμενη ζημιά του Β: V(Β) = -2 5/ /12 = 5 5/ /12 = 8/3 (αντικατάσταση στο V(Β, Α 1 ) ή στο V(Β, Α 2 )) που είναι ίσο με το V(A). Η αναμενόμενη ζημιά είναι ανεξάρτητη της μικτής στρατηγικής που χρησιμοποιεί ο παίκτης A. 27

28 Σύνοψη άριστης λύσης παραδείγματος 5 Παίκτης Α: (x 1, x 2 ) = (1/3, 2/3) και V(A) = 8/3 Παίκτης B: (y 1, y 2 ) = (5/12, 7/12) και V(B) = V(A) = V = 8/3 Επομένως, μακροπρόθεσμα, αν το παιγνίδι επαναληφθεί πολλές φορές, κάθε 12 επαναλήψεις του παιγνίου ο παίκτης Α πρέπει να ακολουθεί 4 φορές την Α 1 και 8 φορές την Α 2, ενώ ο παίκτης Β να ακολουθεί 5 φορές την Β 1 και 7 φορές την Β 2. Επισήμανση φυσικό νόημα: Η τιμή του παιγνίου V=8/3, δεν σημαίνει πως κάθε φορά που οι δύο παίκτες παίζουν το παίγνιο ο Α κερδίζει 8/3 και ο Β χάνει 8/3, αλλά ότι αν οι δύο παίκτες παίζουν το παίγνιο πολλές φορές το προσδοκώμενο κέρδος του Α θα είναι 8/3, όση και η προσδοκώμενη ζημιά του Β. 28

29 Εντοπισμός Μικτής Στρατηγικής - Περίπτωση 2 - Παίγνιο 2 n Β Β Β Β Παράδειγμα 6 Β Στρατηγικές Β 1 min y 1 2 y 2 3 y 3 4 y 4 5 y 5 Α Α 1 x Α 2 x * max * ΝΑΙ θα μπορούσαν να απομακρυνθούν κάποιες υποδεέστερες στρατηγικές, (οι Β 1, Β 2 και Β 3 είναι υποδεέστερες της Β 4 ), αλλά εδώ θα παραμείνουν, για λόγους επεξηγηματικούς. 29

30 Παράδειγμα 6 (συνέχεια) Υπολογισμοί V(A, B 1 ) = x 1 + 4x 2 = x 1 + 4(1-x 1 ) = -3x V(A, B 2 ) = 4x 1 + 3x 2 = 4x 1 + 3(1-x 1 ) = x V(A, B 3 ) = -2x 1 + 5x 2 = -2x 1 + 5(1-x 1 ) = -7x V(A, B 4 ) = -3x 1 + 2x 2 = -3x 1 + 2(1-x 1 ) = -5x V(A, B 5 ) = 5x 1 x 2 = 5x 1 (1-x 1 ) = 6x 1 1 Γραφική Μέθοδος Επίλυσης Κατασκευάζουμε δύο κάθετους άξονες σε απόσταση μιας μονάδος (η πιθανότητα x 1 ). Εκφράζουν τις στρατηγικές Α 1 και Α 2. Χαράζουμε τις ευθείες V(A, B 1 ), V(A, B 2 ), V(A, B 5 ). 30

31 Γραφική Μέθοδος Επίλυσης (μείωση της διάστασης του πίνακα) V(A, B 5 ) Κ Ν maximin V(A, B 4 ) 31

32 Γραφική Μέθοδος Επίλυσης (Παρατηρήστε ότι οι υποδεέστερες στρατηγικές Β 1, Β 2, Β 3 βρίσκονται επάνω από την Β 4 ). Γνωρίζουμε ότι ο Α ακολουθεί μεικτή maxmin στρατηγική και ο Β μεικτή minmax στρατηγική. Ο Α επιλέγει το μέγιστο από τα ελάχιστα αναμενόμενα κέρδη και ο Β την ελάχιστη από τις μέγιστες αναμενόμενες απώλειες. Το ευθύγραμμο τμήμα ΝΚ παριστά το αναμενόμενο κέρδος του Α, όταν ακολουθεί τη στρατηγική Α1 με πιθανότητα x 1 και την Α2 με x 2, ενώ ο Β τις Β5 με πιθανότητα y 5 και την Β4 με y 4. Ο Β προκειμένου να εξασφαλίσει ότι ο Α δεν θα έχει μεγαλύτερο κέρδος από Κ θα επιλέξει μόνο τις Β 4 και Β 5. Ο Α θα επιλέξει την πιθανότητα x 1 (σημείο Ν) που αντιστοιχεί στο Κ, το ψηλότερο δηλ. σημείο του χαμηλότερου τεθλασμένου ευθύγραμμου τμήματος. 32

33 Παράδειγμα 6 (συνέχεια) Μείωση της διάστασης του πίνακα διαγραφή των υποδεέστερων που εντοπίστηκαν στη γραφική αναπαράσταση Α Β Β Στρατηγικές Β 4 y 4 5 y 5 Α 1 x Α 2 x Στη συνέχεια εφαρμόζεται η διαδικασία επίλυσης παιγνίου διάστασης

34 Παράδειγμα 6 (συνέχεια) Εντοπισμός άριστης μικτής στρατηγικής για τον παίκτη Α V(A, B 4 ) = -3 x x 2 και V(A, B 5 ) = 5 x 1 - x 2. Οπότε V(A, B 4 ) = V(A, B 5 ), δηλαδή -3 x x 2 = 5 x 1 - x 2 Άρα, 8x 1 = 3x 2 και επειδή x 1 + x 2 = 1 προκύπτει ότι x 1 =3/11 και x 2 =8/11. Αντικαθιστώντας την άριστη μικτή στρατηγική του Α σε οποιοδήποτε από τα V(A, B 4 ) και V(A, B 5 ) παίρνουμε την άριστη αναμενόμενη τιμή (μέγιστο προσδοκώμενη κέρδος σύμφωνα με το κριτήριο minimax) για τον παίκτη Α που είναι: V(A) = -3 3/ /11 = 7/11 34

35 Παράδειγμα 6 (συνέχεια) Εντοπισμός άριστης μικτής στρατηγικής για τον παίκτη Β V(Β, Α 1 ) = V(Β, Α 2 ) δηλαδή -3y 4 + 5y 5 = 2y 4 1y 5 Άρα, 5y 4 = 6y 5 και επειδή y 4 + y 5 = 1 προκύπτει ότι y 4 =6/11 και y 5 =5/11 Αντικαθιστώντας την άριστη μικτή στρατηγική του B σε οποιοδήποτε από τα V(B, A 1 ) και V(B, A 2 ) παίρνουμε την άριστη αναμενόμενη τιμή (ελάχιστη προσδοκώμενη ζημιά σύμφωνα με το κριτήριο minimax) για τον παίκτη B που είναι: V(Β) = -3 6/ /11 = 7/11 35

36 Σύνοψη της άριστης λύσης του παραδείγματος 6 O παίκτης Α εφαρμόζει τη μικτή στρατηγική: x 1 =3/11, x 2 =8/11, με maximin κέρδος V(A) = 7/11 O παίκτης Β εφαρμόζει τη μικτή στρατηγική: y 1 =y 2 =y 3 =0, y 4 =6/11 και y 5 =5/11, με minimax ζημιά V(Β) = 7/11 Η προσδοκώμενη τιμή παιγνίου είναι: V = V(A) = V(B) = 7/11. 36

37 Εντοπισμός Μικτής Στρατηγικής - Περίπτωση 2 - Παίγνιο m 2 Παράδειγμα 7 Α Β Β Στρατηγικές Β 1 min y 1 2 y 2 Α 1 x Α 2 x Α 3 x * Α 4 x max 5 4*

38 Παράδειγμα 7 (συνέχεια) Υπολογισμοί V(B, A 1 ) = -2y 1 + 4y 2 V(B, A 2 ) = 5y 1 3y 2 V(B, A 3 ) = 4y 1 + 2y 2 V(B, A 4 ) = 2y 1 y 2 38

39 Γραφική Μέθοδος Επίλυσης (μείωση της διάστασης του πίνακα) V(B, A 2 ) V(B, A 1 ) V(B, A 3 ) Κ Ν minimax 39

40 Γραφική Μέθοδος Επίλυσης Κατασκευάζουμε τους δύο κάθετους άξονες σε απόσταση μιας μονάδος (η πιθανότητα y 1 ) που εκφράζουν τις στρατηγικές Β 1, Β 2. Χαράζουμε τις ευθείες V(Β, Α 1 ), V(Β, Α 2 ), V(Β, Α 4 ). Ο παίκτης Β ακολουθεί μεικτή minmax στρατηγική, δηλ. επιλέγει την ελάχιστη από τις μέγιστες αναμενόμενες απώλειες. Το χαμηλότερο σημείο της μέγιστης τεθλασμένης γραμμής προκύπτει στην τομή των στρατηγικών Α 1 και Α 3. 40

41 Παράδειγμα 7 (συνέχεια) Μείωση της διάστασης του πίνακα διαγραφή των υποδεέστερων που εντοπίστηκαν στη γραφική αναπαράσταση Α Β Β Στρατηγικές Β 1 y 1 2 y 2 Α 1 x Α 3 x Στη συνέχεια εφαρμόζεται η διαδικασία επίλυσης παιγνίου διάστασης

42 Παράδειγμα 7 (συνέχεια) Εντοπισμός άριστης μικτής στρατηγικής για τον παίκτη Β V(Β, Α 1 ) = V(Β, Α 3 ) δηλαδή -2y 1 + 4y 2 = 4y 1 + 2y 2 Άρα, 3y 1 = y 2 και επειδή y 1 + y 2 = 1 προκύπτει ότι y 1 = 1/4 και y 2 = 3/4 Αντικαθιστώντας την άριστη μικτή στρατηγική του B σε οποιοδήποτε από τα V(B, A 1 ) και V(B, A 3 ) παίρνουμε την άριστη αναμενόμενη τιμή (ελάχιστη προσδοκώμενη ζημιά σύμφωνα με το κριτήριο minimax) για τον παίκτη B που είναι: V(Β) = =

43 Παράδειγμα 7 (συνέχεια) Εντοπισμός άριστης μικτής στρατηγικής για τον παίκτη Α V(A, B 1 ) = V(A, B 2 ) δηλαδή -2x 1 + 4x 3 = 4x 1 + 2x 3 Άρα, 3x 1 = x 3 και επειδή x 1 + x 3 = 1 προκύπτει ότι x 1 = 1/4 και x 3 = 3/4 Αντικαθιστώντας την άριστη μικτή στρατηγική του A σε οποιοδήποτε από τα V(A, B 1 ) και V(A, B 2 ) παίρνουμε την άριστη αναμενόμενη τιμή (μέγιστο προσδοκώμενο κέρδος σύμφωνα με το κριτήριο minimax) για τον παίκτη Α που είναι: V(Α) = =

44 Σύνοψη της άριστης λύσης του παραδείγματος 7 O παίκτης Α εφαρμόζει τη μικτή στρατηγική: x 1 = 1/4, x 2 = 0, x 3 = 3/4, x 4 = 0, με maximin κέρδος V(A) = 2.5 O παίκτης Β εφαρμόζει τη μικτή στρατηγική: y 1 = 1/4 και y 2 = 3/4, με minimax ζημιά V(Β) = 2.5 Η προσδοκώμενη τιμή παιγνίου είναι V = V(A) = V(B) =

45 Παράδειγμα 4 (σελ. 18) Α Β Στρατηγικές Β 1 Β 2 Β 3 min Α * Α Α max 5 4 2* -2 2 Δεν υπάρχει σημείο ισορροπίας (ασταθής λύση). Η άριστη λύση θα μπορούσε να βρεθεί με απαλοιφή των υποδεέστερων στρατηγικών (το σκιασμένο τμήμα του πίνακα δείχνει τις εναπομένουσες στρατηγικές). Αν, χάριν παραδείγματος, διαγράψουμε μόνο την Α 3 τότε η διαδικασία επίλυσης θα ήταν η ακόλουθη. 45

46 Παράδειγμα 4 (επιστροφή - συνέχεια) Υπολογισμοί V(Α, Β 1 ) = 0x 1 + 5(1-x 1 ) = 5 5x 1 V(Α, Β 2 ) = -2x 1 + 4(1-x 1 ) = 4 6x 1 V(Α, Β 3 ) = 2x 1 3(1-x 1 ) = x 1 V = V(A) = V(B) = y 1 (5-5x 1 ) + y 2 (4 6x 1 ) + y 3 (-3 + 5x 1 ) 46

47 Γραφική Μέθοδος Επίλυσης (μείωση της διάστασης του πίνακα) maximin 47

48 Παράδειγμα 4 (επιστροφή - συνέχεια) Μείωση της διάστασης του πίνακα διαγραφή των υποδεέστερων που εντοπίστηκαν στη γραφική αναπαράσταση Στρατηγικές Β 2 Β 3 y 2 y 3 Α Α 1 x Α2 1-x Στη συνέχεια εφαρμόζεται η διαδικασία επίλυσης παιγνίου διάστασης 2 2 Β 48

49 Παράδειγμα 4 (επιστροφή - συνέχεια) Εντοπισμός άριστης μικτής στρατηγικής για τον παίκτη Α V(A, B 2 ) = V(A, B 3 ) δηλαδή -4 6x 1 = x 1. Άρα x 1 = 7/11 και 1-x 1 = 4/11 Οπότε: V(Α) = 4-6 (7/11) = 2/11 Εντοπισμός άριστης μικτής στρατηγικής για τον παίκτη Β V(Β, Α 1 ) = V(Β, Α 2 ) δηλαδή -2y 2 + 2y 3 = 42y 2 3y 3. Άρα y 2 = 5/11 και y 3 =1 - y 2 = 6/11 Οπότε: V(B) = -2 (5/11) + 2 (6/11) = 2/11 49

50 Σύνοψη της άριστης λύσης του παραδείγματος 4 O παίκτης Α εφαρμόζει τη μικτή στρατηγική: x 1 = 7/11, x 2 = 1-x 1 = 4/11, με maximin κέρδος V(A) = 2/11 O παίκτης Β εφαρμόζει τη μικτή στρατηγική: y 1 = 0, y 2 = 5/11 και y 3 = 1-y 2 = 6/11, και V(Β) = 2/11 Η προσδοκώμενη τιμή παιγνίου είναι V = V(A) = V(B) = 2/11 50

51 Παράδειγμα 8 Η Ένωση Καλαθοσφαιριστών (παίκτης Α) διαπραγματεύεται με την Ένωση Σωματείων (παίκτης Β) για την ελάχιστη ετήσια αμοιβή. Κάθε πλευρά έχει τρεις στρατηγικές. Κάθε συνδυασμός, οδηγεί σε ένα ελάχιστο ετήσιο ποσό. Οι στρατηγικές των καλαθοσφαιριστών είναι: 1) καμία διαπραγμάτευση, 2) επιθετική στάση, 3) υποχωρητική στάση. Για τα σωματεία είναι: 1) αποφυγή ρήξης, 2) σθεναρή στάση, 3) «δώστε ό,τι θέλουν». Στον επόμενο πίνακα δίνονται τα ποσά που μπορούν να πετύχουν οι καλαθοσφαιριστές B 1 B 2 B 3 min A A * A max 30 25*

52 Παράδειγμα 10 Επίλυση Η στρατηγική Β 3 του της Ένωσης Σωματείων απαλείφεται ως υποδεέστερη της Β 1. Υπολογισμοί B 1 y 1 B 2 y 2 A 1 x A 2 x A 3 x V(B, A 1 ) = 30y y 2 = 30y (1 y 1 ) = y 1 V(B, A 2 ) = 25y y 2 = 25y (1 y 1 ) = y 1 V(B, A 3 ) = 10y y 2 = 10y (1 y 1 ) = 25 15y 1 52

53 Γραφική επίλυση παραδείγματος 8 V(B, A 3 ) V(B, A 2 ) minimax 53

54 Παράδειγμα 8 (συνέχεια) Μείωση της διάστασης του πίνακα διαγραφή των υποδεέστερων που εντοπίστηκαν στη γραφική αναπαράσταση Α Β Β Στρατηγικές Β 1 y 1 2 y 2 Α 2 x Α 3 x Στη συνέχεια εφαρμόζεται η διαδικασία επίλυσης παιγνίου διάστασης

55 Παράδειγμα 8 (συνέχεια) Εντοπισμός άριστης μικτής στρατηγικής για τον παίκτη Β V(Β, Α 2 ) = V(Β, Α 3 ) δηλαδή y 1 = 25 15y 1. Άρα, y 1 =2/5 και y 2 = 3/5 Αντικαθιστώντας την άριστη μικτή στρατηγική του B σε οποιοδήποτε από τα V(B, A 2 ) και V(B, A 3 ) παίρνουμε την άριστη αναμενόμενη τιμή για τον παίκτη B: V(Β) = /5 = 19 (= /5) 55

56 Εντοπισμός άριστης μικτής στρατηγικής για τον παίκτη Α V(A, B 1 ) = 25 x x 3 και V(A, B 2 ) = 15 x x 3 Οπότε, επειδή πρέπει V(A, B 1 ) = V(A, B 2 ), προκύπτει ότι x 2 = 3/5 και x 3 = 2/5. Αντικαθιστώντας την άριστη μικτή στρατηγική του Α σε οποιοδήποτε από τα V(A, B 1 ) και V(A, B 2 ) παίρνουμε την άριστη αναμενόμενη τιμή για τον παίκτη Α: V(A) = 25 3/ /5 = 19 56

57 Σύνοψη της άριστης λύσης του παραδείγματος 8 O παίκτης Α εφαρμόζει τη μικτή στρατηγική: x 1 = 0, x 2 = 3/5 και x 3 = 2/5, με maximin κέρδος V(A) = 19 O παίκτης Β εφαρμόζει τη μικτή στρατηγική: y 1 =2/5, y 2 = 3/5 και y 3 =0, με minimax ζημιά V(Β) = 19 Η προσδοκώμενη τιμή παιγνίου είναι V = V(A) = V(B) = 19 57

58 Παίγνιο δύο παικτών μη σταθερού αθροίσματος Το δίλημμα του κρατούμενου Η αστυνομία έχει συλλάβει δύο υπόπτους για συμμετοχή σε ληστεία, τον Σάββα και το Βασίλη. Υπάρχουν αρκετά στοιχεία για να καταδικαστούν σε 1 χρόνο φυλάκιση για διάφορα πλημμελήματα, αλλά η αστυνομία γνωρίζει ότι είναι μέλη μιας συμμορίας. Δεν έχει όμως αρκετές αποδείξεις για την ενοχή τους και χρειάζεται απαραίτητα την ομολογία τους για την καταδίκη. Όταν συλλαμβάνονται οδηγούνται σε χωριστά δωμάτια και ανακρίνονται χωρίς να μπορούν να έχουν επαφή. Στον καθένα εκ των δύο η αστυνομία κάνει την ακόλουθη πρόταση: Μπορούμε, όπως ξέρεις να σε καταδικάσουμε σε 1 χρόνο φυλάκιση. Αν όμως ομολογήσεις και καρφώσεις το φίλο σου, θα αφεθείς ελεύθερος. Αν ο φίλος σου δεν ομολογήσει θα καταδικαστεί σε 20 χρόνια φυλάκιση. Αν όμως και οι δύο ομολογήσετε, τότε δεν μπορούμε να κάνουμε τίποτε, και οι δύο θα μπείτε φυλακή για 5 χρόνια. 58

59 Το δίλημμα του κρατούμενου (συνέχεια) Σάββας Βασίλης Ομολογεί Δεν ομολογεί Ομολογεί Σ = -5, Β = -5 Σ = 0, Β = -20 Δεν ομολογεί Σ = -20, Β = 0 Σ = -1, Β = -1 Το άθροισμα των αμοιβών στο κάθε κελί δεν είναι σταθερό. Πιο υψηλό είναι το -2 (-1-1) και πιο χαμηλό το -20 (0-20). Ισορροπεί στο σημείο στο οποίο κανένας παίκτης (κρατούμενος) δεν μπορεί να επωφεληθεί από μονομερή αλλαγή στρατηγικής. Σημείο ισορροπίας το (-5, -5) κι όχι το (-1, -1). Αν οι δύο παίκτες συνεργαστούν (δεν ομολογήσουν) τότε κάθε παίκτης μπορεί να κερδίσει ξεγελώντας τον άλλο. Αν και οι δύο επιχειρήσουν να ξεγελάσουν αλλήλους, θα βρεθούν σε δυσχερέστερη θέση από τη στρατηγική της συνεργασίας. 59

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 1 Δύο επιχειρήσεις Α και Β, μοιράζονται το μεγαλύτερο μερίδιο της αγοράς για ένα συγκεκριμένο προϊόν. Καθεμία σχεδιάζει τη νέα της στρατηγική για τον επόμενο χρόνο, προκειμένου να αποσπάσει πωλήσεις

Διαβάστε περισσότερα

www.onlineclassroom.gr

www.onlineclassroom.gr ΑΣΚΗΣΗ 3 (ΜΟΝΑΔΕΣ 25) Σε ένα αγώνα ποδοσφαίρου οι προπονητές των δύο αντίπαλων ομάδων αποφάσισαν ότι έχουν 4 και 3 επιλογές συστήματος, αντίστοιχα. Η αναμενόμενη διαφορά τερμάτων δίνεται από τον παρακάτω

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΙΟΥΝΙΟΣ 12 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΘΕΜΑ 1 ο Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α Μία εταιρεία παροχής ολοκληρωμένων ευρυζωνικών υπηρεσιών μελετά την

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 2009 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΜΑ 1 ο Η Περιφέρεια Κεντρικής Μακεδονίας σχεδιάζει την ανάπτυξη ενός συστήματος αυτοκινητοδρόμων

Διαβάστε περισσότερα

Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ «ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ» Του σπουδαστή ΚΑΡΑΜΙΓΚΟΥ ΘΕΜΙΣΤΟΚΛΗ

Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ «ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ» Του σπουδαστή ΚΑΡΑΜΙΓΚΟΥ ΘΕΜΙΣΤΟΚΛΗ Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ «ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ» Του σπουδαστή ΚΑΡΑΜΙΓΚΟΥ ΘΕΜΙΣΤΟΚΛΗ Επιβλέπων Δρ. ΓΕΡΟΝΤΙΔΗΣ ΙΩΑΝΝΗΣ Αναπληρωτής Καθηγητής ΚΑΒΑΛΑ 2006 0 ΠΕΡΙΕΧΟΜΕΝA Σελίδα ΕIΣΑΓΩΓΗ 3 ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 3 (θεωρία παιγνίων) Οι δύο μεγαλύτερες τράπεζες μιας χώρας, Α και Β, εκτιμούν ότι μια άλλη τράπεζα, η Γ, θα κλείσει στο προσεχές διάστημα και πρόκειται να προχωρήσουν σε διαφημιστικές εκστρατείες

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I.

ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I. ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I. Γενικά Σε μαθήματα όπως η επιχειρησιακή έρευνα και ή λήψη αποφάσεων αναφέραμε τις αποφάσεις κάτω από συνθήκες βεβαιότητας, στις οποίες και εφαρμόζονται κυρίως οι τεχνικές της επιχειρησιακής

Διαβάστε περισσότερα

Πακέτο Επιχειρησιακή Έρευνα #02 ==============================================================

Πακέτο Επιχειρησιακή Έρευνα #02 ============================================================== Πακέτο Επιχειρησιακή Έρευνα #0 www.maths.gr www.facebook.com/maths.gr Tηλ.: 69790 e-mail: maths@maths.gr Μαθηµατική Υποστήριξη Φοιτητών : Ιδιαίτερα Μαθήµατα Λυµένες Ασκήσεις Βοήθεια στη λύση Εργασιών ==============================================================

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Βfi 1 2 Αfl 1 1, 2 0, 1 2 2, 1 1, 0

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Βfi 1 2 Αfl 1 1, 2 0, 1 2 2, 1 1, 0 ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Παίγνιο: Συμμετέχουν τουλάχιστον δύο παίκτες με τουλάχιστον δύο στρατηγικές ο καθένας και αντίθετα συμφέροντα. Το αποτέλεσμα για κάθε παίκτη καθορίζεται από τις συνδυασμένες επιλογές όλων

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2011 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Σε ένα διαγωνισμό για την κατασκευή μίας καινούργιας γραμμής του

Διαβάστε περισσότερα

Βασικές Αρχές της Θεωρίας Παιγνίων

Βασικές Αρχές της Θεωρίας Παιγνίων Βασικές Αρχές της Θεωρίας Παιγνίων - Ορισμός. Αν οι επιλογές μιας επιχείρησης εξαρτώνται από την αναμενόμενη αντίδραση των υπόλοιπων επιχειρήσεων που συμμετέχουν στην αγορά, τότε υπάρχει στρατηγική αλληλεπίδραση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών Θεματική Ενότητα Διοίκηση Επιχειρήσεων & Οργανισμών ΔΕΟ 13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος 008-009 ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα) Να απαντηθούν 5

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 213 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Μια κατασκευαστική εταιρεία ετοιμάζει την ενεργειακή μελέτη ενός

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2008 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΜΑ 1 ο Σε μία γειτονιά, η ζήτηση ψωμιού η οποία ανέρχεται σε 1400 φραντζόλες ημερησίως,

Διαβάστε περισσότερα

Λήψη απόφασης σε πολυπρακτορικό περιβάλλον. Θεωρία Παιγνίων

Λήψη απόφασης σε πολυπρακτορικό περιβάλλον. Θεωρία Παιγνίων Λήψη απόφασης σε πολυπρακτορικό περιβάλλον Θεωρία Παιγνίων Αβεβαιότητα παρουσία άλλου πράκτορα Μια άλλη πηγή αβεβαιότητας είναι η παρουσία άλλου πράκτορα στο περιβάλλον, ακόμα κι όταν ένας πράκτορας είναι

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α Από ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 2012 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Η UCC είναι μια μικρή εταιρεία παραγωγής εντομοκτόνων. Σε

Διαβάστε περισσότερα

Διάλεξη 7. Θεωρία παιγνίων VA 28, 29

Διάλεξη 7. Θεωρία παιγνίων VA 28, 29 Διάλεξη 7 Θεωρία παιγνίων VA 28, 29 Θεωρία παιγνίων Στη θεωρία παιγνίων χρησιμοποιούμε υποδείγματα για τη στρατηγική συμπεριφορά των οικονομικών μονάδων που καταλαβαίνουν ότι οι ενέργειές τους επηρεάζουν

Διαβάστε περισσότερα

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Θεωρία Παιγνίων Μαρκωβιανά Παιχνίδια Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Μερική αρατηρησιµότητα POMDPs

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Τέταρτη Γραπτή Εργασία στην Επιχειρησιακή Έρευνα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Τέταρτη Γραπτή Εργασία στην Επιχειρησιακή Έρευνα ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2012-13 Τέταρτη Γραπτή Εργασία στην Επιχειρησιακή Έρευνα

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 9: Λύσεις παιγνίων δύο παικτών

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 9: Λύσεις παιγνίων δύο παικτών Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 9: Λύσεις παιγνίων δύο παικτών Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

Notes. Notes. Notes Σ -1,-1-9,0 Π 0,-9-6,-6. Notes Σ Π

Notes. Notes. Notes Σ -1,-1-9,0 Π 0,-9-6,-6. Notes Σ Π Θεωρία αιγνίων-υριαρχία ώστας Ρουμανιάς Ο..Α. Τμήμα Δ. Ε. Ο.. Δεκεμβρίου 1 ώστας Ρουμανιάς (Δ.Ε.Ο..) Θεωρία αιγνίων-υριαρχία Δεκεμβρίου 1 1 / Λύσεις αιγνίων. υριαρχούμενες/υρίαρχες στρατηγικές Το δίλημμα

Διαβάστε περισσότερα

Μελέτη πάνω στην εφαρμογή της θεωρίας παιγνίων σε θέματα πολεμικών τακτικών και στρατηγικής.

Μελέτη πάνω στην εφαρμογή της θεωρίας παιγνίων σε θέματα πολεμικών τακτικών και στρατηγικής. Μελέτη πάνω στην εφαρμογή της θεωρίας παιγνίων σε θέματα πολεμικών τακτικών και στρατηγικής. Ιστορική αναδρομή 1713 Ο Francis Waldegrave, σε ένα γράμμα του, παρουσίασε την πρώτη μικτή στρατηγική μεγίστου

Διαβάστε περισσότερα

Μεταξύ του µονοπωλίου και του τέλειου ανταγωνισµού

Μεταξύ του µονοπωλίου και του τέλειου ανταγωνισµού Ολιγοπώλιο Μεταξύ του µονοπωλίου και του τέλειου ανταγωνισµού Ο ατελής ανταγωνισµός αναφέρεται σε εκείνες τις δοµές µ της αγοράς που κυµαίνονται µεταξύ του τέλειου ανταγωνισµού και του µονοπωλίου. Μεταξύ

Διαβάστε περισσότερα

Ένα Παίγνιο (game) ορίζεται ως μια δραστηριότητα με τα ακόλουθα τρία χαρακτηριστικά:

Ένα Παίγνιο (game) ορίζεται ως μια δραστηριότητα με τα ακόλουθα τρία χαρακτηριστικά: Γενικοί Ορισμοί Η Θεωρία Παιγνίων (game theory) εξετάζει δραστηριότητες στις οποίες το αποτέλεσμα της απόφασης ενός ατόμου εξαρτάται όχι μόνο από τον τρόπο με τον οποίο επιλέγει ανάμεσα από διάφορες εναλλακτικές

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 6η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Σημειώσεις μαθημάτων

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Σημειώσεις μαθημάτων ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Σημειώσεις μαθημάτων Περιεχόμενα ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ... 2 Σκοπός... 2 Μαθησιακοί στόχοι... 2 1. Παίγνια και λήψη αποφάσεων... 2 2. Μαθηματική διατύπωση παιγνίων... 6 3. Παίγνια μηδενικού αθροίσματος

Διαβάστε περισσότερα

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν την τέταρτη εργασία της ενότητας ΔΕΟ13

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν την τέταρτη εργασία της ενότητας ΔΕΟ13 Άσκηση 1 η 4 η Εργασία ΔEO13 Ακολουθούν ενδεικτικές ασκήσεις που αφορούν την τέταρτη εργασία της ενότητας ΔΕΟ13 Μια βιομηχανική επιχείρηση χρησιμοποιεί ένα εργοστάσιο (Ε) για την παραγωγή των προϊόντων

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 Βρείτε την ισορροπία των ακόλουθων παιγνίων απαλείφοντας διαδοχικά τις κυριαρχούµενες στρατηγικές.

ΑΣΚΗΣΗ 1 Βρείτε την ισορροπία των ακόλουθων παιγνίων απαλείφοντας διαδοχικά τις κυριαρχούµενες στρατηγικές. ΑΣΚΗΣΗ 1 Βρείτε την ισορροπία των ακόλουθων παιγνίων απαλείφοντας διαδοχικά τις κυριαρχούµενες στρατηγικές. Α 1 Α 2 Α 3 Β 1 Β 2 Β 3 1, -1 0, 0-1, 0 0, 0 0, 6 10, -1 2, 0 10, -1-1, -1 Α 1 Α 2 Α 3 Β 1 Β

Διαβάστε περισσότερα

3. Παίγνια Αλληλουχίας

3. Παίγνια Αλληλουχίας 3. Παίγνια Αλληλουχίας Τα παίγνια αλληλουχίας πραγµατεύονται περιπτώσεις όπου οι κινήσεις των παικτών διαδέχονται η µια την άλλη, σε αντίθεση µε τα παίγνια όπου οι αποφάσεις των παικτών γίνονται ταυτόχρονα

Διαβάστε περισσότερα

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1)

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Το πρόβλημα της επιλογής των μέσων διαφήμισης (??) το αντιμετωπίζουν τόσο οι επιχειρήσεις όσο και οι διαφημιστικές εταιρείες στην προσπάθειά τους ν' αναπτύξουν

Διαβάστε περισσότερα

- Παράδειγμα 2. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να

- Παράδειγμα 2. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να - Παράδειγμα. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να αποκρούσει ένας τερματοφύλακας. - Αν οι δύο παίκτες επιλέξουν

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης. Θεωρία Αποφάσεων

Πληροφοριακά Συστήματα Διοίκησης. Θεωρία Αποφάσεων Πληροφοριακά Συστήματα Διοίκησης Θεωρία Αποφάσεων Εισαγωγή στην θεωρία αποφάσεων Στα μέχρι τώρα μοντέλα και τεχνικές υπήρχε η προϋπόθεση της βεβαιότητας. Στην πράξη, τα προβλήματα είναι περισσότερο πολύπλοκα,

Διαβάστε περισσότερα

Α) Κριτήριο Προσδοκώμενης Χρηματικής Αξίας Expected Monetary Value (EMV)

Α) Κριτήριο Προσδοκώμενης Χρηματικής Αξίας Expected Monetary Value (EMV) 5. ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ (Decision Analysis) Επιχειρήσεις, Οργανισμοί αλλά και μεμονωμένα άτομα αντιμετωπίζουν σχεδόν καθημερινά το δύσκολο πρόβλημα της λήψης αποφάσεων. Τα προβλήματα αυτά έχουν σαν αντικειμενικό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις Παρασκευή 16 Οκτωβρίου 2007 ιάρκεια εξέτασης: 3 ώρες (15:00-18:00) ΘΕΜΑ 1

Διαβάστε περισσότερα

Κεφάλαιο 4. Στο προηγούµενο κεφάλαιο ορίσαµε την ισορροπία κατά Nash και είδαµε ότι µια ισορροπία

Κεφάλαιο 4. Στο προηγούµενο κεφάλαιο ορίσαµε την ισορροπία κατά Nash και είδαµε ότι µια ισορροπία Κεφάλαιο 4 Στο προηγούµενο κεφάλαιο ορίσαµε την ισορροπία κατά Nash και είδαµε ότι µια ισορροπία κατά Nash είναι: (α) ένα διάνυσµα από στρατηγικές, έτσι ώστε δεδοµένων των υπολοίπων στρατηγικών, ο παίκτης

Διαβάστε περισσότερα

* τη µήτρα. Κεφάλαιο 1o

* τη µήτρα. Κεφάλαιο 1o Κεφάλαιο 1o Θεωρία Παιγνίων Η θεωρία παιγνίων εξετάζει καταστάσεις στις οποίες υπάρχει αλληλεπίδραση µεταξύ ενός µικρού αριθµού ατόµων. Άρα σε οποιαδήποτε περίπτωση, αν ο αριθµός των ατόµων που συµµετέχουν

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 8: Πεπερασμένα επαναλαμβανόμενα παίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 8: Πεπερασμένα επαναλαμβανόμενα παίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 8: Πεπερασμένα επαναλαμβανόμενα παίγνια Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Θέμα 1 (1.Α) Το κόστος παραγωγής ενός προϊόντος δίνεται από την συνάρτηση:

Θέμα 1 (1.Α) Το κόστος παραγωγής ενός προϊόντος δίνεται από την συνάρτηση: Θέμα (.Α) Το κόστος παραγωγής ενός προϊόντος δίνεται από την συνάρτηση: Να βρεθεί η ποσότητα που ελαχιστοποιεί το κόστος παραγωγής και στη συνέχεια να υπολογιστεί το ελάχιστο κόστος παραγωγής. (0%) Κριτήριο

Διαβάστε περισσότερα

3.7 Παραδείγματα Μεθόδου Simplex

3.7 Παραδείγματα Μεθόδου Simplex 3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜ ΕΦΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙ ΠΙΓΝΙΩΝ Εξετάσεις 13 Φεβρουαρίου 2004 ιάρκεια εξέτασης: 2 ώρες (13:00-15:00) ΘΕΜ 1 ο (2.5) α) Για δύο στρατηγικές

Διαβάστε περισσότερα

Κεφάλαιο 7ο. max(p 1 c)(α bp 1 +dp 2 )

Κεφάλαιο 7ο. max(p 1 c)(α bp 1 +dp 2 ) Κεφάλαιο 7ο Μιλήσαµε στο προηγούµενο κεφάλαιο για το τι θα συµβεί αν οι επιχειρήσεις ανταγωνίζονται σε τιµές. Επιπλέον µιλήσαµε για το πως αποδεικνύεται το παράδοξο του Bertrand και καθώς επίσης και για

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 2: Ισορροπία Nash. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 2: Ισορροπία Nash. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 2: Ισορροπία Nash Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας

Διαβάστε περισσότερα

Κεφάλαιο 5 R (2, 3) R (3, 0)

Κεφάλαιο 5 R (2, 3) R (3, 0) Κεφάλαιο 5 Θα ξεκινήσουµε το κεφάλαιο αυτό βλέποντας ένα ακόµη παράδειγµα αναφορικά µε την ισορροπία που προκύπτει από την οπισθογενή επαγωγή (backwards induction) και την ισορροπία κατά Nash στην στρατηγική

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2016

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2016 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2016 Λύσεις 2ης σειράς ασκήσεων Προθεσμία παράδοσης: 25 Ιουνίου 2016 Πρόβλημα 1.

Διαβάστε περισσότερα

Θεωρία παιγνίων Δημήτρης Χριστοφίδης Εκδοση 1η: Παρασκευή 3 Απριλίου 2015. Παραδείγματα Παράδειγμα 1. Δυο άτομα παίζουν μια παραλλαγή του σκακιού όπου σε κάθε βήμα ο κάθε παίκτης κάνει δύο κανονικές κινήσεις.

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΕΥΤΕΡΟ- ΚΥΡΙΑΡΧΟΥΜΕΝΗ ΣΤΡΑΤΗΓΙΚΗ- PRISONER S DILLEMA ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΕΥΤΕΡΟ- ΚΥΡΙΑΡΧΟΥΜΕΝΗ ΣΤΡΑΤΗΓΙΚΗ- PRISONER S DILLEMA ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΕΥΤΕΡΟ- ΚΥΡΙΑΡΧΟΥΜΕΝΗ ΣΤΡΑΤΗΓΙΚΗ- PRISONER S DILLEMA ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 ΚΟΙΝΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ Players-Παίκτες Rules- Κανόνες. Τιµωρείσαι εάν τους παραβιάσεις.

Διαβάστε περισσότερα

ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 6 KΕΦΑΛΑΙΟ 3 ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ Η θεωρία μεγίστων και ελαχίστων μιας πραγματικής συνάρτησης με μια μεταβλητή είναι γνωστή Στο κεφάλαιο αυτό θα δούμε τη θεωρία μεγίστων και ελαχίστων

Διαβάστε περισσότερα

3 ΙΣΟΡΡΟΠΙΕΣ 3 ΙΣΟΡΡΟΠΙΕΣ

3 ΙΣΟΡΡΟΠΙΕΣ 3 ΙΣΟΡΡΟΠΙΕΣ Kεφάλαιο 11 Θα επαναλάβουµε αυτά που είχαµε πει την προηγούµενη φορά. Παραστατικά αν έχουµε το εξής παίγνιο όπου οι δύο παίχτες παίρνουν ταυτόχρονα τις αποφάσεις τους αφού αποφασίσει ο Ι, θα δούµε πόσα

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις Τρίτη 15 Ιανουαρίου 2008 ιάρκεια εξέτασης: 3 ώρες (13:00-16:00) ΘΕΜΑ 1 ο (2,5

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής

Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική» Μεταπτυχιακή Διατριβή Τίτλος Διατριβής Ονοματεπώνυμο Φοιτητή Πατρώνυμο Θεωρία Παιγνίων και Ανανεώσιμες Πηγές Ενέργειας

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 7: Εισαγωγή στη Θεωρία Αποφάσεων Δέντρα Αποφάσεων

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 7: Εισαγωγή στη Θεωρία Αποφάσεων Δέντρα Αποφάσεων Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 7: Εισαγωγή στη Θεωρία Αποφάσεων Δέντρα Αποφάσεων Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών

Διαβάστε περισσότερα

Θεωρία Λήψης Αποφάσεων

Θεωρία Λήψης Αποφάσεων Θεωρία Λήψης Αποφάσεων Ενότητα 8: Αναζήτηση με Αντιπαλότητα Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.) Αναζήτηση

Διαβάστε περισσότερα

Άσκηση 1 Ένα κεντρικό βιβλιοπωλείο ειδικεύεται στα λογοτεχνικά βιβλία και τα βιβλία τέχνης. Προκειμένου να προωθήσει μια νέα συλλογή λογοτεχνικών βιβλίων και βιβλίων τέχνης, η διεύθυνση του βιβλιοπωλείου

Διαβάστε περισσότερα

Αναζητάμε το εβδομαδιαίο πρόγραμμα παραγωγής που θα μεγιστοποιήσει 1/20

Αναζητάμε το εβδομαδιαίο πρόγραμμα παραγωγής που θα μεγιστοποιήσει 1/20 Μια από τις εταιρείες γάλακτος στην προσπάθειά της να διεισδύσει στην αγορά του παγωτού πολυτελείας επενδύει σε μια μικρή πιλοτική γραμμή παραγωγής δύο προϊόντων της κατηγορίας αυτής. Πρόκειται για οικογενειακές

Διαβάστε περισσότερα

Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων:

Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων: Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων: Φάμπιο Αντωνίου Στοιχεία Επικοινωνίας: email: fantoniou@cc.uoi.gr Τηλ:651005954 Προσωπική Ιστοσελίδα: fantoniou.wordpress.com Γραφείο: Κτίριο

Διαβάστε περισσότερα

ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι

ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι Ενότητα 3: Εργαλεία Κανονιστικής Ανάλυσης Κουτεντάκης Φραγκίσκος Γαληνού Αργυρώ Τμήμα Οικονομικών Επιστημών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Αλγοριθμική Θεωρία Παιγνίων

Αλγοριθμική Θεωρία Παιγνίων Αλγοριθμική Θεωρία Παιγνίων ιδάσκοντες: E. Ζάχος, Α. Παγουρτζής,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πολύπλοκα Συστήματα

Διαβάστε περισσότερα

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Μερική Παρατηρησιµότητα Θεωρία Παιγνίων Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Reinforcement Learning (RL)

Διαβάστε περισσότερα

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα Θεωρία Δυαδικότητας Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Περιεχόμενα Παρουσίασης 1. Βασικά Θεωρήματα 2. Παραδείγματα 3. Οικονομική Ερμηνεία

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Κεφάλαιο 13ο Eπαναλαµβανόµενα παίγνια (Repeated Games)

Κεφάλαιο 13ο Eπαναλαµβανόµενα παίγνια (Repeated Games) Κεφάλαιο 13ο Eπαναλαµβανόµενα παίγνια (Repeated Gaes) Το δίληµµα των φυλακισµένων, όπως ξέρουµε έχει µια και µοναδική ισορροπία η οποία είναι σε αυστηρά κυρίαρχες στρατηγικές. C N C -8, -8 0, -10 N -10,

Διαβάστε περισσότερα

EMOJITO! 7 Δίσκοι Ψηφοφορίας. 100 Κάρτες Συναισθημάτων. 1 Ταμπλό. 7 Πιόνια παικτών. 2-7 Παίκτες

EMOJITO! 7 Δίσκοι Ψηφοφορίας. 100 Κάρτες Συναισθημάτων. 1 Ταμπλό. 7 Πιόνια παικτών. 2-7 Παίκτες o Emojito! είναι ένα παιχνίδι παρέας, για 2 έως 14 άτομα, όπου οι παίκτες προσπαθούν να εκφράσουν συναισθήματα που απεικονίζονται σε κάρτες, είτε χρησιμοποιώντας το πρόσωπό τους, είτε ήχους ή και τα 2.

Διαβάστε περισσότερα

Συμπληρωματικές Σημειώσεις για τη Διάλεξη 8

Συμπληρωματικές Σημειώσεις για τη Διάλεξη 8 Συμπληρωματικές Σημειώσεις για τη Διάλεξη 8 Ένα από τα παράδοξα της ισορροπίας Nash που μπορεί να θεωρηθεί και σαν αδυναμία της είναι ότι σε κάποια παίγνια οι παίκτες έχουν μεγαλύτερο όφελος αν δεν διαλέξουν

Διαβάστε περισσότερα

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΠΑΙΓΝΙΑ ΜΗ ΕΝΙΚΟΥ ΑΘΡΟΙΣΜΑΤΟΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΠΑΙΓΝΙΑ ΜΗ ΕΝΙΚΟΥ ΑΘΡΟΙΣΜΑΤΟΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΠΑΙΓΝΙΑ ΜΗ ΕΝΙΚΟΥ ΑΘΡΟΙΣΜΑΤΟΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 Προηγούµενο Μάθηµα: Κυρίαρχη Στρατηγική- Κυριαρχούµενη στρατηγική-nash equilibrium Μια στρατηγική

Διαβάστε περισσότερα

Εισαγωγή στην Οικονομική Ανάλυση

Εισαγωγή στην Οικονομική Ανάλυση Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Εισαγωγή στην Οικονομική Ανάλυση Νίκος Θεοχαράκης Διάλεξη 9 Ιανουάριος 2014 Μορφές αγοράς 1. Τέλειος ανταγωνισμός [Perfect competition] 2. Μονοπωλιακός ανταγωνισμός

Διαβάστε περισσότερα

Διάλεξη 10. Γενική Ισορροπία VA 30

Διάλεξη 10. Γενική Ισορροπία VA 30 Διάλεξη 10 Γενική Ισορροπία V 30 1 Μερική & Γενική Ισορροπία Μέχρι τώρα εξετάζαμε γενικά την αγορά ενός αγαθού μεμονωμένα. Το πώς δηλαδή η προσφορά και η ζήτηση επηρεάζονται από την τιμή του συγκεκριμένου

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 6 ης διάλεξης

Ασκήσεις μελέτης της 6 ης διάλεξης Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 6 ης διάλεξης 6.1. (α) Το mini-score-3 παίζεται όπως το score-4,

Διαβάστε περισσότερα

Μέθοδος μέγιστης πιθανοφάνειας

Μέθοδος μέγιστης πιθανοφάνειας Μέθοδος μέγιστης πιθανοφάνειας Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σ.κ. της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 7: Επίλυση με τη μέθοδο Simplex (1 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή διαδικασίας παραγωγής αναγνωρίζει

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ. Ακολουθίες. Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε το διάνυσμα.

ΔΙΑΝΥΣΜΑΤΑ. Ακολουθίες. Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε το διάνυσμα. Ακολουθίες ΔΙΑΝΥΣΜΑΤΑ Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε το διάνυσμα. Να ορίζουμε τις σχέσεις μεταξύ διανυσμάτων (παράλληλα, ομόρροπα, αντίρροπα, ίσα και αντίθετα διανύσματα). Να προσθέτουμε και

Διαβάστε περισσότερα

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Πρόβληµα µεταφοράς Η ανάπτυξη και διαµόρφωση του προβλήµατος µεταφοράς αναπτύσσεται στις σελίδες 40-45 του βιβλίου των

Διαβάστε περισσότερα

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ) Εικονικές Παράμετροι Μέχρι στιγμής είδαμε την εφαρμογή της μεθόδου Simplex σε προβλήματα όπου το δεξιό μέλος ήταν θετικό. Δηλαδή όλοι οι περιορισμοί ήταν της μορφής: όπου Η παραδοχή ότι b 0 μας δίδει τη

Διαβάστε περισσότερα

Ανταγωνιστική αγορά-εφαρμογές

Ανταγωνιστική αγορά-εφαρμογές Ανταγωνιστική αγορά-εφαρμογές 1. Παρακίνηση: Στήριξη τιμών αγροτικών προϊόντων 2. Νεκρή ζημία: «Μία αγορά τέλειου ανταγωνισμού χωρίς παρέμβαση μεγιστοποιεί τι συνολικό πλεόνασμα» 3. Κυβερνητική παρέμβαση:

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 11: Σχεδίαση μηχανισμών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 11: Σχεδίαση μηχανισμών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 11: Σχεδίαση μηχανισμών Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2013-2014 Τέταρτη Γραπτή Εργασία στην Επιχειρησιακή Έρευνα

Διαβάστε περισσότερα

Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης

Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ / ΕΠΑΝΑΛΗΨΗΣ Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης 1. Ποιους ορισμούς πρέπει να ξέρω για τη μονοτονία ; Πότε μια συνάρτηση θα ονομάζεται γνησίως αύξουσα σε

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ EKΤΟ ΔΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ II ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ EKΤΟ ΔΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ II ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ EKΤΟ ΔΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ II ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 Προηγούμενα Μαθήματα: Παίχτες: είναι αυτοί που λαμβάνουν τις αποφάσεις. Ένα παίγνιο πρέπει

Διαβάστε περισσότερα

Ολιγοπώλιο. Εισαγωγή στην Οικονομική Επιστήμη Ι. Αρ. Διάλεξης: 11

Ολιγοπώλιο. Εισαγωγή στην Οικονομική Επιστήμη Ι. Αρ. Διάλεξης: 11 Ολιγοπώλιο Εισαγωγή στην Οικονομική Επιστήμη Ι Αρ. Διάλεξης: 11 Μορφές Αγορών μεταξύ Μονοπωλίου και Τέλειου Ανταγωνισμού Ο Ατελής Ανταγωνισμός αναφέρεται στην διάρθρωση της αγοράς εκείνης η οποία βρίσκεται

Διαβάστε περισσότερα

Ειδικά Θέματα Πιθανοτήτων και Στατιστικής Θεωρία Αποφάσεων. Μέρος Β

Ειδικά Θέματα Πιθανοτήτων και Στατιστικής Θεωρία Αποφάσεων. Μέρος Β Ειδικά Θέματα Πιθανοτήτων και Στατιστικής Θεωρία Αποφάσεων. Μέρος Β Νίκος Τσάντας Τμήμα Μαθηματικών Πανεπιστημίου Πατρών, Ακαδημαϊκό έτος 2011-12 Ένα άλλο πρόβλημα Ο Θωμάς κληρονόμησε $1000 από κάποιο

Διαβάστε περισσότερα

Άριστες κατά Pareto Κατανομές

Άριστες κατά Pareto Κατανομές Άριστες κατά Pareto Κατανομές - Ορισμός. Μια κατανομή x = (x, x ) = (( 1, )( 1, )) ονομάζεται άριστη κατά Pareto αν δεν υπάρχει άλλη κατανομή x = ( x, x ) τέτοια ώστε: U j( x j) U j( xj) για κάθε καταναλωτή

Διαβάστε περισσότερα

σει κανένα modem των 128Κ. Θα κατασκευάσει συνολικά = 320,000 τεμάχια των 64Κ και το κέρδος της θα γίνει το μέγιστο δυνατό, ύψους 6,400,000.

σει κανένα modem των 128Κ. Θα κατασκευάσει συνολικά = 320,000 τεμάχια των 64Κ και το κέρδος της θα γίνει το μέγιστο δυνατό, ύψους 6,400,000. Σ ένα εργοστάσιο ειδών υγιεινής η κατασκευή των πορσελάνινων μπανιέρων έχει διαμορφωθεί σε τρία διαδοχικά στάδια : καλούπωμα, λείανση και βάψιμο. Στον πίνακα που ακολουθεί καταγράφονται τα ωριαία δεδομένα

Διαβάστε περισσότερα

B 1 A 1 B 2 A 2. t 1. t 3 w. t 2 A 3 B 3. t 4. t 5

B 1 A 1 B 2 A 2. t 1. t 3 w. t 2 A 3 B 3. t 4. t 5 Κεφάλαιο 3 Δυναμικά παίγνια 3.1 Εισαγωγή Μέχρι στιγμής έχουμε αναλύσει παίγνια στα οποία όλοι οι παίκτες επιλέγουν τις στρατηγικές τους ταυτόχρονα. Αυτή η υπόθεση όμως δεν είναι πάντα κατάλληλη. Σε πολλές

Διαβάστε περισσότερα

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις ΔΕΟ - Επαναληπτικές Εξετάσεις Λύσεις ΘΕΜΑ () Το Διάγραμμα Διασποράς εμφανίζεται στο επόμενο σχήμα. Από αυτό προκύπτει καταρχήν μία θετική σχέση μεταξύ των δύο μεταβλητών. Επίσης, από το διάγραμμα φαίνεται

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING)

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) Δρ. Βασιλική Καζάνα Αναπλ. Καθηγήτρια ΤΕΙ Καβάλας, Τμήμα Δασοπονίας & Διαχείρισης Φυσικού Περιβάλλοντος Δράμας Εργαστήριο Δασικής Διαχειριστικής

Διαβάστε περισσότερα

1. Επιλογή Ποιότητας στην Ολιγοπωλιακή Αγορά: Κάθετη Διαφοροποίηση Προϊόντος

1. Επιλογή Ποιότητας στην Ολιγοπωλιακή Αγορά: Κάθετη Διαφοροποίηση Προϊόντος . Επιλογή Ποιότητας στην Ολιγοπωλιακή Αγορά: Κάθετη Διαφοροποίηση Προϊόντος - Ορισμός. Αν η αύξηση του επιπέδου ενός χαρακτηριστικού που διαφοροποιεί τα προϊόντα των επιχειρήσεων ωφελεί κάποιους καταναλωτές

Διαβάστε περισσότερα

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων - Στο υπόδειγμα ertrand, οι επιχειρήσεις, παράγουν ένα ομοιογενές αγαθό, οπότε η τιμή είναι η μοναδική μεταβλητή που ενδιαφέρει τους καταναλωτές και οι καταναλωτές

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 4: Η τραγωδία των κοινών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 4: Η τραγωδία των κοινών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 4: Η τραγωδία των κοινών Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου

Διαβάστε περισσότερα

Στατικά Παίγνια Ελλιπούς Πληροφόρησης

Στατικά Παίγνια Ελλιπούς Πληροφόρησης ΣΤΑΤΙΚΑ ΠΑΙΓΝΙΑ ΕΛΛΙΠΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ 67 Στατικά Παίγνια Ελλιπούς Πληροφόρησης ΣΤΟ ΠΑΡOΝ ΚΕΦAΛΑΙΟ ξεκινά η ανάλυση των παιγνίων ελλιπούς πληροφόρησης, τα οποία ονομάζονται και μπεϋζιανά παίγνια (bayesa

Διαβάστε περισσότερα

1. Κατανομή πόρων σε συνθήκες στατικής αποτελεσματικότητας

1. Κατανομή πόρων σε συνθήκες στατικής αποτελεσματικότητας Εφαρμογές Θεωρίας 1. Κατανομή πόρων σε συνθήκες στατικής αποτελεσματικότητας Έστω ότι η συνάρτηση ζήτησης για την κατανάλωση του νερού ενός φράγματος (εκφρασμένη σε ευρώ) είναι q = 12-P και το οριακό κόστος

Διαβάστε περισσότερα

(είσοδος) (έξοδος) καθώς το τείνει στο.

(είσοδος) (έξοδος) καθώς το τείνει στο. Υπενθυμίζουμε ότι αν ένα σύστημα είναι ευσταθές, τότε η απόκριση είναι άθροισμα μίας μεταβατικής και μίας μόνιμης. Δηλαδή, αν το σύστημα είναι ευσταθές όπου και Είθισται, σε ένα σύστημα αυτομάτου ελέγχου

Διαβάστε περισσότερα

Το Πρόβλημα Μεταφοράς

Το Πρόβλημα Μεταφοράς Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού

Διαβάστε περισσότερα

Σηματοδοτικά Παίγνια και Τέλεια Μπεϊζιανή Ισορροπία

Σηματοδοτικά Παίγνια και Τέλεια Μπεϊζιανή Ισορροπία Σηματοδοτικά Παίγνια και Τέλεια Μπεϊζιανή Ισορροπία - Ορισμός. Ένα παίγνιο ονομάζεται παίγνιο πλήρους πληροφόρησης (game of complete information) όταν κάθε παίκτης διαθέτει πλήρη πληροφόρηση για τις συναρτήσεις

Διαβάστε περισσότερα