ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA)"

Transcript

1 ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA). Εισαγωγή Η ανάλυση της διακύμανσης (ANalysis Of VAriance ANOVA) είναι μια στατιστική μεθόδος με την οποία η μεταβλητότητα που υπάρχει σ ένα σύνολο δεδομένων διασπάται στις επιμέρους συνιστώσες της με στόχο την κατανόηση της σημαντικότητας των διαφορετικών πηγών προέλευσής της. Η ανάπτυξη της μεθοδολογίας οφείλεται στον θεμελιωτή της σύγχρονης στατιστικής επιστήμης, άγγλο στατιστικό Sir Ronald Aylmer Fisher (890-96). Στην πραγματικότητα η ANOVA περιλαμβάνει μια ομάδα στατιστικών μεθόδων καταλλήλων για την ανάλυση δεδομένων που προκύπτουν από πειραματικούς σχεδιασμούς. Τα δεδομένα ενός δείγματος ανάλογα με την προέλευσή τους διακρίνονται σε μη πειραματικά (non-experimental) η σε πειραματικά (experimental). Στην πρώτη κατηγορία ο στατιστικός ερευνητής απλά παρατηρεί τις τιμές που εμφανίζονται χωρίς να έχει δυνατότητα επέμβασης στις αντίστοιχες μεταβλητές. Αντίθετα στη δεύτερη κατηγορία ο στατιστικός ερευνητής προσπαθεί να ελέγξει τα επίπεδα μιας η περισσοτέρων ανεξάρτητων (independent) μεταβλητών προκειμένου να προσδιορίσει την επίδραση που έχουν πάνω στην υπό μελέτη μεταβλητή που καλείται εξαρτημένη (dependent) η απόκριση (response). Για παράδειγμα, απόκριση μπορεί να είναι η βαθμολογία στην εξέταση του μαθήματος της στατιστικής, ο όγκος των πωλήσεων μιας επιχείρησης η το συνολικό εισόδημα μιάς οικογένειας κατά τη διάρκεια του έτους. Στόχος κάθε στατιστικού πειράματος είναι ο προσδιορισμός της επίδρασης μιας η περισσοτέρων ανεξάρτητων μεταβλητών πάνω στην απόκριση. Οι μεταβλητές αυτές αναφέρονται συνήθως σαν παράγοντες (factors) και μπορεί να είναι είτε ποσοτικές είτε ποιοτικές. Για παράδειγμα θα ήταν ενδιαφέρον να διερευνήσουμε την επίδραση που έχει ο ποιοτικός παράγων φύλο στη βαθμολογία της στατιστικής η ο ποσοτικός παράγων πλήθος καταστημάτων πώλησης στον όγκο των πωλήσεων. Σε άλλες πάλι περιπτώσεις ενδεχομένως να ενδιαφερόμαστε για την επίδραση που έχουν πάνω στην απόκριση περισσότερες της μιας ανεξάρτητες μεταβλητές όπως ο ποσοτικός παράγων πλήθος εργαζομένων και ο ποιοτικός παράγων πόλη διαμονής πάνω στο οικογειακό εισόδημα. Οι τιμές του παράγοντα που καθορίζονται στο πείραμα λέγονται επίπεδα (levels). Για παράδειγμα τα επίπεδα για τον ποιοτικό παράγοντα φύλο είναι αρσενικό - θηλυκό, ενώ για τον ποσοτικό παράγοντα πλήθος καταστημάτων πώλησης είναι θετικός ακέραιος. Σε ένα πείραμα με ένα παράγοντα οι μεταχειρίσεις (treatments) του πειράματος είναι τα επίπεδα του παράγοντα. Για παράδειγμα αν στο πείραμα βαθμολογία της στατιστικής μας ενδιαφέρει η επίδραση του παράγοντα φύλο τότε οι μεταχειρίσεις του πειράματος είναι αρσενικό θηλυκό. Σε ένα πείραμα με δύο η περισσότερους παράγοντες οι μεταχειρίσεις είναι οι συνδυασμοί παραγόντων-επιπέδων. Για παράδειγμα αν μας ενδιαφέρει η επίδραση των παραγόντων φύλο, ηλικία στη βαθμολογία της στατιστικής, τότε οι μεταχειρίσεις είναι οι συνδυασμοί των επιπέδων φύλου και ηλικίας π.χ. (αρσενικό, ), (θυληκό, 9). Δρ. Ιωάννης Ι.Γεροντίδης, Αναπληρωτής Καθηγητής

2 . Γέννεση της κατανομής F Aν και Y είναι ανεξάρτητες τυχαίες μεταβλητές από την κατανομή Y βαθμούς ελευθερίας και n αντίστοιχα, τότε το κλάσμα n χ με Y / n W = Y / n είναι τυχαία μεταβλητή που ακολουθεί μια κατανομή την οποία μελέτησε και ανέπτυξε ο Sir R.A.Fisher και η οποία προς τιμή του συμβολίζεται με F. Ο Fisher στην προσπάθειά του να μελετήσει τις διαφορές στην παραγωγή της σοδειάς ανέπτυξε τη νέα κατανομή σαν λόγο δύο ανεξαρτήτων χ. Η κατανομή αυτή χαρακτηρίζεται από δύο βαθμούς ελευθερίας, n για τον αριθμητή και n για τον παρονομαστή γι αυτό γράφουμε Fn (, n). Επειδή η τυχαία μεταβλητή χ είναι πάντα θετική, το ίδιο θα ισχύει και για την F. Η οικογένεια των κατανομών Fn (, n) είναι μονόκορφη και ασύμμετρη προς τα δεξιά, όπως προκύπτει από το διάγραμμα, με συνάρτηση πυκνότητας πιθανότητας n+ n n n Γ n x f( x n, n) =, 0 x, n+ n n n < < n Γ Γ nx + n όπου Γ ( n) = ( n )! = 3 ( n ), n +, είναι η συνάρτηση Γάμα. ΔΙΑΓΡΑΜΜΑ Κατανομές F (,), F (8,) και F(5,0) Μια αναγκαία συνθήκη για την ύπαρξη της κατανομής F είναι ότι τα δείγματα θα πρέπει να ακολουθούν την κανονική κατανομή. Εν τούτοις σε περιπτώσεις που η δειγματικές κατανομές αποκλίνουν από την κανονική, η δοκιμασία F μένει σχετικά ανεπηρέαστη, εφ όσον οι δύο πληθυσμοί είναι τουλάχιστον μονόκορφοι και τα μεγέθη των δειγμάτων είναι παρόμοια. Κάτω από αυτές τις προϋποθέσεις η δοκιμασία που βασίζεται στην κατανομή F χαρακτηρίζεται σαν εύρωστη (robust). Δρ. Ιωάννης Ι.Γεροντίδης, Αναπληρωτής Καθηγητής

3 Μερικές φορές υπάρχει η ανάγκη να συγκρίνουμε δύο διακυμάνσεις και για το σκοπό αυτό υπολογίζουμε το κλάσμα σ /σ. Αν οι διακυμάνσεις είναι ίσες τότε ο λόγος τους θα είναι. Συνήθως όμως στην πράξη οι διακυμάνσεις των πληθυσμών είναι άγνωστες, οπότε οι συγκρίσεις γίνονται με βάση τις δειγματικές διακυμάνσεις. Για παράδειγμα αν και είναι οι δειγματικές διακυμάνσεις από δύο δείγματα με και n παρατηρήσεις αντίστοιχα που n ακολουθούν την κανονική κατανομή, τότε το κλάσμα s s s VR = s / σ / σ (λόγος δύο χ ) ακολουθεί την κατανομή F. Κάτω από την υπόθεση το στατιστικό H : σ = σ 0 s VR = s ακολουθεί την κατανομή Fn (, n ). Αν τα δείγματα προέρχονται από τον ίδιο πληθυσμό η από πληθυσμούς με ίσες διακυμάνσεις, τότε το VR θα πρέπει να είναι κοντά στο. Η κατανομή F προσδιορίζει τα όρια της ανοχής μας για το πόσο μεγάλο η μικρό θα πρέπει να είναι το κλάσμα VR προκειμένου να συμπεράνουμε ότι οι δειγματικές διακυμάνσεις διαφέρουν σημαντικά. Τα άνω 00α εκατοστιαία σημεία Fn (, n) α της κατανομής Fn (, n) δηλαδή τα σημεία με την ιδιότητα PVR ( > F( n, n) α ) = α, δίνονται από στατιστικούς πίνακες η από το Minitab. Οι βαθμοί ελευθερίας για τον αριθμητή εμφανίζονται πάνω από τις στήλες, ενώ οι βαθμοί ελευθερίας για τον παρονομαστή εμφανίζονται δίπλα από τις γραμμές. Επειδή η κατανομή F δεν είναι συμμετρική, προκειμένου να υπολογίσουμε τα κάτω 00α εκατοστιαία σημεία Fn (, n )( α ), δηλαδή τα σημεία με την ιδιότητα PVR ( < F( n, n) α ) = α ( ) χρησιμοποιούμε την αντίστροφη ιδιότητα της F σύμφωνα την οποία η τιμή της κάτω ουράς προκύπτει από την αντίστοιχη τιμή της άνω ουράς σύμφωνα με τη σχέση Fn (, n) ( α ) = Fn (, n) α Δρ. Ιωάννης Ι.Γεροντίδης, Αναπληρωτής Καθηγητής 3

4 όπου θα πρέπει να προσέξουμε και την αντιστροφή των βαθμών ελευθερίας. Για παράδειγμα F(8,) = F(,8) = 3.8 = Ανάλυση διακύμανσης κατά ένα παράγοντα Στην απλούστερη μορφή της η ANOVA μας δίνει τη δυνατότητα να δοκιμάσουμε την υπόθεση ότι οι μέσες τιμές διαφόρων πληθυσμών είναι ίσες. Κάτω από το πλαίσιο αυτό μπορούμε να θεωρήσουμε την ANOVA σαν προέκταση της δοκιμασίας t για την σύγκριση των μέσων τιμών δύο πληθυσμών. Υπάρχουν όμως δύο λόγοι για τους οποίους χρησιμοποιούμε την ANOVA έναντι της δοκιμασίας t. Ο ένας είναι η συντόμευση της διαδικασίας ανάλυσης και ο δεύτερος (και πιο σημαντικός) η ακρίβεια της διάγνωσης. Για παράδειγμα αν υποθέσουμε ότι έχουμε να συγκρίνουμε τις μέσες τιμές για 5 πληθυσμούς, τότε θα πρέπει να κάνουμε 5 5! 543 = = = 0!(5 )! 3 διαφορετικές ζευγαρωτές δοκιμασίες αποδεχθούμε την μηδενική υπόθεση t. Στη συνέχεια και προκειμένου να H 0 : Δεν υπάρχουν διαφορές μεταξύ των 5 πληθυσμών θα πρέπει να αποδεχθούμε και τις 0 ζευγαρωτές δοκιμασίες t. Αν το επίπεδο σημαντικότητας κάθε ζευγαρωτής δοκιμασίας είναι α = 0.05, τότε η 0 πιθανότητα να αποδεχθούμε και τις 0 δοκιμασίες είναι (0.95) = Συνεπώς η πιθανότητα να απορρίψουμε τουλάχιστον μια ζευγαρωτή δοκιμασία (και επομένως την H ) είναι = που σημαίνει ότι με τις 0 0 δοκιμασίες t υποπίπτουμε σε σφάλμα τύπου Ι στις 40.3% των περιπτώσεων. Από τους υπάρχοντες πειραματικούς σχεδιασμούς ο απλούστερος είναι εκείνος που χαρακτηρίζεται από την ανάλυση της διακύμανσης κατά ένα παράγοντα (one factor ANOVA) και καλείται πλήρως τυχαιοποιημένος σχεδιασμός (completely randomized design). Παράδειγμα Μια βιομηχανία αυτοκινήτων έχει κατασκευάσει ένα πρωτοποριακό μοντέλο αυτοκινήτου το οποίο χαρακτηρίζεται από διάφορα πλεονεκτήματα σε σχέση με τα άλλα μοντέλα του ανταγωνισμού στην κατηγορία του, όπως άνεση στη διαχείριση, καλύτερη ποιότητα κατασκευής και χαμηλότερη τιμή πώλησης. Η διεύθυνση του τμήματος μάρκετινγκ προκειμένου να αποφασίσει για τον τρόπο προώθησης του νέου προϊόντος σχεδίασε ένα πείραμα σε τρεις διαφορετικές περιοχές. Στην πρώτη περιοχή η διαφήμιση έγινε με έμφαση στην άνεση που χαρακτηρίζει το αυτοκίνητο, στη δεύτερη περιοχή δόθηκε έμφαση στην ποιότητα κατασκευής και στην τρίτη Δρ. Ιωάννης Ι.Γεροντίδης, Αναπληρωτής Καθηγητής 4

5 δόθηκε έμφαση στην τιμή πώλησης. Στον πίνακα που ακολουθεί δίνονται οι μηνιαίες πωλήσεις του αυτοκινήτου ανά περιοχή και για τους επόμενους πέντε μήνες. ΠΙΝΑΚΑΣ Μήνας Περιοχή (Άνεση) Περιοχή (Ποιότητα) Περιοχή 3 (Τιμή) Σύνολο Μέσος όρος Ο διευθυντής του τμήματος μάρκετινγκ ενδιαφέρεται να μάθει αν υπάρχουν διαφορές στις πωλήσεις που προέκυψαν από τις τρεις διαφημιστικές στρατηγικές. Η θεωρητική ανάλυση των δεδομένων του παραδείγματος βασίζεται στα παρακάτω βήματα: (α) Προσδιορισμός του μοντέλου Στη γενική περίπτωση υποθέτουμε ότι έχουμε ομάδες με n παρατηρήσεις ανά ομάδα για =,...,. Τα δεδομένα του δείγματος μπορούν να ταξινομηθούν σε ένα πίνακα της μορφής ΠΙΝΑΚΑΣ Ομάδες (Μεταχειρίσεις) n n Σύνολα T T T 3 T T Μέσοι όροι Διάταξη παρατηρήσεων του πλήρως τυχαιοποιημένου σχεδιασμού n 3 3 n όπου i είναι η i παρατήρηση της ομάδας Δρ. Ιωάννης Ι.Γεροντίδης, Αναπληρωτής Καθηγητής 5

6 T n = i = άθροισμα των παρατηρήσεων της στήλης i= T = = δειγματικός μέσος της στήλης n n T = T = i = άθροισμα όλων των παρατηρήσεων = = i= T = = δειγματικός μέσος όλων των παρατηρήσεων και N = n. N = Υποθέτουμε ότι για την ομάδα οι παρατηρήσεις i έχουν την μορφή όπου = μ + ε () i i μ είναι η αναμενόμενη τιμή του πληθυσμού της ομάδας και είναι το σφάλμα (error), για i =,..., n και =,...,. Με τον όρο σφάλμα δεν εννοούμε κάποια λανθασμένη μέτρηση η εκτίμηση αλλά τη μη ελεγχόμενη διακύμανση που υπάρχει στον πληθυσμό. Επιλύοντας την () ως προς έχουμε =. () ε i i μ Η καθολική αναμενόμενη τιμή (grand mean) μ όλων των παρατηρήσεων όλων των πληθυσμών είναι ε i ε i μ = μ. (3) = Με την ίδια λογική που το i διαφέρει από το ότι το μ διαφέρει από το μ κατά μια ποσότητα μ μπορούμε να υποθέσουμε τ = μ μ (4) που εκφράζει την επίδραση (effect) του γεγονότος ότι το μ αναφέρεται στην αναμενόμενη τιμή της ομάδας. Από τη σχέση (4) έχουμε ότι μ =μ+τ. (5) Συνδυάζοντας την () με την (5) παίρνουμε την τελική έκφραση = μ+τ +ε (6) i i Δρ. Ιωάννης Ι.Γεροντίδης, Αναπληρωτής Καθηγητής 6

7 για i =,..., n και =,...,. Συνοψίζοντας από την (6) προκύπτει ότι η παρατήρηση i είναι άθροισμα τριών ποσοτήτων, της καθολικής αναμενόμενης, της επίδρασης της ομάδας (μεταχείρισης) και του σφάλματος. Για το λόγο αυτό το μοντέλο (6) λέγεται προσθετικό (additive). Στο παράδειγμα έχουμε = 3 ομάδες με πλήθος παρατηρήσεων n = 5 σε κάθε ομάδα έτσι ώστε το συνολικό πλήθος των παρατηρήσεων είναι N = n= 35 = 5. (β) Υποθέσεις του μοντέλου Οι υποθέσεις που διέπουν το μοντέλο (6) είναι:. Οι παρατηρήσεις i κάθε ομάδας αποτελούν ανεξάρτητα δείγματα από τους αντίστοιχους πληθυσμούς.. Καθένας από τους πληθυσμούς ακολουθεί την κανονική κατανομή με μέση τιμή και κοινή διακύμανση σ, για μ =,...,. 3. Οι επιδράσεις των ομάδων (μεταχειρίσεων) είναι σταθεροί τ αριθμοί που ικανοποιούν τη σχέση τ = 0. = Από τη σχέση () και τις υποθέσεις -3 προκύπτει ότι τα σφάλματα είναι ανεξάρτητες τυχαίες μεταβλητές από την κανονική κατανομή με μέση τιμή 0 και διακύμανση σ. (γ) Δοκιμασία υποθέσεων Μπορούμε τώρα να δοκιμάσουμε την μηδενική υπόθεση ότι όλες οι ομάδες (μεταχειρίσεις) έχουν ίσες μέσες τιμές ε i με εναλλακτική H 0 : μ = μ =... = μ H όλα τα δεν είναι ίσα. : μ Όταν οι μέσες τιμές των πληθυσμών είναι ίσες, τότε οι επιδράσεις μεταχειρίσεων είναι μηδέν. Κατά συνέπεια οι ισοδύναμες υποθέσεις που μπορούμε να δοκιμάσουμε είναι τ των με εναλλακτική H : τ = 0, =,..., 0 H : όλα τα τ δεν είναι μηδέν. Δρ. Ιωάννης Ι.Γεροντίδης, Αναπληρωτής Καθηγητής 7

8 Στο παράδειγμα θα δοκιμάσουμε τις υποθέσεις με εναλλακτική : μ μ μ H0 = = 3 H όλα τα δεν είναι ίσα. : μ (δ) Υπολογισμός του αθροίσματος των τετραγώνων Στην αρχή του κεφαλαίου ορίσαμε την ANOVA σαν μια διαδικασία κατά την οποία η ολική μεταβλητότητα που υπάρχει στα δεδομένα διασπάται σε επιμέρους συνιστώσες που οφείλονται σε διαφορετικές πηγές προέλευσης. Ο όρος μεταβλητότητα αναφέρεται στο άθροισμα των τετραγώνων των αποκλίσεων των παρατηρήσεων από την μέση τιμή τους που για συντομία καλείται άθροισμα τετραγώνων (Sum of Squares SS ). Το ολικό άθροισμα των τετραγώνων Αρχικά υπολογίζουμε το ολικό άθροισμα των τετραγώνων (Sum of Squares Total - SST ) των αποκλίσεων των παρατηρήσεων από τον καθολικό μέσο n ( i ) (7) = i= SST = όπου με το n i= αθροίζουμε τις τετραγωνισμένες αποκλίσεις μέσα σε κάθε ομάδα, ενώ με το αθροίζουμε τα αποτελέσματα των ομάδων. Στην = πραγματικότητα το SST αντιστοιχεί στον αριθμητή που υπάρχει στον τύπο υπολογισμού της δειγματικής διακύμανσης s = n i= ( ) i N ενός τυχαίου δείγματος με N παρατηρήσεις. Στο παράδειγμα από την (7) έχουμε n ( i ) (86 80) (79 80)... (7 80) (8 80) 698 = i= SST = = =. Στη συνέχεια θα διασπάσουμε το SST χρησιμοποιώντας την ισοδύναμη έκφραση στις επιμέρους συνιστώσες του, n SST = [( ) + ( )] = i= i Δρ. Ιωάννης Ι.Γεροντίδης, Αναπληρωτής Καθηγητής 8

9 n n n ( i ) ( i )( ) ( = i= = i= = i= ) (8) = + + Ο μεσαίος όρος της (8) γράφεται n ( ) ( i i= = ) απ όπου προκύπτει ότι είναι ίσος με μηδέν διότι n ( i ) = 0. i= Τελικά η (8) γίνεται n n ( i ) ( = i= = i= ) SST = + η ισοδύναμα total n ( i ) ( = i= = SS = + n ). (9) Στην περίπτωση που όλες οι ομάδες έχουν το ίδιο πλήθος παρατηρήσεων ίσο με n (όπως στο παράδειγμα ) η (9) γίνεται n ( i ) ( = i= = ). SST = + n Το άθροισμα των τετραγώνων μέσα στις ομάδες Το πρώτο άθροισμα στη δεξιά πλευρά της (9) υπολογίζει αρχικά το άθροισμα των τετραγωνισμένων αποκλίσεων των παρατηρήσεων από τον δειγματικό μέσο κάθε ομάδας και κατόπιν αθροίζει τα επιμέρους αποτελέσματα για όλες τις ομάδες. Το τελικό αποτέλεσμα λέγεται άθροισμα τετραγώνων μέσα στις ομάδες (Sum of Squares Within groups - SSW ) n ( i ) (0) = i= SSW = Στο παράδειγμα από την (0) έχουμε Δρ. Ιωάννης Ι.Γεροντίδης, Αναπληρωτής Καθηγητής 9

10 n ( i ) (86 80) (79 80)... (7 75) (8 75) 448 = i= SSW = = =. Το άθροισμα των τετραγώνων μεταξύ των ομάδων Το δεύτερο άθροισμα στη δεξιά πλευρά της (9) υπολογίζει αρχικά για κάθε ομάδα την τετραγωνισμένη απόκλιση του μέσου της ομάδας από τον καθολικό μέσο και κατόπιν πολλαπλασιάζει το αποτέλεσμα με το πλήθος των παρατηρήσεων της ομάδας. Τα επιμέρους αποτελέσματα αθροίζονται για όλες τις ομάδες και το τελικό αποτέλεσμα λέγεται άθροισμα τετραγώνων μεταξύ ομάδων (Sum of Squares Between groups - SSB ) SSB = n ( ) = ενώ στην περίπτωση που όλες οι ομάδες έχουν n παρατηρήσεις προκύπτει ( ). () = SSB = n Στο παράδειγμα από την () έχουμε ( ) 5(80 80) 5(85 80) 5(75 80) 50 = SSB = n = + + =. Συγκρίνοντας τα αποτελέσματα παίρνουμε την παρακάτω διάσπαση SST = SSW + SSB. (ε) Ο πίνακας ανάλυσης της διακύμανσης Από τα αθροίσματα των τετραγώνων που υπολογίσαμε μπορούμε τώρα να πάρουμε δύο εκτιμητές της πληθυσμιακής διακύμανσης σ. Αποδεικνύεται ότι όταν οι πληθυσμιακές μέσες τιμές των ομάδων είναι ίσες, τότε τα SSW και SSB όταν διαιρεθούν με τους αντίστοιχους βαθμούς ελευθερίας δίνουν αμερόληπτους εκτιμητές για το σ. O πρώτος εκτιμητής του σ Μέσα σε κάθε ομάδα το μέσο τετράγωνο (mean square) MS = n i= ( ) n i Δρ. Ιωάννης Ι.Γεροντίδης, Αναπληρωτής Καθηγητής 0

11 δίνει ένα αμερόληπτο εκτιμητή για την διακύμανση της ομάδας. Κάτω από την υπόθεση ότι οι διακυμάνσεις είναι ίσες μπορούμε να συνδυάσουμε (αθροίσουμε) τους εκτιμητές και να πάρουμε ένα εκτιμητή για την διακύμανση μέσα στις ομάδες (within groups variance) σύμφωνα με τον τύπο του μέσου τετραγώνου MSW = n = i= = ( ) i ( n ). () Στο παράδειγμα ο τύπος () δίνει 448 MSW = = O δεύτερος εκτιμητής του σ Ο δεύτερος εκτιμητής του σ προκύπτει από τον γνωστό τύπο για την διακύμανση του δειγματικού μέσου ενός δείγματος με n παρατηρήσεις σ σ = n απ όπου έχουμε σ = n. σ Ένας αμερόληπτος εκτιμητής του σ που είναι η διακύμανση μεταξύ των ομάδων (variance between groups) προκύπτει από το μέσο τετράγωνο MS = = ( ) συνεπώς στην ειδική περίπτωση που όλες οι ομάδες (μεταχειρίσεις) έχουν παρατηρήσεις ένας αμερόληπτος εκτιμητής για το σ είναι n MSB = n ( ) =. (3) Στη γενική περίπτωση που το πλήθος των παρατηρήσεων των ομάδων δεν είναι ίδιο ο αμερόληπτος εκτιμητής για το σ έχει τη μορφή Δρ. Ιωάννης Ι.Γεροντίδης, Αναπληρωτής Καθηγητής

12 MSB = = n ( ). Στο παράδειγμα ο τύπος (3) δίνει 50 MSB = = 5. Ο λόγος των διακυμάνσεων Όταν η μηδενική υπόθεση H 0 : μ = μ =... = μ είναι αληθινή, τότε αναμένεται οι δύο εκτιμητές του σ να είναι περίπου ίσοι. Όταν η μηδενική υπόθεση δεν ισχύει, έτσι ώστε οι μέσες τιμές των πληθυσμών να διαφέρουν, τότε αναμένεται το MSB να είναι μεγαλύτερο από το MSW. Για το λόγο αυτό και προκειμένου να συγκρίνουμε τους δύο εκτιμητές του σ υπολογίζουμε το λόγο των διακυμάνσεων (Variance Ratio - VR ) MSB VR =. MSW Όταν οι δύο εκτιμητές είναι περίπου ίσοι το VR γεγονός αυτό αποτελεί κριτήριο αποδοχής της H 0 είναι κοντά στο και το. Στην περίπτωση που το MSB είναι μεγαλύτερο από το MSW τότε το VR είναι μεγαλύτερο από το και το γεγονός αυτό είναι το κριτήριο απόρριψης της. H 0 Στο παράδειγμα από τα προηγούμενα αποτελέσματα έχουμε MSB 5 VR = = = MSW Η δοκιμασία F Είναι γνωστό ότι η ύπαρξη του τυχαίου σφάλματος που οφείλεται στη δειγματοληψία δεν επιτρέπει στα MSB και MSW να είναι ίσα ακόμη και στην περίπτωση που η μηδενική υπόθεση H 0 : μ = μ =... = μ είναι αληθινή. Για το λόγο αυτό θα πρέπει να έχουμε ένα μέτρο ανοχής για το πόσο μεγάλη θα πρέπει να είναι η παρατηρούμενη διαφορά προκειμένου να συμπεράνουμε ότι δεν οφείλεται μόνο σε τυχαίο σφάλμα. Απάντηση στο ερώτημα αυτό μας δίνει η κατανομή δειγματοληψίας του λόγου των διακυμάνσεων MSB VR =. MSW Δρ. Ιωάννης Ι.Γεροντίδης, Αναπληρωτής Καθηγητής

13 Επειδή το VR είναι λόγος δύο χ τυχαίων μεταβλητών από την παράγραφο προκύπτει ότι ακολουθεί την κατανομή F με βαθμούς ελευθερίας αριθμητή ( ) και βαθμούς ελευθερίας παρονομαστή ( n ) = n = N. = = Από τη στιγμή που θα καθορίσουμε και το επίπεδο σημαντικότητας α τότε η κρίσημη τιμή του F προσδιορίζει τις περιοχές αποδοχής και απόρριψης της δοκιμασίας. Οι απαιτούμενοι υπολογισμοί συνοψίζονται στον παρακάτω πίνακα ANOVA. Πηγή προέλευσης Μεταξύ ομάδων Άθροισμα τετραγώνων SSB = n ( ) = Μέσα στις n ομάδες Σύνολο SSW = ( ) = i= n SST = ( ) = i= i i ΠΙΝΑΚΑΣ 3 Βαθμοί ελευθερίας Μέσο τετράγωνο N MSB = = n ( ) n N MSW = = i= = ( ) i ( n ) Λόγος διακυμάνσεων MSB VR = MSW Πίνακας ANOVA για τον πλήρως τυχαιοποιημένο σχεδιασμό (κατά ένα παράγοντα) H απόφαση Κάτω από τη μηδενική υπόθεση H 0 : μ = μ =... = μ το VR ακολουθεί την κατανομή F με βαθμούς ελευθερίας ( ) για τον αριθμητή και (N ) για τον παρονομαστή. Για συγκεκριμένο επίπεδο σημαντικότητας α και προκειμένου να πάρουμε μια απόφαση συγκρίνουμε την τιμή του VR με την κρίσιμη τιμή της κατανομής F (, N ). Όταν δεν μπορούμε να αποδεχθούμε την VR > F(, N ) α H 0 με βάση τα δεδομένα του δείγματος, όπου F (, N ) α είναι το άνω α εκατοστιαίο σημείο της κατανομής F (, N ) για το οποίο ισχύει P( F(, N ) > F(, N ) α ) = α. Στο παράδειγμα για επίπεδο σημαντικότητας α = 0.05 έχουμε Δρ. Ιωάννης Ι.Γεροντίδης, Αναπληρωτής Καθηγητής 3

14 VR = 3.35 < 3.88 = F(,) 0.05 έτσι ώστε δεν μπορούμε να απορρίψουμε την με βάση τα δεδομένα του δείγματος. Αυτό σημαίνει ότι δεν υπάρχουν διαφορές στις πωλήσεις που προέκυψαν από τις τρεις διαφημιστικές στρατηγικές. Πηγή προέλευσης Μεταξύ ομάδων Μέσα στις ομάδες ΠΙΝΑΚΑΣ 4 Άθροισμα Βαθμοί Μέσο Λόγος τετραγώνων ελευθερίας τετράγωνο διακυμάνσεων 50 3 = 50 5 = = = 448 = H 0 Σύνολο = 4 Πίνακας ANOVA παραδείγματος H διακύμανση που υπάρχει στα δεδομένα του παραδείγματος μεταξύ των ομάδων (στηλών) ερμηνεύεται (explained) από το γεγονός ότι οι ομάδες ενδεχομένως να προέρχονται από διαφορετικούς πληθυσμούς. Η διακύμανση μέσα στις ομάδες είναι η εναπομένουσα διακύμανση (residual variance) που μένει ανερμήνευτη (unexplained). Συνεπώς ερμηνευμένη διακύμανση VR =. ανερμήνευτη διακύμανση Το γεγονός αυτό μας παροτρύνει να αναπτύξουμε διαδικασίες προκειμένου να ενδυναμώσουμε τη δοκιμασία F. Αν για παράδειγμα ένα σημαντικό ποσοστό της ανερμήνευτης διακύμανσης οφείλεται σε υπάρχουσες διαφορές στις γραμμές του πίνακα, τότε απομονώνοντας την διακύμανση αυτή θα είχε σαν αποτέλεσμα την μείωση του παρονομαστή στο VR. Με τον τρόπο αυτό προκύπτει ένα μεγαλύτερο VR το οποίο ενδυναμώνει τη δοκιμασία για την ύπαρξη διαφορών μεταξύ των στηλών. Συνεπώς η ικανότητα προσδορισμού κατά πόσο ένας παράγοντας (στήλες) είναι σημαντικός μπορεί να ενισχυθεί με την εισαγωγή και ενός δευτέρου παράγοντα (γραμμές) προκειμένου να ερμηνευθεί η εναπομένουσα διακύμανση. Έτσι έχουμε την ανάλυση διακύμανσης κατά δύο παράγοντες (two way ΑNOVA). O αντίστοιχος πειραματικός σχεδιασμός που προκύπτει λέγεται τυχαιοποιημένος σχεδιασμός ομάδων (randomized bloc design). Δρ. Ιωάννης Ι.Γεροντίδης, Αναπληρωτής Καθηγητής 4

15 4. Aσκήσεις. Προκειμένου να διαπιστωθεί αν υπάρχουν διαφορές στην παραγωγικότητα 3 μηχανών τις βάλαμε να δουλέψουν με 5 διαφορετικούς χειριστές και για χρονικό διάστημα 5 ωρών (αλλαγή χειριστή ανά ώρα). Η παραγωγικότητα της κάθε μηχανής ανά χειριστή (σε κομμάτια) δίνεται στον πίνακα 5 ΠΙΝΑΚΑΣ 5 Χειριστής Μηχανή Μηχανή Μηχανή Παραγωγικότητα μηχανών (α) Να υπολογίζετε την διακύμανση μεταξύ των μηχανών. (β) Να υπολογίσετε την διακύμανση μέσα στις μηχανές. (γ) Να κατασκευάσετε τον πίνακα ANOVA. (δ) Να δοκιμάσετε σε επίπεδο σημαντικότητα α = 0.05 την υπόθεση ότι δεν υπάρχουν διαφορές στην παραγωγικότητα των μηχανών.. Κατά την συναρμολόγηση ενός μοντέλου αυτοκινήτου υπάρχουν 3 διαφορετικές μέθοδοι που μπορούν να εφαρμοστούν. Προκειμένου να αξιολογήσουμε τον χρόνο που χρειάζεται η κάθε μέθοδος, βάλαμε 8 εργάτες (6 ανά μέθοδο) να συναρμολογήσουν 8 αυτοκίνητα. Οι χρόνοι συναρμολόγησης σε ώρες που χρειάστηκε ο κάθε εργάτης δίνονται στον πίνακα 6. ΠΙΝΑΚΑΣ 6 Εργάτης Μέθοδος Μέθοδος Μέθοδος Χρόνοι συναρμολόγησης (α) Να υπολογίζετε την διακύμανση μεταξύ των μεθόδων. (β) Να υπολογίσετε την διακύμανση μέσα στις μεθόδους. (γ) Να κατασκευάσετε τον πίνακα ANOVA. (δ) Να δοκιμάσετε σε επίπεδο σημαντικότητα α = 0.05 την υπόθεση ότι δεν υπάρχουν διαφορές στους χρόνους συναρμολόγησης μεταξύ των μεθόδων. Δρ. Ιωάννης Ι.Γεροντίδης, Αναπληρωτής Καθηγητής 5

16 5. Aνάλυση διακύμανσης με το MINITAB Το στατιστικό πακέτο Minitab μπορεί να διαχειριστεί την ανάλυση της διακύμανσης για τρία είδη πειραματικών σχεδιασμών: την ANOVA κατά ένα παράγοντα (completely randomized design), την ANOVA κατά δύο παράγοντες (randomized bloc design) και τον παραγοντικό σχεδιασμό (factorial design). Στην ANOVA κατά ένα παράγοντα θα πρέπει να υπάρχουν στο Worsheet τα δεδομένα της εξαρτημένης μεταβλητής (απόκρισης) καταχωρημένα είτε κατά ομάδες σε διαφορετικές στήλες (unstaced) είτε εναλλακτικά σε μια στήλη (staced) συνοδευόμενα και από ένα ποιοτικό παράγοντα με δύο τουλάχιστον επίπεδα. Οι διαδοχικές επιλογές εντολών για την ΑNOVA κατά ένα παράγοντα είναι:. Ανοίγουμε το Worsheet με τα δεδομένα.. Από τη γραμμή μενού επιλέγουμε Stat One Way (η Unstaced κατά περίπτωση). 3. Στα πλαίσια διαλόγου One-way Analysis of Variance που υπάρχουν διαθέσιμα προσδιορίζουμε την εξαρτημένη μεταβλητή καθώς και τα διαγράμματα που επιθυμούμε να έχουμε. 4. Τα αποτελέσματα εμφανίζονται στα Graph και Session Window. Δρ. Ιωάννης Ι.Γεροντίδης, Αναπληρωτής Καθηγητής 6

17 Δρ. Ιωάννης Ι.Γεροντίδης, Αναπληρωτής Καθηγητής 7

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 015 Ανάλυση Διακύμανσης Η Ανάλυση Διακύμανσης είναι μία τεχνική που

Διαβάστε περισσότερα

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE)

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE) ΔΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE) ΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE). Εισαγωγή Οι στατιστικές δοκιμασίες που μελετήσαμε μέχρι τώρα ονομάζονται παραμετρικές (paramtrc) διότι χαρακτηρίζονται από υποθέσεις σχετικές είτε για

Διαβάστε περισσότερα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια

Διαβάστε περισσότερα

Ανάλυση Διακύμανσης με ένα Παράγοντα (One Way ANOVA)

Ανάλυση Διακύμανσης με ένα Παράγοντα (One Way ANOVA) Κεφάλαιο 7 Ανάλυση Διακύμανσης με ένα Παράγοντα (One Way ANOVA) 7.1 Γενικότητες Η ANOVA περιλαμβάνει μία ομάδα στατιστικών μεθόδων κατάλληλων για την ανάλυση δεδομένων που προκύπτουν από πειραματικούς

Διαβάστε περισσότερα

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 2 Γιατί ανάλυση διακύμανσης; (1) Ας θεωρήσουμε k πληθυσμούς με μέσες τιμές μ 1, μ 2,, μ k, αντίστοιχα Πως μπορούμε να συγκρίνουμε τις μέσες τιμές k πληθυσμών

Διαβάστε περισσότερα

Ανάλυση διακύμανσης (Μέρος 3 ο ) 7/4/2017

Ανάλυση διακύμανσης (Μέρος 3 ο ) 7/4/2017 Ανάλυση διακύμανσης (Μέρος 3 ο ) 7/4/2017 2 α x b Παραγοντικό Πείραμα (1) Όταν θέλουμε να μελετήσουμε την επίδραση (στη μεταβλητή απόφασης) δύο παραγόντων, έστω Α και Β, με α στάθμες ο Α και b στάθμες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΕΝΟΤΗΤΕΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ (One-Way Analyss of Varance) Η ανάλυση

Διαβάστε περισσότερα

Ανάλυση διακύμανσης (Μέρος 2 ο ) 31/3/2017

Ανάλυση διακύμανσης (Μέρος 2 ο ) 31/3/2017 Ανάλυση διακύμανσης (Μέρος 2 ο ) 31/3/2017 2 Σχέδιο τυχαιοποιημένων πλήρων ομάδων (1) Αποτελεί ευθεία γενίκευση του σχεδίου που γνωρίσαμε όταν μιλήσαμε για τη σύγκριση κατά ζεύγη δύο μέσων μ 1 και μ 2

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ (Analyss of Varance for two factor Experments) (Two-Way Analyss of Varance) Ο πειραματικός σχεδιασμός για τον οποίο θα μιλήσουμε είναι μια επέκταση της μεθοδολογίας

Διαβάστε περισσότερα

Κεφάλαιο 13. Εισαγωγή στην. Η Ανάλυση ιακύµανσης

Κεφάλαιο 13. Εισαγωγή στην. Η Ανάλυση ιακύµανσης Κεφάλαιο 13 Εισαγωγή στην Ανάλυση ιακύµανσης 1 Η Ανάλυση ιακύµανσης Από τα πιο συχνά χρησιµοποιούµενα στατιστικά κριτήρια στην κοινωνική έρευνα Γιατί; 1. Ενώ αναφέρεται σε διαφορές µέσων όρων, όπως και

Διαβάστε περισσότερα

Γ. Πειραματισμός Βιομετρία

Γ. Πειραματισμός Βιομετρία Γενικά Πειραματικό σχέδιο και ANOVA Η βασική διαφορά μεταξύ των πειραματικών σχεδίων είναι ο τρόπος με τον οποίο ταξινομούνται ή κατατάσσονται οι πειραματικές μονάδες (πειραματικά τεμάχια) Σε όλα τα σχέδια

Διαβάστε περισσότερα

9. Παλινδρόμηση και Συσχέτιση

9. Παλινδρόμηση και Συσχέτιση 9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 5: Ανάλυση της Διακύμανσης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 5: Ανάλυση της Διακύμανσης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 5: Ανάλυση της Διακύμανσης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Είδη μεταβλητών Ποσοτικά δεδομένα (π.χ. ηλικία, ύψος, αιμοσφαιρίνη) Ποιοτικά δεδομένα (π.χ. άνδρας/γυναίκα, ναι/όχι) Διατεταγμένα (π.χ. καλό/μέτριο/κακό) 2 Περιγραφή ποσοτικών

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης 1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2013 στη Στατιστική

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2013 στη Στατιστική Εργαστήριο Μαθηματικών & Στατιστικής ΣΕΙΡΑ Α Γραπτή Εξέταση Περιόδου Φεβρουαρίου 013 στη Στατιστική για τα Τμήματα Ε.Τ.Τ., Γ.Β., Α.Ο.Α. και Ε.Ζ.Π.&Υ. 08/0/013 1. [0] Η ποσότητα, έστω Χ, καλίου που περιέχεται

Διαβάστε περισσότερα

Για το δείγμα από την παραγωγή της εταιρείας τροφίμων δίνεται επίσης ότι, = 1.3 και για το δείγμα από το συνεταιρισμό ότι, x

Για το δείγμα από την παραγωγή της εταιρείας τροφίμων δίνεται επίσης ότι, = 1.3 και για το δείγμα από το συνεταιρισμό ότι, x Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική // (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [] Επιλέξαμε φακελάκια (της μισής ουγκιάς) που περιέχουν σταφίδες από την παραγωγή μιας εταιρείας

Διαβάστε περισσότερα

Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων

Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων 1 Μονοπαραγοντική Ανάλυση Διακύμανσης Παραμετρικό στατιστικό κριτήριο για τη μελέτη της επίδρασης μιας ανεξάρτητης μεταβλητής στην εξαρτημένη Λογική

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος

Διαβάστε περισσότερα

7. Ανάλυση Διασποράς-ANOVA

7. Ανάλυση Διασποράς-ANOVA 7. Ανάλυση Διασποράς-ANOVA Παράδειγμα Μετρήσεις της συγκέντρωσης του strodum (mg/ml) σε πέντε υδάτινες περιοχές (Α,Β,C,D,Ε). Α Β C D Ε 8, 39,6 46,3 4,0 56,3 33, 40,8 4, 44, 54, 36,4 37,9 43,5 46,4 59,4

Διαβάστε περισσότερα

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α. Δ.Π.Θ.

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α. Δ.Π.Θ. Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ περισσότερων από δύο ανεξάρτητων δειγμάτων, που διαχωρίζονται βάσει ενός ανεξάρτητου παράγοντα (Ανάλυση διακύμανσης για ανεξάρτητα δείγματα ως προς

Διαβάστε περισσότερα

Γ. Πειραματισμός - Βιομετρία

Γ. Πειραματισμός - Βιομετρία Γ. Πειραματισμός - Βιομετρία Πληθυσμοί και δείγματα Πληθυσμός Περιλαμβάνει όλες τις πιθανές τιμές μιας μεταβλητής, δηλαδή αναφέρεται σε μια παρατήρηση σε όλα τα άτομα του πληθυσμού Ο πληθυσμός προσδιορίζεται

Διαβάστε περισσότερα

8. Ανάλυση Διασποράς ως προς. δύο παράγοντες

8. Ανάλυση Διασποράς ως προς. δύο παράγοντες 8. Ανάλυση Διασποράς ως προς δύο παράγοντες Ανάλυση Διασποράς ως προς δύο παράγοντες Παραγοντική Ανάλυση διασποράς-factorial Analsis of Variance Α, Β δύο παράγοντες κ: στάθμες (επίπεδα) του παράγοντα Α

Διαβάστε περισσότερα

Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40]

Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40] Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική 8// (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [4] Τα τελευταία χρόνια παρατηρείται συνεχώς αυξανόμενο ενδιαφέρον για τη μελέτη της συγκέντρωσης

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική

Εφαρμοσμένη Στατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Ανάλυση διακύμανσης Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 4A: Έλεγχοι Υποθέσεων και Διαστήματα Εμπιστοσύνης Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ

Διαβάστε περισσότερα

Κεφάλαιο 15 Έλεγχοι χ-τετράγωνο

Κεφάλαιο 15 Έλεγχοι χ-τετράγωνο Κεφάλαιο 15 Έλεγχοι χ-τετράγωνο Copyright 2009 Cengage Learning 15.1 Ένα Κοινό Θέμα Τι πρέπει να γίνει; Τύπος Δεδομένων; Πλήθος Κατηγοριών; Στατιστική Μέθοδος; Περιγραφή ενός πληθυσμού Ονομαστικά Δύο ή

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Πέτρος Ρούσσος, Τμήμα Ψυχολογίας, ΕΚΠΑ Η λογική της διαδικασίας Ο σάκος περιέχει έναν μεγάλο αλλά άγνωστο αριθμό (αρκετές χιλιάδες) λευκών και μαύρων βόλων: 1 Το

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2011 για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 25/02/2011

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2011 για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 25/02/2011 Εργαστήριο Μαθηματικών & Στατιστικής Γραπτή Εξέταση Περιόδου Φεβρουαρίου για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 5//. [] Η ποσότητα, έστω Χ, ενός συντηρητικού που περιέχεται σε φιάλες αναψυκτικού

Διαβάστε περισσότερα

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης

Διαβάστε περισσότερα

Κεφάλαιο 14. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης

Κεφάλαιο 14. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Κεφάλαιο 14 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης 1 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Παραµετρικό στατιστικό κριτήριο για τη µελέτη της επίδρασης µιας ανεξάρτητης µεταβλητής στην εξαρτηµένη Λογική παρόµοια

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΤΩΝ ΑΠΟΦΑΣΕΩΝ» ΑΝΑΛΥΣΗ ΔΙΑΣΠΟΡΑΣ & ΕΦΑΡΜΟΓΕΣ ΑΥΤΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΤΩΝ ΑΠΟΦΑΣΕΩΝ» ΑΝΑΛΥΣΗ ΔΙΑΣΠΟΡΑΣ & ΕΦΑΡΜΟΓΕΣ ΑΥΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΤΩΝ ΑΠΟΦΑΣΕΩΝ» ΑΝΑΛΥΣΗ ΔΙΑΣΠΟΡΑΣ & ΕΦΑΡΜΟΓΕΣ ΑΥΤΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΒΑΣΙΛΙΚΗΣ ΡΗΓΑ ΕΠΙΒΛΕΠΩΝ:Φ. ΑΛΕΒΙΖΟΣ

Διαβάστε περισσότερα

Μάθημα: Στατιστική ανάλυση δεδομένων με χρήση Η/Υ (του 8 ου Εξαμήνου Σπουδών του Τμήματος Βιοτεχνολογίας) Διδάσκων: Γιώργος Κ.

Μάθημα: Στατιστική ανάλυση δεδομένων με χρήση Η/Υ (του 8 ου Εξαμήνου Σπουδών του Τμήματος Βιοτεχνολογίας) Διδάσκων: Γιώργος Κ. Μάθημα: Στατιστική ανάλυση δεδομένων με χρήση Η/Υ (του 8 ου Εξαμήνου Σπουδών του Τμήματος Βιοτεχνολογίας) Διδάσκων: Γιώργος Κ. Παπαδόπουλος 3. Ανάλυση Διακύμανσης Σύντομη ανασκόπηση βασικών εννοιών, προτάσεων

Διαβάστε περισσότερα

T-tests One Way Anova

T-tests One Way Anova William S. Gosset Student s t Sir Ronald Fisher T-tests One Way Anova ΣΤΑΤΙΣΤΙΚΗ Νίκος Ζουρμπάνος Ρούσσος, Π.Λ., & Τσαούσης, Γ. (2002). Στατιστική εφαρμοσμένη στις κοινωνικές επιστήμες. Αθήνα: Ελληνικά

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Copyright 2009 Cengage Learning 16.1 Ανάλυση Παλινδρόμησης Σκοπός του προβλήματος είναι η ανάλυση της σχέσης μεταξύ συνεχών μεταβλητών. Η ανάλυση παλινδρόμησης

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 12. Εκτίμηση των παραμέτρων ενός πληθυσμού

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 12. Εκτίμηση των παραμέτρων ενός πληθυσμού ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Στατιστική: Δειγματοληψία X συλλογή δεδομένων. Περιγραφική στατιστική V πίνακες, γραφήματα, συνοπτικά μέτρα

Στατιστική: Δειγματοληψία X συλλογή δεδομένων. Περιγραφική στατιστική V πίνακες, γραφήματα, συνοπτικά μέτρα ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ Α Δημήτρης Κουγιουμτζής e-mail: dkugiu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://users.auth.gr/~dkugiu/teach/civiltrasport/ide.html Στατιστική: Δειγματοληψία

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΔΙΑΣΤΗΜΑΤΩΝ ΕΜΠΙΣΤΟΣΥΝΗΣ. Άσκηση 1. Βρείτε δ/μα εμπιστοσύνης για τη μέση τιμή μ κανονικού πληθυσμού όταν n=20,

ΑΣΚΗΣΕΙΣ ΔΙΑΣΤΗΜΑΤΩΝ ΕΜΠΙΣΤΟΣΥΝΗΣ. Άσκηση 1. Βρείτε δ/μα εμπιστοσύνης για τη μέση τιμή μ κανονικού πληθυσμού όταν n=20, ΜΕΜ64: Εφαρμοσμένη Στατιστική 1 ΑΣΚΗΣΕΙΣ ΔΙΑΣΤΗΜΑΤΩΝ ΕΜΠΙΣΤΟΣΥΝΗΣ Άσκηση 1. Βρείτε δ/μα εμπιστοσύνης για τη μέση τιμή μ κανονικού πληθυσμού όταν n=0, X = 7.5, σ = 16, α = 5%. Πως αλλάζει το διάστημα αν

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ. Δημήτρης Ιωαννίδης. Τμήμα Οικονομικών Επιστημών.

ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ. Δημήτρης Ιωαννίδης. Τμήμα Οικονομικών Επιστημών. Μεθοδολογία Έρευνας: Μάθημα 3 ο ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ Δημήτρης Ιωαννίδης Τμήμα Οικονομικών Επιστημών Email: dimioan@uom.gr Εμπιστευτικό Σελίδα 1 Μάθημα 5 ο Ελέγχοντας την Θεωρία ΙΙ: Στατιστικοί Έλεγχοι για

Διαβάστε περισσότερα

Στατιστική για Οικονομολόγους ΙΙ ΛΥΜΕΝΑ ΘΕΜΑΤΑ παλαιοτέρων ετών από «ανώνυμο φοιτητή» (Στις ΛΥΣΕΙΣ ενδεχομένως να υπάρχουν λάθη. )

Στατιστική για Οικονομολόγους ΙΙ ΛΥΜΕΝΑ ΘΕΜΑΤΑ παλαιοτέρων ετών από «ανώνυμο φοιτητή» (Στις ΛΥΣΕΙΣ ενδεχομένως να υπάρχουν λάθη. ) Στατιστική για Οικονομολόγους ΙΙ ΛΥΜΕΝΑ ΘΕΜΑΤΑ παλαιοτέρων ετών από «ανώνυμο φοιτητή» (Στις ΛΥΣΕΙΣ ενδεχομένως να υπάρχουν λάθη. ) Πίνακας Περιεχομένων Εργασία η... Θέμα ο :... Θέμα ο :... 4 Θέμα 3 ο :...

Διαβάστε περισσότερα

Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1)

Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1) Σημειώσεις Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου Αθήνα -3-7 Εκτίμηση των Παραμέτρων β & β Απλό γραμμικό υπόδειγμα: Y X () Η αναμενόμενη τιμή του Υ, δηλαδή, μέση τιμή του Υ, δίνεται παρακάτω: EY ( ) X EY

Διαβάστε περισσότερα

8. Ανάλυση Διασποράς ως προς. δύο παράγοντες

8. Ανάλυση Διασποράς ως προς. δύο παράγοντες 8. Ανάλυση Διασποράς ως προς δύο παράγοντες Ανάλυση Διασποράς ως προς δύο παράγοντες Α, Β δύο παράγοντες κ: στάθμες (επίπεδα) του παράγοντα Α λ: στάθμες (επίπεδα) του παράγοντα Β κ λ : πειραματικές συνθήκες

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΔΙΑΛΕΞΕΙΣ 09-10 ΣΗΜΠΕΡΑΣΜΑΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Έλεγχοι υποθέσεων Βόλος, 2016-2017

Διαβάστε περισσότερα

Έλεγχος υποθέσεων ΙI ANOVA

Έλεγχος υποθέσεων ΙI ANOVA Έλεγχος υποθέσεων ΙI ANOVA Μοντέλα στην Επιστήμη Τροφίμων 532Ε Τομέας Επιστήμης & Τεχνολογίας Τροφίμων Έλεγχος υποθέσεων Συνεχή δεδομένα z-test Student s test (t-test) Ανάλυση παραλλακτικότητας ή ανάλυση

Διαβάστε περισσότερα

Χ. Εμμανουηλίδης, 1

Χ. Εμμανουηλίδης, 1 Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα

Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα Αρχείο δεδομένων school.sav Στον πίνακα Descriptives, μας δίνονται για την Επίδοση ως προς τις πέντε διαφορετικές μεθόδους διδασκαλίας, το

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 5 Έστω για την σύγκριση δειγμάτων συλλέγουμε παρατηρήσεις Υ =,,, από

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΕΝΟΤΗΤΕΣ 1. ΓΕΝΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ 3. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΗΣ ΠΡΟΟΔΕΥΤΙΚΗΣ ΠΡΟΣΘΗΚΗΣ

Διαβάστε περισσότερα

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Η μηδενική υπόθεση είναι ένας ισχυρισμός σχετικά με την τιμή μιας πληθυσμιακής παραμέτρου. Είναι

Διαβάστε περισσότερα

Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Διαστήματα εμπιστοσύνης Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Διαστήματα εμπιστοσύνης Το διάστημα εμπιστοσύνης είναι ένα διάστημα αριθμών

Διαβάστε περισσότερα

α) t-test µε ίσες διακυµάνσεις β) ανάλυση διακύµανσης µε έναν παράγοντα Έλεγχος t δύο δειγμάτων με υποτιθέμενες ίσες διακυμάνσεις

α) t-test µε ίσες διακυµάνσεις β) ανάλυση διακύµανσης µε έναν παράγοντα Έλεγχος t δύο δειγμάτων με υποτιθέμενες ίσες διακυμάνσεις ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΙΕΘΝΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΣΧΕΣΕΩΝ ΚΑΙ ΑΝΑΠΤΥΞΗΣ ΜΑΘΗΜΑ: ΣΤΑΤΙΣΤΙΚΗ IΙ ΕΙΣΗΓΗΤΡΙΑ: ΣΑΒΒΑΣ ΠΑΠΑ ΟΠΟΥΛΟΣ ΠΑΛΑΙΑ ΘΕΜΑΤΑ ********************************************************************

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία 4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε

Διαβάστε περισσότερα

ΜΕΤΡΑ ΚΕΝΤΡΙΚΗΣ ΤΑΣΗΣ

ΜΕΤΡΑ ΚΕΝΤΡΙΚΗΣ ΤΑΣΗΣ Μέτρα Περιγραφικής Στατιστικής Πληθυσμιακοί παράμετροι: τα αριθμητικά μεγέθη που εκφράζουν τις στατιστικές ιδιότητες ενός πληθυσμού (που προσδιορίζουν / περιγράφουν τη φυσιογνωμία και τη δομή του) Στατιστικά

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Χημική Τεχνολογία Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών

Διαβάστε περισσότερα

5. Έλεγχοι Υποθέσεων

5. Έλεγχοι Υποθέσεων 5. Έλεγχοι Υποθέσεων Υποθέσεις Η μηδενική υπόθεση Η (ή ΗΑ) εναλλακτική υπόθεση Δεχόμαστε Η Απορρίπτουμε Η Η σωστή Σωστή απόφαση -α Σφάλμα τύπου Ι α Η λάθος Σφάλμα τύπου ΙΙ β Σωστή απόφαση -β ΒΙΟ39-Έλεγχος

Διαβάστε περισσότερα

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Περιεχόμενα 1. Συσχέτιση μεταξύ δύο ποσοτικών

Διαβάστε περισσότερα

και τυπική απόκλιση σ = 40mg ανά μπανάνα. α) Ποια είναι η πιθανότητα μια μπανάνα να περιέχει i)

και τυπική απόκλιση σ = 40mg ανά μπανάνα. α) Ποια είναι η πιθανότητα μια μπανάνα να περιέχει i) Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ Γραπτή Εξέταση Περιόδου Ιανουαρίου 8 στο Μάθημα Στατιστική 7..8. [] Ο ανθρώπινος οργανισμός χρειάζεται καθημερινά από έως 6 mg (mllgrams) καλίου. Η ποσότητα καλίου που περιέχεται στα τρόφιμα

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Οι στατιστικοί έλεγχοι x τετράγωνο, t- test, ANOVA & Correlation. Σταμάτης Πουλακιδάκος

Οι στατιστικοί έλεγχοι x τετράγωνο, t- test, ANOVA & Correlation. Σταμάτης Πουλακιδάκος Οι στατιστικοί έλεγχοι x τετράγωνο, t- test, ANOVA & Correlation Σταμάτης Πουλακιδάκος Μερικά εισαγωγικά λόγια Οι έλεγχοι των ερευνητικών υποθέσεων πραγματοποιούνται με διάφορους στατιστικούς ελέγχους,

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων ΙΙ

Στατιστική Επιχειρήσεων ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #4: Έλεγχος Υποθέσεων Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 05 Έλεγχος διακυμάνσεων Μας ενδιαφέρει να εξετάσουμε 5 δίαιτες που δίνονται

Διαβάστε περισσότερα

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6.1 Το Πρόβλημα του Ελέγχου Υποθέσεων Ενός υποθέσουμε ότι μία φαρμακευτική εταιρεία πειραματίζεται πάνω σε ένα νέο φάρμακο για κάποια ασθένεια έχοντας ως στόχο, τα πρώτα θετικά

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Έλεγχοι Υποθέσεων

Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Έλεγχοι Υποθέσεων Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Έλεγχοι Υποθέσεων Ένα Ερευνητικό Παράδειγμα Σκοπός της έρευνας ήταν να διαπιστωθεί εάν ο τρόπος αντίδρασης μιας γυναίκας απέναντι σε φαινόμενα

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2 013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ

Διαβάστε περισσότερα

Κλωνάρης Στάθης. ΠΜΣ: Οργάνωση & Διοίκηση Επιχειρήσεων Τροφίμων και Γεωργίας

Κλωνάρης Στάθης. ΠΜΣ: Οργάνωση & Διοίκηση Επιχειρήσεων Τροφίμων και Γεωργίας Κλωνάρης Στάθης ΠΜΣ: Οργάνωση & Διοίκηση Επιχειρήσεων Τροφίμων και Γεωργίας Μέχρι τώρα ασχοληθήκαμε με τις τεχνικές εκτίμησης παραμέτρων για ένα πληθυσμό όπως: τον Μέσο µ και το ποσοστό p Θα συνεχίσουμε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 5-6 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές

Διαβάστε περισσότερα

Κεφάλαιο 11 Εισαγωγή στον Έλεγχο Υποθέσεων

Κεφάλαιο 11 Εισαγωγή στον Έλεγχο Υποθέσεων Κεφάλαιο 11 Εισαγωγή στον Έλεγχο Υποθέσεων Επαγωγική Στατιστική Ο έλεγχος υποθέσεων είναι η δεύτερη μορφή της επαγωγικής στατιστικής. Έχει επίσης μεγαλύτερη δυνατότητα εφαρμογής. Για να κατανοήσουμε την

Διαβάστε περισσότερα

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Εκεί που είμαστε Κεφάλαια 7 και 8: Οι διωνυμικές,κανονικές, εκθετικές κατανομές και κατανομές Poisson μας επιτρέπουν να κάνουμε διατυπώσεις πιθανοτήτων γύρω από το Χ

Διαβάστε περισσότερα

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό

Διαβάστε περισσότερα

συγκέντρωση της ουσίας στον παραπόταμο είναι αυξημένη σε σχέση με τον ίδιο τον ποταμό;

συγκέντρωση της ουσίας στον παραπόταμο είναι αυξημένη σε σχέση με τον ίδιο τον ποταμό; Γραπτή Εξέταση Περιόδου Ιουνίου 008 στο Μάθημα Στατιστική /07/08. Η πιθανότητα να υπάρχει στο υπέδαφος μιας συγκεκριμένης περιοχής εκμεταλλεύσιμο κοίτασμα πετρελαίου είναι 50%. Μια εταιρεία, που πρόκειται

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ

ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ Στατιστικά περιγραφικά μέτρα Τα στατιστικά περιγραφικά μέτρα είναι αντιπροσωπευτικές τιμές οι οποίες περιγράφουν με τρόπο ποσοτικό την κατανομή μιας μεταβλητής. Λειτουργούν

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : , Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η :1-0-017, 3-0-017 Διδάσκουσα: Κοντογιάννη Αριστούλα Σκοπός του μαθήματος Η παρουσίαση

Διαβάστε περισσότερα

Γ. Πειραματισμός Βιομετρία

Γ. Πειραματισμός Βιομετρία Γενικά Συσχέτιση και Συμμεταβολή Όταν σε ένα πείραμα παραλλάσουν ταυτόχρονα δύο μεταβλητές, τότε ενδιαφέρει να διερευνηθεί εάν και πως οι αλλαγές στη μία μεταβλητή σχετίζονται με τις αλλαγές στην άλλη.

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 3η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 3η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Διοίκησης Επιχειρήσεων Γρεβενά Μάθημα: Οικονομετρία Διάλεξη 3η: Απλή Γραμμική Παλινδρόμηση Διδάσκουσα: Κοντογιάννη Αριστούλα Ιδιότητες εκτιμώμενης ευθείας παλινδρόμησης με τη μέθοδο των ελαχίστων

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις 26/5/2017

Επαναληπτικές Ασκήσεις 26/5/2017 Επαναληπτικές Ασκήσεις 2 Άσκηση 1 η (1) Ένας ερευνητής μέτρησε τη συγκέντρωση γλυκόζης (σε mg/dl) στο αριστερό και το δεξί μάτι 35 τυχαία επιλεγμένων υγιών σκύλων συγκεκριμένης ράτσας Έστω ότι με Χ και

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ

ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ Παράρτημα Πανεπιστημίου: Δεληγιώργη 6 Α (έναντι Πανεπιστημίου Πειραιώς) Τηλ.: 4..97,,, Fax : 4..634 URL : www.vtal.gr emal: f@vtal.gr Παράρτημα Πανεπιστημίου: Δεληγιώργη 6 Α (έναντι

Διαβάστε περισσότερα

Εξαρτημένα δείγματα (εξαρτημένες μετρήσεις)

Εξαρτημένα δείγματα (εξαρτημένες μετρήσεις) Ν6_(6)_Στατιστική στη Φυσική Αγωγή 06_0_Έλεγχος_Υποθέσεων0 Ανεξάρτητα δείγματα Εξαρτημένα δείγματα Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Ανεξάρτητα δείγματα (ανεξάρτητες μετρήσεις)

Διαβάστε περισσότερα

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

Περιπτώσεις που η στατιστική συνάρτηση ελέγχου είναι η Ζ: 1. Η σ είναι γνωστή και ο πληθυσμός κανονικός.

Περιπτώσεις που η στατιστική συνάρτηση ελέγχου είναι η Ζ: 1. Η σ είναι γνωστή και ο πληθυσμός κανονικός. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου 1, 263 34 ΠΑΤΡΑ Τηλ.: 2610 369051, Φαξ: 2610 396184, email: mitro@teipat.gr Καθ η γη

Διαβάστε περισσότερα

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ. Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δειγμάτων, που διαχωρίζονται βάσει ενός επαναλαμβανόμενου και ενός ανεξάρτητου παράγοντα (Ανάλυση διακύμανσης για εξαρτημένα δείγματα ως προς δύο παράγοντες,

Διαβάστε περισσότερα

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή: Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 6 Σχέσεις μεταξύ μεταβλητών

Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 6 Σχέσεις μεταξύ μεταβλητών (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη 6 Σχέσεις μεταξύ μεταβλητών ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 3

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 3 (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com ιαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ ιάλεξη 3 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Ρέθυμνο,

Διαβάστε περισσότερα

Μέτρα θέσης και διασποράς

Μέτρα θέσης και διασποράς Μέτρα θέσης και διασποράς Η επικρατούσα τιμή ως μέτρο κεντρικής τάσης Εύκολο στον υπολογισμό Επικρατούσα τιμή Η πιο συχνή ή η πιο συχνά εμφανιζόμενη τιμή σε ένα σύνολο τιμών 11, 3, 8, 2, 1, 5, 3, 7 Επικρατούσα

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές

Διαβάστε περισσότερα