Parallel and Distributed IR Παράλληλη και Κατανεμημένη ΑΠ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Parallel and Distributed IR Παράλληλη και Κατανεμημένη ΑΠ"

Transcript

1 Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2008 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Parallel and Distributed IR Παράλληλη και Κατανεμημένη ΑΠ Γιάννης Τζίτζικας CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 1 Διάρθρωση Περιεχομένου Μέρος A: Παράλληλη Ανάκτηση Πληροφοριών (Parallel IR) Μέρος B: Κατανεμημένη Ανάκτηση Πληροφοριών (Distributed IR) Επιλογή Πηγής Eνοποίηση Αποτελεσμάτων Μέρος Γ: Ανάκτηση Πληροφοριών σε Ομότιμα Συστήματα (Peer to Peer Systems) CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 2 Ανάκτηση Πληροφορίας

2 Μέρος B Κατανεμημένη Ανάκτηση Πληροφοριών (Distributed Information Retrieval) Κατανεμημένη Ανάκτηση Πληροφοριών: Διάρθρωση Κίνητρο Σχέση μεταξύ Παράλληλης και Κατανεμημένης Αν. Πληροφοριών Σχεδιαστικά Ζητήματα Διαμέριση Συλλογών και Εγγράφων Επιλογή Πηγής Ενοποίηση Αποτελεσμάτων CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 4 Ανάκτηση Πληροφορίας

3 Κατανεμημένη ΑΠ: Κίνητρο Το κίνητρο για Παράλληλη ΑΠ ήταν η βελτίωση της απόδοσης Για την Κατανεμημένη ΑΠ δεν είναι μόνο αυτό. Είναι και η ανάγκη ενοποιημένης πρόσβασης στα έγγραφα πολλών συστημάτων ανάκτησης πληροφοριών CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 5 Κατανεμημένη Ανάκτηση Πληροφοριών TCP/IP IRS1 IRS2 IRS3 IRS4 IRS5 UofCrete UofAthens UofPatras CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 6 Ανάκτηση Πληροφορίας

4 Κατανεμημένη Ανάκτηση Πληροφοριών query IRS1 IRS2 IRS3 IRS4 IRS5 UofCrete UofAthens UofPatras CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 7 Κατανεμημένη Ανάκτηση Πληροφοριών answer ans1 ans2 ans3 ans4 ans5 IRS1 IRS2 IRS3 IRS4 IRS5 UofCrete UofAthens UofPatras CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 8 Ανάκτηση Πληροφορίας

5 Ποια η Σχέση μεταξύ Παράλληλης και Κατανεμημένης Ανάκτησης Πληροφοριών; Η κατανεμημένη μοιάζει με την παράλληλη αρχιτεκτονική MIMD Διαφορές με την MIMD το κανάλι επικοινωνίας μεταξύ των επεξεργαστών είναι πολύ πιο αργό δεν έχουμε τους ίδιους επεξεργαστές (όπως σε μια παράλληλη μηχανή) στην κατανεμημένη ο μεσίτης (broker) συχνά επιλέγει να χρησιμοποιήσει μόνο ένα υποσύνολο των υποκείμενων συστημάτων BUS IRS1 IRS2 IRS3 IRS4 IRS5 UofCrete UofAthens UofPatras CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 9 Σχέση μεταξύ Παράλληλης και Κατανεμημένης Αν. Πλ. Ποια προσέγγιση του Partitioned Parallel Processing κατάλληλη για την Κατανεμημένη Ανάκτηση; είναι document partitioning: ενδείκνυται για την κατανεμημένη ανάκτηση term partitioning: δεν είναι πολύ καλή διότι απαιτεί περισσότερη επικοινωνία (για αυτό σπάνια υιοθετείται από ένα κατανεμημένο σύστημα) CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 10 Ανάκτηση Πληροφορίας

6 Κατανεμημένη Ανάκτηση: Σχεδιαστικά ζητήματα Server: receives requests, initiates a thread for each request, combines the intermediate results into the final answer Search Protocol for transmitting requests and results E.g. Z39.50, STARTS TCP/IP IRS1 IRS2 IRS3 IRS4 IRS5 UofCrete UofAthens UofPatras distribute documents across servers selection of the servers to receive a particular request combine the results of multiple servers CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 11 Διαμερισμός Συλλογών (Collection Partitioning) Δεν τίθεται τέτοιο ζήτημα αν τα υποκείμενα συστήματα είναι ετερογενή Σενάρια για την περίπτωση που υπάρχει κεντρικός έλεγχος: Semantic based partition of collections to servers Search Servers focusing on a particular subject area E.g. Maths, Physics, etc Semantic based partition of documents to servers π.χ. με χρήση ενός αλγορίθμου ομαδοποίησης (clustering) Replications of collections to all servers για βελτίωση throughput (μοιάζει με το multitasking) όταν οι συλλογές δεν είναι μεγάλες Τυχαία διανομή εγγράφων στους servers για βελτίωση της απόδοσης στην περίπτωση που η συλλογή είναι πολύ μεγάλη CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 12 Ανάκτηση Πληροφορίας

7 Επιλογή Πηγής (Source Selection) Q=«Lagrange multipliers» Source Selection: Επιλογή των συλλογών που είναι πιθανόν να έχουν συναφή έγγραφα με την τρέχουσα επερώτηση IRS1 IRS2 IRS3 IRS4 IRS5 MATHS MATHS PHILOSOPHY CHEMISTRY MATHS CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 13 Για ποιο λόγο να κάνουμε Επιλογή Πηγής; Η αναζήτηση σε κάθε συλλογή μπορεί: να είναι ακριβή σε χρόνο (αφού μπορεί να έχουμε εκατοντάδες συλλογές) να είναι ακριβή σε χρήμα (η αναζήτηση μπορεί να έχει χρηματικό κόστος) να καθορίσει την αποτελεσματικότητα (effectiveness) της ανάκτησης CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 14 Ανάκτηση Πληροφορίας

8 Επιλογή Πηγής: Επιλογή Όλων Κατάλληλη κυρίως για διαμερισμό μιας μεγάλης συλλογής πάνω από ένα τοπικό δίκτυο Εύκολη ενοποίηση αποτελεσμάτων για το Boolean model answer(q) = ans1(q) ansk(q) H ενοποίηση αποτελεσμάτων για τα στατιστικά μοντέλα είναι πιο δύσκολη (το ζήτημα αυτό θα μελετηθεί παρακάτω) CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 15 Επιλογή Πηγής: Χειρονακτική Ομαδοποίηση και Επιλογή Θεματική οργάνωση συλλογών (χειρονακτικώς) πχ μαθηματικά, φυσική, ειδήσεις, κλπ προβλήματα χρονοβόρα διαδικασία, ευάλωτη σε ασυνέπειες/παραλείψεις, δεν θα δουλέψει καλά για μη συνηθισμένες επερωτήσεις Ο χρήστης επιλέγει τη θεματική κατηγορία Q=«Maths:Lagrange multipliers» Maths: 1,3 Physics: 3 Philosophy: 4,5 IRS1 IRS2 IRS3 IRS4 IRS5 CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 16 Ανάκτηση Πληροφορίας

9 Επιλογή Πηγής βάσει Κανόνων (Rule based) Τα περιεχόμενα κάθε συλλογής περιγράφονται σε μια Βάση Γνώσης Ένα Σύστημα Κανόνων επιλέγει τις πηγές για κάθε εισερχόμενη επερώτηση Αδυναμίες κόστος συγγραφής κανόνων ανάγκη συντήρησης των κανόνων (αν οι συλλογές είναι δυναμικές) Q=«Lagrange multipliers» KB IRS1 IRS2 IRS3 IRS4 IRS5 CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 17 Επιλογή Πηγής: Κατανομή Συναφών Εγγράφων (Relevant Document Distribution (RDD)) Φτιάξε μια βάση με επερωτήσεις και την πιθανή κατανομή των συναφών εγγράφων σε κάθε συλλογή (με κάποιο τρόπο) q1 S1 S2 S3 S4 S5 q2 S1 S2 S3 S4 S5 KB q3 S1 S2 S3 S4 S5 IRS1 IRS2 IRS3 IRS4 IRS5 CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 18 Ανάκτηση Πληροφορίας

10 Επιλογή Πηγής: Κατανομή Συναφών Εγγράφων (Relevant Document Distribution (RDD)) Για κάθε νέα επερώτηση q που λαμβάνει το σύστημα Βρίσκουμε τις κ πιο κοντινές επερωτήσεις στη βάση (similar past queries) Από τις κατανομές τους, εκτιμούμε πόσα συναφή έγγραφα με την νέα επερώτηση έχει κάθε πηγή Αποφασίζουμεπόσαέγγραφαναζητήσουμεαπό κάθε συλλογή (αν 0 δεν στέλνουμε επερώτηση ) q1 q2 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 KB q3 S1 S2 S3 S4 S5 IRS1 IRS2 IRS3 IRS4 IRS5 CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 19 Επιλογή Πηγής: Επερώτηση Βολιδοσκόπησης (Query Probing) Στέλνουμε μια επερώτηση βολιδοσκόπησης (probing query) σε κάθε συλλογή (που μπορεί να περιλαμβάνει μερικούς από τους όρους της επερώτησης) Kάθε συλλογή απαντά με στατιστικές πληροφορίες πχ: μέγεθος συλλογής, πόσα έγγραφα έχουν τον κάθε όρο, πόσα έγγραφα έχουν όλους τους όρους της επερώτησης, κλπ Bάσει αυτών των στοιχείων επιλέγουμε την πηγή Υποθέσεις η επεξεργασία των επερωτήσεων βολιδοσκόπησης είναι πολύ φθηνότερη περιέχουν λίγους όρους, δεν χρειάζεται να υπολογίσουμε βαθμούς συνάφειας ή να διατάξουμε τα έγγραφα ως προς τη συνάφεια τους CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 20 Ανάκτηση Πληροφορίας

11 Επιλογή Πηγής με Διανύσματα Πηγών IRS1=<0.4, 0.3,, 0.8> IRS2=<0.1, 0.9,, 0.4> IRS3=<0.8, 0.5,, 0.2> IRS1 IRS2 IRS3 IRS4 IRS5 Βλέπουμε κάθε συλλογή ως ένα μεγάλο έγγραφο Φτιάχνουμε ένα διάνυσμα για κάθε συλλογή (τύπου TF IDF) tfij: συνολικές εμφανίσεις του όρου i στη συλλογή j idfi: log(n/ni), όπου Ν το πλήθος των συλλογών, και ni το πλήθος των συλλογών που έχουν τον όρο i Υπολογίζουμε το βαθμό ομοιότητας κάθε νέας επερώτησης με το διάνυσμα κάθε συλλογής (π.χ. ομοιότητα συνημίτονου) Διατάσσουμε τιςσυλλογέςκαιεπιλέγουμετιςκορυφαίες CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 21 Επιλογή Πηγής με Διανύσματα Πηγών (ΙΙ) Μια αδυναμία: Μπορεί ο βαθμός ομοιότητας με μία συλλογή να είναι μεγάλος, αλλά να μην υπάρχει κανένα έγγραφο εκεί με μεγάλο βαθμό συνάφειας Ένας τρόπος αντιμετώπισης: Για κάθε συλλογή φτιάξε Ν/Β διανύσματα, δηλαδή ένα διάνυσμα για κάθε Β έγγραφα της συλλογής Αν Β = 1 τότε ο server είναι σαν να έχει το ευρετήριο όλων των συστημάτων Αν Β = Ν τότε έχουμε ένα διάνυσμα για κάθε συλλογή CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 22 Ανάκτηση Πληροφορίας

12 Επιλογή Πηγής: GlOSS (Glossary of Servers Server) Estimate the number of potentially relevant documents in a collection C for a Boolean AND query Q as: C df t t Q dft C : number of C the number of documents in the collection C docs in C that contain t Requires that for each collection C we have an entry in a centralized index centralized index is small, easy to maintain CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 23 Επιλογή Πηγής: ggloss και hgloss ggloss Extends the GlOSS approach to the vector space model Each collection is represented by its centroid vector Standard inner product similarity measure of query to each collection Rank collections accordingly hgloss (hierarchical GlOSS) Extends the ggloss approach to sets of ggloss indexes Each ggloss index is represented by its centroid vector CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 24 Ανάκτηση Πληροφορίας

13 Επιλογή Πηγής: Σύνοψη Προσεγγίσεις για μικρό αριθμό συλλογών Επιλογή Όλων Χειρονακτική Ομαδοποίηση (και χειρονακτική επιλογή) Επιλογή βάσει Κανόνων (Rule based selection) Κατανομή Συναφών Εγγράφων (Relevant document distribution (RDD)) Βολιδοσκόπηση Επερώτησης (Query Probing) Διανύσματα Πηγών Προσεγγίσεις για μεγάλο αριθμό συλλογών Διανύσματα Πηγών GlOSS CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 25 HARVEST A distributed architecture to gatherand distribute data usedbycia, NASA, US National Academy of Sciences User Replication Manager Broker Broker Gatherers: ευρετηριάζουν >=1 Web Server περιοδικά Brokers: απαντούν επερωτήσεις βασιζόμενοι στα ευρετήρια των gatherers ή άλλων brokers (και ενημερώνουν αυξητικά τα ευρετήρια τους) Object Cache Broker Broker Gatherer Gatherer Gatherer Gatherer Web site Web site Web site Web site Web site Web site CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 26 Ανάκτηση Πληροφορίας

14 Ενοποίηση Αποτελεσμάτων ( Results Merging, Fusion, Rank Aggregation,...) CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 27 Ενοποίηση Αποτελεσμάτων Διάρθρωση Κατηγορίες Τεχνικών Ενοποίησης: Απομονωμένες και Ολοκληρωμένες Τεχνικές Ενοποίησης Round Robin interleaving Score based Weighted Score based Global statistics Μετα Μηχανές Αναζήτησης Ενοποίηση Διατάξεων (Rank Aggregation) Επιθυμητές Ιδιότητες Ενοποίηση κατά Borda Ενοποίηση κατά Condorcet Το Θεώρημα του Ανέφικτου του Κ. Arrow (Arrow s Impossibility theorem) Ενοποίηση κατά Kemeny Αποδοτικοί αλγόριθμοι υπολογισμού των κορυφαίων κ στοιχείων της ενοποιημένης διάταξης (Top K Rank Aggregation) CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 28 Ανάκτηση Πληροφορίας

15 Ενοποίηση Αποτελεσμάτων answer =? ans1 ans2 ans3 ans4 ans5 IRS1 IRS2 IRS3 IRS4 IRS5 UofCrete UofAthens UofPatras CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 29 Περιπτώσεις Ενοποίηση Συνόλων (π.χ. απαντήσεων σε Exact Match Queries) answer(q) = ans1(q) ansk(q) Άρα η ενοποίηση αποτελεσμάτων για το Boolean model είναι εύκολη Ενοποίηση Διατάξεων (απαντήσεων Partial Match Queries) H ενοποίηση αποτελεσμάτων είναι πιο δύσκολη οι διατάξεις/σκορ δεν είναι πάντα συγκρίσιμες, αφού εξαρτώνται από τα στατιστικά τηςσυλλογήςτουκάθεσυστήματος(e.g. idf) υπάρχουν πολλοί διαφορετικοί τρόποι συνάθροισης διατάξεων Συχνά μας αρκεί η εύρεση των κορυφαίων στοιχείων της ενοποιημένης διάταξης CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 30 Ανάκτηση Πληροφορίας

16 Κατηγορίες Στρατηγικών Ενοποίησης Διατάξεων (A) Ολοκληρωμένες Τεχνικές (Integrated) Οι πηγές παρέχουν επιπρόσθετη πληροφορία που χρησιμοποιείται κατά την ενοποίηση Αδυναμίες: Στενό πεδίο εφαρμογής απαιτούν συμφωνία μεταξύ των πηγών (e.g. protocol) Συχνά λαμβάνουν υπόψη τους μέτρα όπως Precision/Recall, τα οποία δεν είναι πάντα «αντικειμενικά» ή συγκρίσιμα. (B) Απομονωμένες Μέθοδοι (Isolated) Δεν απαιτούν καμία επιπλέον πληροφορία από τις πηγές (μπορούν να εφαρμοστούν και στις μετα μηχανές αναζήτησης) Είναι ανεξάρτητες των τεχνικών ευρετηρίασης και των μοντέλων ανάκτησης των υποκείμενων συστημάτων Άρα κατάλληλες για δυναμικά περιβάλλοντα όπου υπάρχουν πολλά συστήματα των οποίων η λειτουργία εξελίσσεται συχνά και απρόβλεπτα Σχετικές τεχνικές: round robin interleaving, score based, Borda, Condorcet, download and re index the contents of the objects (web pages) CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 31 Ενοποίηση Διατάξεων: Round Robin interleaving (isolated) (δηλαδή merge sort) Παράδειγμα: ans1(q) = <d10,d2, d30, d7> ans2(q) = <d4, d12, d5, d9> ANS(q) = < {d10,d4}, {d2,d12}, {d30,d5}, {d7,d9}> Προβλήματα στην πραγματικότητα όλα τα έγγραφα του ans1(q) μπορεί να είναι καλύτερα (πιο συναφή) από το 1οστοιχείοτηςans2(q) CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 32 Ανάκτηση Πληροφορίας

17 Παράδειγμα: ans1(q) = < (d3,0.8), (d2,0.7) > ans2(q) = < (d5,0.6), (d6,0.3) > ans3(q) = < (d4,0.9) > Ενοποίηση Διατάξεων: Score based (isolated) ANS(q) = < d4, d3, d2, d5, d6> Προβλήματα τα σκορ διαφορετικών συστημάτων δεν είναι συγκρίσιμα (κανονικοποιημένα), αφού εξαρτώνται από τα στατιστικά της συλλογής του κάθε συστήματος (e.g. idf). CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 33 Ενοποίηση Διατάξεων: Weighted Score based Λαμβάνουμε υπόψη το σκορ της πηγής που υπολογίσαμε όταν κάναμε Επιλογή Πηγής (source selection) Πχ Score(IRS1) = 0.9 // υπολογίστηκε στη φάση επιλογής πηγής Score(IRS2) = 0.5 // υπολογίστηκε στη φάση επιλογής πηγής ans1(q) = <(d1, 0.7)> ans2(q) = <(d2, 0.9)> ANS(q) = < (d1, 0.63), (d2, 0.45)> // 0.63 = 0.9*0.7 Εδώ πολλαπλασιάσαμε το σκορ της πηγής με το σκορ των εγγράφων. Υπάρχουν και άλλες παραλλαγές (π.χ. [Callan94,95]) CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 34 Ανάκτηση Πληροφορίας

18 Ενοποίηση Διατάξεων: Downlοad and re index/re score (isolated) ans1 ans2 IRS1 Vector Space Model IRS4 Extended Boolean Model Εδώ ανακτούμε τα έγγραφα των απαντήσεων κάθε πηγής, τα επαναευρετηριάζουμε και επαναυπολογίζουμε το βαθμό συνάφειας τους Μειονέκτημα Χρονοβόρα διαδικασία CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 35 Ενοποίηση Διατάξεων: Global term statistics (integrated) Μπορούμε να κάνουμε συγκρίσιμα τα σκορ διαφορετικών συστημάτων αν επιβάλουμε τα ίδια στατιστικά στοιχεία σε όλα τα συστήματα (global statistics) Τα στατιστικά αυτά στοιχεία μπορούν να αποκτηθούν στη φάση της επιλογής πηγής (πχ Διανύσματα Πηγής, Probe Queries, ) Αποτίμηση Επερωτήσεων σε 2 φάσεις στην 1η συλλέγονται τα στατιστικά (o server στέλνει την επερώτηση και οι πηγές απαντούν με τα στατιστικά των όρων που περιέχονται στην επερώτηση) στην 2η οserver στέλνει σε κάθε πηγή την επερώτηση μαζί με τα καθολικά στατιστικά των όρων της κάθε πηγή αποτιμά την επερώτηση με τα καθολικά στατιστικά και επιστρέφει την απάντηση Ο server λαμβάνει έτοιμα σκορ και απλά τα ενοποιεί (merge sort) CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 36 Ανάκτηση Πληροφορίας

19 Ενοποίηση Διατάξεων: Global term statistics Παράδειγμα q= Hotels Crete idf(hotels)= log(2000/400) idf(crete)= log(2000/105) ans = score-based merging of ans1 ans2 ans1 ans2 S1 S2 S1 S2 N1 = 1000 N1Hotels = 300 N1Crete = 100 N2 = 1000 N2Hotels = 100 N2Crete = 5 S1 S2 S1 S2 CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 37 Ενοποίηση Αποτελεσμάτων Διάρθρωση Κατηγορίες Τεχνικών Ενοποίησης: Απομονωμένες και Ολοκληρωμένες Τεχνικές Ενοποίησης Round Robin interleaving Score based Weighted Score based Global statistics Μετα Μηχανές Αναζήτησης Ενοποίηση Διατάξεων (Rank Aggregation) Επιθυμητές Ιδιότητες Ενοποίηση κατά Borda Ενοποίηση κατά Condorcet Το Θεώρημα του Ανέφικτου του Κ. Arrow (Arrow s Impossibility theorem) Ενοποίηση κατά Kemeny Αποδοτικοί αλγόριθμοι υπολογισμού των κορυφαίων κ στοιχείων της ενοποιημένης διάταξης (Top K Rank Aggregation) CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 38 Ανάκτηση Πληροφορίας

20 Μέτα μηχανές Αναζήτησης Μετα Μηχανές Αναζήτησης Server: receives requests, initiates a thread for each request, combines the intermediate results into the final answer «Search Protocol»: HTTP/HTML TCP/IP IRS1 IRS2 IRS3 IRS4 IRS5 Google AltaVista Lycos Μετα Μηχανή Αναζήτησης: Μηχανή αναζήτησης που προωθεί την επερώτηση σε πολλές μηχανές αναζήτησης και ενοποιεί τα αποτελέσματα που επιστρέφουν CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 40 Ανάκτηση Πληροφορίας

21 Γιατί φτιάχνουμε μετα μηχανές αναζήτησης; Καλύτερη κάλυψη: Το σύνολο των σελίδων που είναι γνωστές (ευρετηριασμένες) σε κάθε μηχανή είναι διαφορετικό Διάταξη Πλειοψηφούσας Γνώμης (consensus ranking) Η διαθεσιμότητα πολλών μηχανών μας δίνει την δυνατότητα να ορίσουμε ένα αθροιστικό (πλειοψηφικό) μέτρο συνάφειας Ενοποίηση αποτελεσμάτων = Πρόβλημα απόφασης ομάδας (group decision problem) Μείωση spam: Δύσκολα μια spam σελίδα μπορεί να ξεγελάσει όλες τις μηχανές CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 41 Ενδεικτικές μηχανές: Μετα Μηχανές Αναζήτησης Dogpile (http://www.dogpile.com/) over Google, Yahoo!, msn, Ask Jeaves SurfWax(http://www.surfwax.com/) Metacrawler, SavvySearch, Βήματα Λειτουργίας Submit queries to host sites. Parse resulting HTML pages to extract search results. Integrate multiple rankings into a consensus ranking. Present integrated results to user. Διαφορές με την Κατανεμημένη Ανάκτηση Πληροφοριών οι υποκείμενες μηχανές δεν παρέχουν term statistics, άρα μπορούμε να χρησιμοποιήσουμε μόνο απομονωμένες (isolated) τεχνικές ενοποίησης αποτελεσμάτων οι υποκείμενες μηχανές δεν υποστηρίζουν την ίδια ερωτηματική γλώσσα CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 42 Ανάκτηση Πληροφορίας

22 Ενοποίηση Διατάξεων Ενοποίηση Διατάξεων: Rank Aggregation (or Meta Ranking) (isolated) Διατύπωση του Προβλήματος D: ένα σύνολο αντικειμένων (π.χ. εγγράφων) S1, Sk: ένα σύνολο διατάξεων του D Σκοπός: Ενοποίηση των διατάξεων S1,..Sk σε μία The metaphor: elections Objects Candidates Sources Electors Ordering by a system Elector s voting ticket Fused ordering Election list CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 44 Ανάκτηση Πληροφορίας

23 Διάρθρωση Ενοποίηση κατά Borda κατά Condorcet κατά Kemeny Επιθυμητές Ιδιότητες Τεχνικών Ενοποίησης Διατάξεων Το Θεώρημα του Ανέφικτου του Arrow Αποδοτικοί αλγόριθμοι υπολογισμού των κορυφαίων κ στοιχείων της ενοποιημένης διάταξης (Top K Rank Aggregation) CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 45 Plurality Ranking (Απλή Πλειοψηφία) O υποψήφιοςμετιςπερισσότερεςπρώτεςθέσειςείναιονικητής. Έστω 6 πηγές (S1,,S6) και 4 σελίδες a,b,c,d. Κάθε σύστημα επιστρέφει μια γραμμική διάταξη των σελίδων: S1: <a,c,d,b> S2: <a,b,c,d> S3: <b,c,a,b> S4: <b,a,d,c> S5: <a,d,c,b> S6: <c,a,b,d> Μετράμε πόσες πρώτες θέσεις κατέλαβε κάθε σελίδα a: 3 b: 2 c: 1 d: 0 Άρα η τελική κατάταξη είναι η <a,b,c,d> CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 46 Ανάκτηση Πληροφορίας

24 Plurality Ranking (Απλή Πλειοψηφία) Κάποια προβλήματα 3 συστήματα <a,c,d,b> 6 συστήματα <a,d,c,b> 3 συστήματα <b,c,d,a> 5 συστήματα <b,d, c, a> 2 συστήματα <c,b,d,a> 5 συστήματα <c,d,b,a> 2 συστήματα <d,b,c,a> 4 συστήματα <d,c,b,a> Απόσυρση του d (που ήταν τελευταίο στην ενοποιημένη διάταξη) 3 συστήματα <a,c,b> 6 συστήματα <a,c,b> 3 συστήματα <b,c,a> 5 συστήματα <b,c, a> 2 συστήματα <c,b,a> 5 συστήματα <c,b,a> 2 συστήματα <b,c,a> 4 συστήματα <c,b,a> a:9 b:8 c:7 d:6 Τελική διάταξη: <a,b,c,d> a:9 b:10 c:11 Τελική διάταξη: <c,b,a> Αντίστροφη της αρχικής! CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 47 Plurality Ranking (Απλή Πλειοψηφία) Κάποια προβλήματα 3 συστήματα <a,c,d,b> 6 συστήματα <a,d,c,b> 3 συστήματα <b,c,d,a> 5 συστήματα <b,d, c, a> 2 συστήματα <c,b,d,a> 5 συστήματα <c,d,b,a> 2 συστήματα <d,b,c,a> 4 συστήματα <d,c,b,a> a:9 b:8 c:7 d:6 Τελική διάταξη: <a,b,c,d> Απόσυρση του d Τελική διάταξη: <c,b,a> Απόσυρση του a Τελική διάταξη: <d,c,b> Απόσυρση του b Τελική διάταξη: <d,c,a> Απόσυρση του c Τελική διάταξη: <d,b,a> CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 48 Ανάκτηση Πληροφορίας

25 Ενοποίηση Διατάξεων κατά Borda [Jean Charles Borda 1770] The votes of an object o V ( o) = i= 1.. k r i ( o) Reinvented (for the context of Meta-Searching) in [Tzitzikas 2001] r ( o) : the position of the object o in the ordering of system i S i The fused ordering Μ is derived by ordering the objects in ascending order wrt to their votes Example: S1 : < o1, o2, o3 > S2 : < o1, o3, o2 > S3 : < o3, o1, o2 > V ( o1 ) = = 4 V ( o2) = = 8 V ( o3) = = 6 M : < o1, o3, o2 > If each source S returns an ordered subset i position of o j in Oi, ri ( o j ) = F + 1 i if o j Oi otherwise O of Obj. where F = max{ O1,..., Ok } Γιατί; CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 49 The mean distance of the fused ordering 0 The level of agreement of the fused ordering 0: Ενοποίηση Διατάξεων κατά Borda [Tzitzikas, 2001] Βαθμός Συμφωνίας The distance between two orderings i and j: dist( i, j) = ri ( o) rj ( o) o O dist(0, i) Dem = i = 1.. k k linear transformation C Dem LA = C C: Max possible mean distance Dem LA = C inversion transformation C > 1,e.g.C = 2 High level may drive the user to read only the very first documents since probably they are the more relevant Low level may drive the user to read more documents CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 50 Ανάκτηση Πληροφορίας

26 Ενοποίηση Διατάξεων κατά Condorcet [1785] Condorcet: the winner is a candidate that defeats every other candidate in pairwise majority rule election S1: <a,b,c> S2: <b,a,c> S2: <c,a,b> a:b 2:1// τoa νικά το b δύο φορές (και χάνει μία) a:c 2:1// τoa νικά το c δύο φορές (και χάνει μία) Αρα η τελική κατάταξη κατά Condorset είναι: <a,b,c> CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 51 Ενοποίηση Διατάξεων κατά Condorcet [1785] S1: <a,b,c> S2: <b,c,a> S3: <c,a,b> a:b 2:1 a:c 1:2 c:b 1:2 // άρα το b δεν μπορεί να είναι o νικητής // άρα το a δεν μπορεί να είναι o νικητής // άρα το c δεν μπορεί να είναι o νικητής Δεν υπάρχει πάντα Condorcet νικητής! CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 52 Ανάκτηση Πληροφορίας

27 Borda vs Condorcet S1: <a,b,c> S2: <b,a,c> S2: <c,a,b> Condorcet a:b 2:1 a:c 2:1 Condorcet ordering: <a,b,c> Borda a: = 5 b: = 6 c: = 7 Borda ordering: <a,b,c> CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 53 Borda Condorcet Borda (1770) Member of French Academy of Sciences Noted for work in hydraulics, optics, navigation instrument Purpose: Reforming the election procedure of French Academy. Condorcet (1785) Viewed Borda as an enemy Finding best ordering by hypothesis testing Switch to propose Condorcet winner Criticize plurality method CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 54 Ανάκτηση Πληροφορίας

28 Borda Condorcet S1: <a,b,c,d,e> S2: <b,c,e,d,a> S3: <e,a,b,c,d> S4: <a,b,d,e,c> S5: <b,a,d,e,c> Borda a: = 11 b: = 9 c: =19 d: = 19 e: = 17 Borda winner : b Condorcet a:b 3:2 a:c 4:1 a:d 4:1 a:e :3:2 Condorcet winner a CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 55 Prurality Borda Condorcet 49 votes 48 votes 3 votes 1st x y z 2nd y z y 3rd z x x Prurality winner: x Borda winner: y Condorcet: z> x CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 56 Ανάκτηση Πληροφορίας

29 Condorcet and Order Θεωρείστε την περίπτωση τριών υποψηφίων (a,b,c) και 13 εκλεκτόρων a b a 5 b 8 c 6 11 Έχουμε συνοψίσει τις διατάξεις που έδωσαν οι εκλέκτορες κατασκευάζοντας έναν πίνακα C, όπου το C[i,j] εκφράζει πόσες φορές το i νικά το j c 7 2 Μπορούμε να υπολογίσουμε τη στήριξη (support) κάθε πιθανής γραμμικής διάταξης αθροίζοντας τη στήριξη της κάθε συσχέτισής της. <a,b,c> has support 25 a>b:8, a>c:6, b>c:11 <b,c,a> has support 23 a<b:5, c>a:7, b>c:11 CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 57 Ενοποίηση Διατάξεων κατά Kemeny (1959) (Kemeny developed BASIC language) Απόσταση (distance) μεταξύ δυο διατάξεων = πλήθος των διαφωνιών στη διάταξη ζευγαριών Παράδειγμα 1 r1 = <a,b,c> r2 = <b, a, c> K(r1, r2) = 1 (a > r1 b, a < r2 b) Παράδειγμα 2 r1 = <a, b, c, d> r2 = <b, d, a, c> K(r1, r2) = 3 (a > r1 b, a < r2 b) (a > r1 d, a < r2 d) (c > r1 d, c < r2 d) CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 58 Ανάκτηση Πληροφορίας

30 Ενοποίηση Διατάξεων κατά Kemeny (1959) Kemeny Optimal Aggregation Η καλύτερη ενοποιημένη διάταξη είναι εκείνη που απέχει το λιγότερο από όλες τις διατάξεις Έστω n διατάξεις: r1, r2,, rn Ενοποιημένη διάταξη r = arg min K(r,ri) Η εύρεση της ενοποιημένης διάταξης είναι ακριβή (πρόβλημα NP-hard) Reconciles Borda and Condorcet CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 59 Ενοποίηση Διατάξεων: Επιθυμητές Ιδιότητες Ουδετερότητα (Neutrality) Καμία εναλλακτική δεν πρέπει να ευνοείται Pareto Optimality Αν X > Y (σε όλες τις διατάξεις) τότε X > Y (στην τελική) Μονοτονία (Monotonicity) // Ranking higher should not hurt a candidate αν o Χ προηγείται του Υ (Χ > Υ) στην τελική διάταξη, αλλαγή ενός ψηφοδελτίου YZX XΥZ, οχθα εξακολουθήσει να προηγείται Ανεξαρτησία από άσχετες εναλλακτικές (Independence from Irrelevant Alternatives) X > Y (στην τελική), αλλαγή ενός ψηφοδελτίου XZY ZXY, τo X>Y παραμένει στην τελική Συνέπεια (Consistency) Αν οι ψηφοφόροι διαιρεθούν σε δύο ομάδες και κάθε ομάδα αναδείξει τον ίδιο νικητή, τότε ο τελικός νικητής (αν λάβουμε υπόψη τις ψήφους και των 2 ομάδων) πρέπει να είναι ο ίδιος CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 60 Ανάκτηση Πληροφορίας

31 Arrow s Impossibility Theorem Kenneth J. Arrow, Social Choice and Individual Values (1951). Won Nobel Prize in 1972 No voting scheme over three or more alternatives can satisfy the following conditions Universality (no restriction on individual ordering. All orderings are achievable. Deterministic) Monotonicity Independence of irrelevant alternatives Pareto Optimality Non dictatorship (No voter in the society is a dictator in the sense that, there does not exist a single voter i in the society such that for every set of orderings in the domain and every pair of distinct social states x and y, if voter i strictly prefers x over y, x is socially selected over y.) Συμπέρασμα: δεν υπάρχει μια απολύτως ικανοποιητική συνάρτηση ενοποίησης διατάξεων CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 61 Διάρθρωση Ενοποίηση κατά Borda κατά Condorcet κατά Kemeny Επιθυμητές Ιδιότητες Τεχνικών Ενοποίησης Διατάξεων Το Θεώρημα του Ανέφικτου του Arrow Αποδοτικοί αλγόριθμοι υπολογισμού των κορυφαίων κ στοιχείων της ενοποιημένης διάταξης (Top K Rank Aggregation) CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 62 Ανάκτηση Πληροφορίας

32 Top k Rank Aggregation Έχουμε Ν αντικείμενα και τους βαθμούς τους βάσει m διαφορετικών κριτηρίων. Έχουμε έναν τρόπο να συνδυάζουμε τα m σκορ κάθε αντικειμένου σε ένα ενοποιημένο σκορ π.χ. min, avg, sum Στόχος: Βρες τα κ αντικείμενα με το υψηλότερο ενοποιημένο σκορ. Εφαρμογές: Υπολογισμός των κορυφαίων κ στοιχείων της απάντησης ενός ΣΑΠ που βασίζεται στο διανυσματικό μοντέλο (τα m κριτήρια είναι οι m όροι της επερώτησης) ενός μεσίτη (π.χ. μετα μηχανής αναζήτησης) πάνω από m Συστήματα Ανάκτησης Πληροφοριών μιας επερώτησης σε μια Βάση Πολυμέσων κριτήρια (και συνάμα χαρακτηριστικά/features): χρώμα, μορφή, υφή, CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 63 Άλλο ένα παράδειγμα εφαρμογής Ενοποίηση απαντήσεων σε Μεσολαβητές (middleware) πάνω από πηγές που αποθηκεύουν δομημένες πληροφορίες έστω μια υπηρεσία εύρεσης εστιατορίων βάσει τριών κριτηρίων: απόσταση από ένα σημείο κατάταξη εστιατορίου τιμή γεύματος, και άλλα όπου ο χρήστης μπορεί να ορίσει τον επιθυμητό τρόπο υπολογισμού του ενοποιημένου σκορ ενός εστιατορίου π.χ. Σκορ(εστΧ) = Stars(εστΧ)* *DistanceFromHome(εστΧ) η υπηρεσία αυτή υλοποιείται με χρήση τριών απομακρυσμένων υπηρεσιών (α) getrestaurantsbystars επιστρέφει όλα τα εστιατόρια σε φθίνουσα σειρά ως προς τα αστέρια που έχουν (κάθε εστιατόριο συνοδεύεται με ένα σκορ) (β) getrestaurantsbydistance(x,y) επιστρέφει όλα τα εστιατόρια σε φθίνουσα σειρά ως προς την απόσταση τους από ένα συγκεκριμένο σημείο με συντεταγμένες (x,y) // κάθε εστιατόριο συνοδεύεται από την απόσταση του από το (x,y) Πως μπορώ να ελαχιστοποιήσω το πλήθος των στοιχείων που πρέπει να διαβάσω από την απάντηση της κάθε υπηρεσίας, προκειμένου να βρω τα κορυφαία 5 εστιατόρια (βάσει σκορ όπως υπολογίζεται από της συνάρτηση βαθμολόγησης που έδωσε ο χρήστης); CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 64 Ανάκτηση Πληροφορίας

33 Εύρεση των κ κορυφαίων Απλοϊκός Αλγόριθμος 1/ Ανέκτησε ολόκληρες τις m λίστες 2/ Υπολόγισε το ενοποιημένο σκορ του κάθε αντικειμένου 3/ Ταξινόμησε τα αντικείμενα βάσει του σκορ και επέλεξε τα πρώτα κ Παρατηρήσεις Κόστος γραμμικό ως προς το μήκος των λιστών Δεν αξιοποιεί το γεγονός ότι οι λίστες είναι ταξινομημένες CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 65 Εύρεση των κ-κορυφαίων Παράδειγμα: Απλοϊκός Τρόπος Έστω οτι θέλουμε να συναθροίσουμε τις διατάξεις που επιστρέφουν 3 πηγές S1, S2, S3 και ο τρόπος συνάθροισης είναι το άθροισμα. S1 = < Α 0.9, C 0.8, E 0.7, B 0.5, F 0.5, G 0.5, H 0.5 > S2 = < B 1.0, E 0.8, F 0.7, Α 0.7, C 0.5, H 0.5, G 0.5 > S3 = < Α 0.8, C 0.8, E 0.7, B 0.5, F 0.5, G 0.5, H 0.5 > Ο Απλοϊκός Τρόπος Score(Α) = = 2.4 Score(B) = = 2 Score(C) = = 2.1 Score(E) = = 2.2 Score(F) = = 1.7 Score(G) = = 1.5 Score(H) = = 1.5 Τελική διάταξη: < A, E, C, B, F, G, H> CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 66 Ανάκτηση Πληροφορίας

HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems. Parallel and Distributed IR Παράλληλη και Κατανεμημένη ΑΠ

HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems. Parallel and Distributed IR Παράλληλη και Κατανεμημένη ΑΠ Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Parallel and Distributed IR Παράλληλη και Κατανεμημένη ΑΠ Ενοποίηση

Διαβάστε περισσότερα

Parallel and Distributed IR Παράλληλη και Κατανεμημένη ΑΠ

Parallel and Distributed IR Παράλληλη και Κατανεμημένη ΑΠ Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2006 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Parallel and Distributed IR Παράλληλη και Κατανεμημένη ΑΠ Γιάννης

Διαβάστε περισσότερα

Parallel and Distributed IR

Parallel and Distributed IR Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Parallel and Distributed IR Παράλληλη η και Κατανεμημένη η ΑΠ Γιάννης

Διαβάστε περισσότερα

4 η Σειρά ασκήσεων (Συμπίεση, Ομαδοποίηση, Ευρετηρίαση Πολυμέσων, Κατανεμημένη Ανάκτηση)

4 η Σειρά ασκήσεων (Συμπίεση, Ομαδοποίηση, Ευρετηρίαση Πολυμέσων, Κατανεμημένη Ανάκτηση) Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών HY463 -Συστήματα Ανάκτησης Πληροφοριών 2005-2006 Εαρινό Εξάμηνο 4 η Σειρά ασκήσεων (Συμπίεση, Ομαδοποίηση, Ευρετηρίαση Πολυμέσων, Κατανεμημένη Ανάκτηση)

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Το Πιθανοκρατικό Μοντέλο Κλασικά Μοντέλα Ανάκτησης Τρία είναι τα, λεγόμενα, κλασικά μοντέλα ανάκτησης: Λογικό (Boolean) που βασίζεται στη Θεωρία Συνόλων Διανυσματικό (Vector) που βασίζεται στη Γραμμική

Διαβάστε περισσότερα

Information Integration from the

Information Integration from the Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 ΗΥ562 Προχωρημένα Θέματα Βάσεων Δεδομένων Ενότητα Information Integration from the Information Retrieval (IR) perspective Διδάσκων: Γιάννης

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Λανθάνουσα Σημασιολογική Ανάλυση (Latent Semantic Analysis) Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Προτεινόμενες Λύσεις 1 ης Σειράς Ασκήσεων (Αξιολόγηση της Αποτελεσματικότητας της Ανάκτησης & Μοντέλα Ανάκτησης)

Προτεινόμενες Λύσεις 1 ης Σειράς Ασκήσεων (Αξιολόγηση της Αποτελεσματικότητας της Ανάκτησης & Μοντέλα Ανάκτησης) Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών ΗΥ463 Συστήματα Ανάκτησης Πληροφοριών 28-29 Εαρινό Εξάμηνο Προτεινόμενες Λύσεις 1 ης Σειράς Ασκήσεων (Αξιολόγηση της Αποτελεσματικότητας της Ανάκτησης &

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #04 Εισαγωγή στα Μοντέλα Ανάκτησης Πληροφορίας Boolean Μοντέλο 1 Άδεια χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems. Μοντέλα Ανάκτησης Ι

HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems. Μοντέλα Ανάκτησης Ι Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Μοντέλα Ανάκτησης Ι (Retrieval Models) Γιάννης Τζίτζικας άλ ιάλεξη

Διαβάστε περισσότερα

Condorcet winner. (1) Αν U j (x) > U j (y) τότε U i (x) > U i (y) και (2) Αν U i (y) > U i (x) τότε U j (y) > U j (x).

Condorcet winner. (1) Αν U j (x) > U j (y) τότε U i (x) > U i (y) και (2) Αν U i (y) > U i (x) τότε U j (y) > U j (x). Οικονοµικό Πανεπιστήµιο Αθηνών Άνοιξη 2012 Τµήµα Οικονοµικής Επιστήµης ηµόσια Οικονοµική ΙI Η διαδικασία της ψηφοφορίας Ως µεθόδου παροχής των δηµοσίων αγαθών (για τα ιδιωτικά αγαθά, ο µηχανισµός των τιµών).

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009. HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009. HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Στατιστικά Κειμένου Text Statistics Γιάννης Τζίτζικας άλ ιάλεξη :

Διαβάστε περισσότερα

ΛΥΣΕΙΣ 2 ης ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ

ΛΥΣΕΙΣ 2 ης ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ ΛΥΣΕΙΣ 2 ης ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ Άσκηση 1 Θεωρείστε μια συλλογή κειμένων που περιέχει τα ακόλουθα 5 έγγραφα: Έγγραφο 1: «Computer Games» Έγγραφο 2: «Computer Games Computer Games» Έγγραφο 3: «Games Theory and

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Parallel and Distributed IR Παράλληλη και Κατανεμημένη ΑΠ

Parallel and Distributed IR Παράλληλη και Κατανεμημένη ΑΠ HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Parallel and Distributed IR Παράλληλη και Κατανεμημένη ΑΠ Γιάννης Τζίτζικας CS463 - Information Retrieval Systems Yannis Tzitzikas,

Διαβάστε περισσότερα

Query-Driven Indexing for Scalable Peer-to-Peer Text Retrieval. Gleb Skobeltsyn, Toan Luu, Ivana Podnar Zarko, Martin Rajman, Karl Aberer

Query-Driven Indexing for Scalable Peer-to-Peer Text Retrieval. Gleb Skobeltsyn, Toan Luu, Ivana Podnar Zarko, Martin Rajman, Karl Aberer Query-Driven Indexing for Scalable Peer-to-Peer Text Retrieval Gleb Skobeltsyn, Toan Luu, Ivana Podnar Zarko, Martin Rajman, Karl Aberer Περιγραφή του προβλήματος Ευρετηριοποίηση μεγάλων συλλογών εγγράφων

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #06 Πιθανοτικό Μοντέλο 1 Άδεια χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

EFFICIENT TOP-K QUERYING OVER SOCIAL-TAGGING NETWORKS

EFFICIENT TOP-K QUERYING OVER SOCIAL-TAGGING NETWORKS EFFICIENT TOP-K QUERYING OVER SOCIAL-TAGGING NETWORKS Ralf Schenkel, Tom Crecelious, Mouna Kacimi, Sebastian Michel, Thomas Neumann, Josiane Xavier Parreira, Gerhard Weikum ΠΡΟΒΛΗΜΑ Εύρεση ενός αποτελεσματικού

Διαβάστε περισσότερα

Posting File. D i. tf key1 [position1 position2 ] D j tf key2... D l.. tf keyl

Posting File. D i. tf key1 [position1 position2 ] D j tf key2... D l.. tf keyl ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΗΥ463 Συστήµατα Ανάκτησης Πληροφοριών Εργασία: Ανεστραµµένο Ευρετήριο Εισαγωγή Σκοπός της εργασίας είναι η δηµιουργία ενός ανεστραµµένου ευρετηρίου για τη µηχανή αναζήτησης Μίτος, το

Διαβάστε περισσότερα

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο ΔΙΑΛΕΞΗ 3: Αλγοριθµική Ελαχιστοποίηση (Quine-McCluskey, tabular method)

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο ΔΙΑΛΕΞΗ 3: Αλγοριθµική Ελαχιστοποίηση (Quine-McCluskey, tabular method) ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 3: Αλγοριθµική Ελαχιστοποίηση (Quine-McCluskey, tabular method) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy)

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΣΤΑ ΠΛΑΙΣΙΑ ΤΟΥ ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΕΙΔΙΚΕΥΣΗΣ ΕΠΙΣΤΗΜΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ του Γεράσιμου Τουλιάτου

Διαβάστε περισσότερα

Επερωτήσεις σύζευξης με κατάταξη

Επερωτήσεις σύζευξης με κατάταξη Επερωτήσεις σύζευξης με κατάταξη Επερωτήσεις κατάταξης Top-K queries Οι επερωτήσεις κατάταξης επιστρέφουν τις k απαντήσεις που ταιριάζουν καλύτερα με τις προτιμήσεις του χρήστη. Επερωτήσεις κατάταξης Top-K

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα

Πληροφοριακά Συστήματα Πληροφοριακά Συστήματα Ανακτώντας Πληροφορία και Γνώση στον Παγκόσμιο Ιστό Γιάννης Τζίτζικας Επίκουρος Καθηγητής Τμήματος Επιστήμης Υπολογιστών και Συνεργαζόμενος Ερευνητής του ΙΤΕ-ΙΠ 3 Απριλίου 2015 Διάρθρωση

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

Η ακρίβεια ορίζεται σαν το πηλίκο των ευρεθέντων συναφών εγγράφων προς τα ευρεθέντα έγγραφα. Άρα για τα τρία συστήµατα έχουµε τις εξής τιµές:

Η ακρίβεια ορίζεται σαν το πηλίκο των ευρεθέντων συναφών εγγράφων προς τα ευρεθέντα έγγραφα. Άρα για τα τρία συστήµατα έχουµε τις εξής τιµές: Πανεπιστήµιο Κρήτης, Τµήµα Επιστήµης Υπολογιστών HY463 - Συστήµατα Ανάκτησης Πληροφοριών 2005-2006 Εαρινό Εξάµηνο 1 η Σειρά Ασκήσεων (Αξιολόγηση Αποτελεσµατικότητας Ανάκτησης) Άσκηση 1 (4 βαθµοί) Θεωρείστε

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

Η Τεχνολογία στις Συνεργασίες των Βιβλιοθηκών

Η Τεχνολογία στις Συνεργασίες των Βιβλιοθηκών Εργαστήριο Ψηφιακών Βιβλιοθηκών και Ηλεκτρονικής Δημοσίευσης Τμήμα Αρχειονομίας Βιβλιοθηκονομίας Ιόνιο Πανεπιστήμιο Η Τεχνολογία στις Συνεργασίες των Βιβλιοθηκών Σαράντος Καπιδάκης sarantos@ionio.gr Ομοιότητες

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

Επεξεργασία Ερωτήσεων

Επεξεργασία Ερωτήσεων Εισαγωγή Σ Β Σύνολο από προγράμματα για τη διαχείριση της Β Επεξεργασία Ερωτήσεων Αρχεία ευρετηρίου Κατάλογος συστήματος Αρχεία δεδομένων ΒΑΣΗ Ε ΟΜΕΝΩΝ Σύστημα Βάσεων εδομένων (ΣΒ ) Βάσεις Δεδομένων 2007-2008

Διαβάστε περισσότερα

substructure similarity search using features in graph databases

substructure similarity search using features in graph databases substructure similarity search using features in graph databases Aleksandros Gkogkas Distributed Management of Data Laboratory intro Θα ενασχοληθούμε με το πρόβλημα των ερωτήσεων σε βάσεις γραφημάτων.

Διαβάστε περισσότερα

Εισαγωγή. Γενική Εικόνα του Μαθήµατος. Το εσωτερικό ενός Σ Β. Εισαγωγή. Εισαγωγή Σ Β Σ Β. Αρχεία ευρετηρίου Κατάλογος συστήµατος Αρχεία δεδοµένων

Εισαγωγή. Γενική Εικόνα του Μαθήµατος. Το εσωτερικό ενός Σ Β. Εισαγωγή. Εισαγωγή Σ Β Σ Β. Αρχεία ευρετηρίου Κατάλογος συστήµατος Αρχεία δεδοµένων Βάσεις εδοµένων 2003-2004 Ευαγγελία Πιτουρά 1 ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήµατος Επεξεργασία Ερωτήσεων Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασµός) Προγραµµατισµός (Σχεσιακή Άλγεβρα, SQL)

Διαβάστε περισσότερα

DISTRIBUTED CACHE TABLE: EFFICIENT QUERY-DRIVEN PROCESSING OF MULTI-TERM QUERIES IN P2P NETWORKS

DISTRIBUTED CACHE TABLE: EFFICIENT QUERY-DRIVEN PROCESSING OF MULTI-TERM QUERIES IN P2P NETWORKS DISTRIBUTED CACHE TABLE: EFFICIENT QUERY-DRIVEN PROCESSING OF MULTI-TERM QUERIES IN P2P NETWORKS Paper By: Gleb Skobeltsyn, Karl Aberer Presented by: Βασίλης Φωτόπουλος Agenda 1. Ορισμός του προβλήματος

Διαβάστε περισσότερα

Θα μιλήσουμε για ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ. Διαφάνειες του καθ. Γιάννη Τζίτζικα (Παν. Κρήτης)

Θα μιλήσουμε για ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ. Διαφάνειες του καθ. Γιάννη Τζίτζικα (Παν. Κρήτης) Θα μιλήσουμε για ΜΟΝΤΕΛΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ Διαφάνειες του καθ. Γιάννη Τζίτζικα (Παν. Κρήτης) http://www.ics.forth.gr/~tzitzik/ Για το πιθανοκρατικό του καθ. Απ. Παπαδόπουλου (Αριστοτέλειο Παν.) Κεφάλαιο

Διαβάστε περισσότερα

Αντισταθμιστική ανάλυση

Αντισταθμιστική ανάλυση Αντισταθμιστική ανάλυση Θεωρήστε έναν αλγόριθμο Α που χρησιμοποιεί μια δομή δεδομένων Δ : Κατά τη διάρκεια εκτέλεσης του Α η Δ πραγματοποιεί μία ακολουθία από πράξεις. Παράδειγμα: Θυμηθείτε το πρόβλημα

Διαβάστε περισσότερα

Επεξεργασία Ερωτήσεων

Επεξεργασία Ερωτήσεων Εισαγωγή Επεξεργασία Ερωτήσεων ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήματος 1. Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασμός) 2. Προγραμματισμός (Σχεσιακή Άλγεβρα, SQL) ημιουργία/κατασκευή Εισαγωγή εδομένων

Διαβάστε περισσότερα

Κεφάλαιο 4. Διαίρει και Βασίλευε (Divide and Conquer) Παύλος Εφραιμίδης V1.1,

Κεφάλαιο 4. Διαίρει και Βασίλευε (Divide and Conquer) Παύλος Εφραιμίδης V1.1, Κεφάλαιο 4 Διαίρει και Βασίλευε (Divide and Conquer) Παύλος Εφραιμίδης V1.1, 2015-01-19 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 Διαίρει και Βασίλευε (Divide-and-Conquer) Διαίρει-και-βασίλευε

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Η ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΣΤΟ ΣΥΓΧΡΟΝΟ ΠΕΡΙΒΑΛΛΟΝ

Η ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΣΤΟ ΣΥΓΧΡΟΝΟ ΠΕΡΙΒΑΛΛΟΝ Η ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΣΤΟ ΣΥΓΧΡΟΝΟ ΠΕΡΙΒΑΛΛΟΝ Ιόνιο Πανεπιστήµιο Τµήµα Αρχειονοµίας-Βιβλιοθηκονοµίας Μεταπτυχιακό Πρόγραµµα Σπουδών2007-2008 ιδάσκουσα: Κατερίνα Τοράκη (Οι διαλέξεις περιλαµβάνουν

Διαβάστε περισσότερα

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible. B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

SEMANTIC DATA CACHING AND REPLACEMENT

SEMANTIC DATA CACHING AND REPLACEMENT SEMANTIC DATA CACHING AND REPLACEMENT Paper By: Shaul Dar, Michael J. Franklin, Bjorn Jonsson, Divesh Srivastava, Michael Tan Appeared: VLDB conference 1996 Presented by: Βασίλης Φωτόπουλος Agenda 1. Data-Shipping

Διαβάστε περισσότερα

Εισαγωγή στην. Εισαγωγή Σ Β. Αρχεία ευρετηρίου Κατάλογος. συστήματος. Αρχεία δεδομένων

Εισαγωγή στην. Εισαγωγή Σ Β. Αρχεία ευρετηρίου Κατάλογος. συστήματος. Αρχεία δεδομένων Εισαγωγή στην Επεξεργασία Ερωτήσεων 1 Εισαγωγή Σ Β Σύνολο από προγράμματα για τη διαχείριση της Β Αρχεία ευρετηρίου Κατάλογος ΒΑΣΗ Ε ΟΜΕΝΩΝ Αρχεία δεδομένων συστήματος Σύστημα Βάσεων εδομένων (ΣΒ ) 2 :

Διαβάστε περισσότερα

Model) Retrieval Model)... 18

Model) Retrieval Model)... 18 Πανεπιστήμιο Πατρών Πολυτεχνική Σχολή Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής Αποδοτική Ιεραρχημένη Ανάκτηση Κοινωνικού Περιεχομένου με Χρήση Ταξονομιών Ετικετών Κοντοτάσιου Ιωάννα ΑΜ:

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών και Επικοινωνιακών Συστημάτων

Ασφάλεια Πληροφοριακών και Επικοινωνιακών Συστημάτων Πανεπιστήμιο Αιγαίου Τμήμα μηχανικών πληροφοριακών & επικοινωνιακών συστημάτων Ασφάλεια πληροφοριακών & επικοινωνιακών συστημάτων Ασφάλεια Πληροφοριακών και Επικοινωνιακών Συστημάτων Έλεγχος Πρόσβασης

Διαβάστε περισσότερα

Δημιουργία Ευρετηρίων Συλλογής Κειμένων

Δημιουργία Ευρετηρίων Συλλογής Κειμένων Γλωσσική Τεχνολογία Ακαδημαϊκό Έτος 2011-2012 - Project Σεπτεμβρίου Ημερομηνία Παράδοσης: Στην εξέταση του μαθήματος Εξέταση: Προφορική, στο τέλος της εξεταστικής. Θα βγει ανακοίνωση στο forum. Ομάδες

Διαβάστε περισσότερα

EU-Profiler: User Profiles in the 2009 European Elections

EU-Profiler: User Profiles in the 2009 European Elections ZA5806 EU-Profiler: User Profiles in the 2009 European Elections Country Specific Codebook Cyprus COUNTRY SPECIFIC CODEBOOK: CYPRUS Variable answer_29 answer_30 saliency_29 saliency_30 party_val_49 party_val_50

Διαβάστε περισσότερα

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks P2P 1,a) 1 1 1 P2P P2P P2P P2P A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks NARISHIGE Yuki 1,a) ABE Kota 1 ISHIBASHI Hayato 1 MATSUURA Toshio 1

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών NP-Completeness (2) x 1 x 1 x 2 x 2 x 3 x 3 x 4 x 4 12 22 32 11 13 21

Διαβάστε περισσότερα

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Εισαγωγή στην Επεξεργασία Ερωτήσεων Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα Βάσεις

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ

ΑΛΓΟΡΙΘΜΟΙ  Άνοιξη I. ΜΗΛΗΣ ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/inf161/ Άνοιξη 216 - I. ΜΗΛΗΣ ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 216 - Ι. ΜΗΛΗΣ 9 DP II 1 Dynamic Programming ΓΕΝΙΚΗ ΙΔΕΑ 1. Ορισμός υπο-προβλήματος/ων

Διαβάστε περισσότερα

Μέρος Γ Συστήματα Ομοτίμων (Peer to Peer Systems) και Ανάκτηση Πληροφοριών

Μέρος Γ Συστήματα Ομοτίμων (Peer to Peer Systems) και Ανάκτηση Πληροφοριών HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Μέρος Γ Συστήματα Ομοτίμων (Peer to Peer Systems) και Ανάκτηση Πληροφοριών CS463 - Information Retrieval Yannis Tzitzikas, U.

Διαβάστε περισσότερα

Ενότητα 3: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ

Ενότητα 3: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 3: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΔΕΔΟΜΕΝΑ ΑΛΓΟΡΙΘΜΟΙ -ΠΛΗΡΟΦΟΡΙΑ: Δεδομένα: Αναπαράσταση της Πραγματικότητας Μπορούν να γίνουν αντιληπτά με μια από τις αισθήσεις μας Πληροφορία: Προκύπτει από

Διαβάστε περισσότερα

John Nash. Παύλος Στ. Εφραιµίδης. Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

John Nash. Παύλος Στ. Εφραιµίδης. Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ορισµένα αποτελέσµατα του τα σηµεία ισορροπίας Nash (NE Nash Equilibrium) ύπαρξη σηµείου

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας. Διδάσκων: Φοίβος Μυλωνάς. Διάλεξη #03

Ανάκτηση Πληροφορίας. Διδάσκων: Φοίβος Μυλωνάς. Διάλεξη #03 Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #03 Βασικές έννοιες Ανάκτησης Πληροφορίας Δομή ενός συστήματος IR Αναζήτηση με keywords ευφυής

Διαβάστε περισσότερα

Διαδικασιακός Προγραμματισμός

Διαδικασιακός Προγραμματισμός Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 12 η Αναζήτηση/Ταξινόμηση Πίνακα Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην

Διαβάστε περισσότερα

Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Ευρετήρια Ευαγγελία Πιτουρά 1 τιμή γνωρίσματος Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 9η: Basics of Game Theory Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 9η: Basics of Game Theory Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 9η: Basics of Game Theory Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Course Outline Part II: Mathematical Tools Firms - Basics of Industrial

Διαβάστε περισσότερα

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2007 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Στατιστικά Κειμένου Text Statistics Γιάννης Τζίτζικας ιάλεξη : 14a

Διαβάστε περισσότερα

Week 7: Java Collection Classes

Week 7: Java Collection Classes Week 7: Java Collection Classes Υλοποιήσεις Εβδοµάδα 7: Κλάσεις συλλογών δεδοµένων στην Java Τύποι συλλογών δεδοµένων Τεχνικές υλοποίησης linked Σχεδίαση-Ανάπτυξη Εφαρµογών Πληροφορικής Αντώνιος Συµβώνης,

Διαβάστε περισσότερα

ΗΥ-463 Συστήματα Ανάκτησης Πληροφοριών Information Retrieval Systems

ΗΥ-463 Συστήματα Ανάκτησης Πληροφοριών Information Retrieval Systems ΗΥ-463 Συστήματα Ανάκτησης Πληροφοριών Information Systems Πανεπιστήμιο Κρήτης, Άνοιξη Γιάννης Τζίτζικας Lecture : 1 Date : 22-2- Title : Administration εδοµένα Το Αντικείµενο του Μαθήµατος Μια συλλογή

Διαβάστε περισσότερα

6. Βαθμολόγηση, Στάθμιση Όρων, και το Μοντέλο Διανυσματικού Χώρου

6. Βαθμολόγηση, Στάθμιση Όρων, και το Μοντέλο Διανυσματικού Χώρου Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 6. Βαθμολόγηση, Στάθμιση Όρων, και το Μοντέλο Διανυσματικού Χώρου Ανάκτηση Πληροφοριών Χρήστος ουλκερίδης

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Διαχείριση εγγράφων. Αποθήκες και Εξόρυξη Δεδομένων Διδάσκων: Μ. Χαλκίδη

Διαχείριση εγγράφων. Αποθήκες και Εξόρυξη Δεδομένων Διδάσκων: Μ. Χαλκίδη Διαχείριση εγγράφων Αποθήκες και Εξόρυξη Δεδομένων Διδάσκων: Μ. Χαλκίδη Απεικόνιση κειμένων για Information Retrieval Δεδομένου ενός κειμένου αναζητούμε μια μεθοδολογία απεικόνισης του γραμματικού χώρου

Διαβάστε περισσότερα

Παλεπηζηήκην Πεηξαηώο Τκήκα Πιεξνθνξηθήο Πξόγξακκα Μεηαπηπρηαθώλ Σπνπδώλ «Πξνεγκέλα Σπζηήκαηα Πιεξνθνξηθήο»

Παλεπηζηήκην Πεηξαηώο Τκήκα Πιεξνθνξηθήο Πξόγξακκα Μεηαπηπρηαθώλ Σπνπδώλ «Πξνεγκέλα Σπζηήκαηα Πιεξνθνξηθήο» Παλεπηζηήκην Πεηξαηώο Τκήκα Πιεξνθνξηθήο Πξόγξακκα Μεηαπηπρηαθώλ Σπνπδώλ «Πξνεγκέλα Σπζηήκαηα Πιεξνθνξηθήο» Μεηαπηπρηαθή Γηαηξηβή Τίηινο Γηαηξηβήο Ανάπτυξη διαδικτυακού εκπαιδευτικού παιχνιδιού για τη

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΛΑΜΑΤΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2008 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Στατιστικά Κειμένου Text Statistics Γιάννης Τζίτζικας ιάλεξη : 14a

Διαβάστε περισσότερα

Διαδανεισμός, Πρωτόκολλο z39.50 Στρατηγικές αναζήτησης

Διαδανεισμός, Πρωτόκολλο z39.50 Στρατηγικές αναζήτησης Διαδανεισμός, Πρωτόκολλο z39.50 Στρατηγικές αναζήτησης Σεμινάρια Βιβλιοθηκονόμων ΕΠΕΑΕΚ 2000 Φίλιππος Τσιμπόγλου Διευθυντής Βιβλιοθήκης Πανεπιστημίου Κύπρου e-mail ftsimp@ucy.ac.cy 2 3 Πρωτόκολλο Z.3950

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ανάλυση Αλγορίθμων Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ανάλυση Αλγορίθμων Η ανάλυση αλγορίθμων περιλαμβάνει τη διερεύνηση του τρόπου

Διαβάστε περισσότερα

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Examinations Cambridge International General Certificate of Secondary Education *3148288373* GREEK 0543/04 Paper 4 Writing May/June 2016 1 hour Candidates answer on the Question

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 10: Παράλληλη Ανάκτηση Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας ΠΕΡΙΛΗΨΗ Αριστείδης Κοσιονίδης Η κατανόηση των εννοιών ενός επιστημονικού πεδίου απαιτεί

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ταξινόμηση. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ταξινόμηση. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Ταξινόμηση Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Είσοδος n αντικείμενα a 1, a 2,..., a n με κλειδιά (συνήθως σε ένα πίνακα, ή λίστα, κ.τ.λ)

Διαβάστε περισσότερα

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό

Διαβάστε περισσότερα

Προηγμένη Ευρετηρίαση Δεδομένων (ΠΜΣ) Ενδεικτικές ερωτήσεις-θέματα για την εξέταση της θεωρίας

Προηγμένη Ευρετηρίαση Δεδομένων (ΠΜΣ) Ενδεικτικές ερωτήσεις-θέματα για την εξέταση της θεωρίας Προηγμένη Ευρετηρίαση Δεδομένων (ΠΜΣ) Ενδεικτικές ερωτήσεις-θέματα για την εξέταση της θεωρίας 1. Πως δομούνται οι ιεραρχικές μνήμες; Αναφέρετε τα διάφορα επίπεδά τους από τον επεξεργαστή μέχρι τη δευτερεύουσα

Διαβάστε περισσότερα

Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker

Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker Ειδική Ερευνητική Εργασία Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker ΚΑΡΑΔΗΜΑΣ ΗΛΙΑΣ Α.Μ. 323 Επιβλέπων: Σ. Φωτόπουλος Καθηγητής, Μεταπτυχιακό Πρόγραμμα «Ηλεκτρονική και Υπολογιστές», Τμήμα Φυσικής,

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

ΥΩΡΟΘΔΣΖΖ ΚΑΣΑΛΛΖΛΩΝ ΘΔΔΩΝ ΔΓΚΑΣΑΣΑΖ Υ.Τ.Σ.Τ. ΜΔ ΣΖ ΥΡΖΖ G.I.S.: ΔΦΑΡΜΟΓΖ ΣΖ ΕΑΚΤΝΘΟ

ΥΩΡΟΘΔΣΖΖ ΚΑΣΑΛΛΖΛΩΝ ΘΔΔΩΝ ΔΓΚΑΣΑΣΑΖ Υ.Τ.Σ.Τ. ΜΔ ΣΖ ΥΡΖΖ G.I.S.: ΔΦΑΡΜΟΓΖ ΣΖ ΕΑΚΤΝΘΟ ΥΩΡΟΘΔΣΖΖ ΚΑΣΑΛΛΖΛΩΝ ΘΔΔΩΝ ΔΓΚΑΣΑΣΑΖ Υ.Τ.Σ.Τ. ΜΔ ΣΖ ΥΡΖΖ G.I.S.: ΔΦΑΡΜΟΓΖ ΣΖ ΕΑΚΤΝΘΟ Φαηδεπαλαγηψηνπ Μ. 1, Οηθνλνκίδεο Γ. 2 θαη Βνπδνχξεο Κ. 3 1 Γεωλόγος, Αριζηοηέλειο Πανεπιζηήμιο Θεζζαλονίκης, 54124,

Διαβάστε περισσότερα

Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων 2009-2010: Ευρετήρια 1

Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων 2009-2010: Ευρετήρια 1 Ευρετήρια 1 Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται (συνήθως) σε ένα γνώρισμα του αρχείου

Διαβάστε περισσότερα

Προηγμένοι Μικροεπεξεργαστές. Paging & Segmentation

Προηγμένοι Μικροεπεξεργαστές. Paging & Segmentation Προηγμένοι Μικροεπεξεργαστές Paging & Segmentation Segmentation Τεχνική για σπάσουμε την μνήμη σε λογικά κομμάτια Κάθε κομμάτι αποθηκεύει πληροφορία σχετική με data segments for each process code segments

Διαβάστε περισσότερα

Ερωτήσεις Χωροχρονικών. Προτύπων-Κινήσεων

Ερωτήσεις Χωροχρονικών. Προτύπων-Κινήσεων Ερωτήσεις Χωροχρονικών Προτύπων-Κινήσεων Μ. Χατζηελευθερίου Γ. Κόλλιος P. Bakalov Β. Ι. Τσότρας Τα Κίνητρα Η ανάγκη ανεύρεσης αντικειµένων τα οποία ακολουθούν συγκεκριµένες τροχιές. Παραδείγµατα: Εντοπισµός

Διαβάστε περισσότερα

ΙΚΤΥΩΤΟ ΜΟΝΤΕΛΟ (Network Model) Μαθ. # 15

ΙΚΤΥΩΤΟ ΜΟΝΤΕΛΟ (Network Model) Μαθ. # 15 ΙΚΤΥΩΤΟ ΜΟΝΤΕΛΟ (Network Model) Μαθ. # 15 DBTG Γλώσσα επεξεργασίας Σκελετός ενός προγράµµατος Βρες την εγγραφή FIND FIND...... FIND Ανάκτησε την τιµή εγγραφής στον κατάλληλο επίγραµµα τύπου GET RECORD

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ «ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ» ΚΑΤΕΥΘΥΝΣΗ «ΕΥΦΥΕΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΑΝΘΡΩΠΟΥ - ΥΠΟΛΟΓΙΣΤΗ»

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ «ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ» ΚΑΤΕΥΘΥΝΣΗ «ΕΥΦΥΕΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΑΝΘΡΩΠΟΥ - ΥΠΟΛΟΓΙΣΤΗ» ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ «ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ» ΚΑΤΕΥΘΥΝΣΗ «ΕΥΦΥΕΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΑΝΘΡΩΠΟΥ - ΥΠΟΛΟΓΙΣΤΗ» ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΑΤΡΙΒΗ ΤΟΥ ΕΥΘΥΜΙΟΥ ΘΕΜΕΛΗ ΤΙΤΛΟΣ Ανάλυση

Διαβάστε περισσότερα

Ανάκτηση Δεδομένων (Information Retrieval)

Ανάκτηση Δεδομένων (Information Retrieval) Ανάκτηση Δεδομένων (Information Retrieval) Παύλος Εφραιμίδης Βάσεις Δεδομένων Ανάκτηση Δεδομένων 1 Information Retrieval (1) Βάσεις Δεδομένων: Περιέχουν δομημένη πληροφορία: Πίνακες Ανάκτηση Πληροφορίας

Διαβάστε περισσότερα

ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. Μάθημα 7 ο : Ανάκτηση πληροφορίας. Γεώργιος Πετάσης. Ακαδημαϊκό Έτος:

ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. Μάθημα 7 ο : Ανάκτηση πληροφορίας. Γεώργιος Πετάσης. Ακαδημαϊκό Έτος: ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ Μάθημα 7 ο : Ανάκτηση πληροφορίας Γεώργιος Πετάσης Ακαδημαϊκό Έτος: 2012 2013 ΤMHMA MHXANIKΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ, Πανεπιστήμιο Πατρών, 2012 2013 Οι διαφάνειες αυτού του μαθήματος βασίζονται

Διαβάστε περισσότερα

Τεχνικές ταξινόµησης αποτελεσµάτων µηχανών αναζήτησης µε βάση την ιστορία του χρήστη

Τεχνικές ταξινόµησης αποτελεσµάτων µηχανών αναζήτησης µε βάση την ιστορία του χρήστη Τεχνικές ταξινόµησης αποτελεσµάτων µηχανών αναζήτησης µε βάση την ιστορία του χρήστη Όνοµα: Νικολαΐδης Αντώνιος Επιβλέπων: Τ. Σελλής Περίληψη ιπλωµατικής Εργασίας Συνεπιβλέποντες: Θ. αλαµάγκας, Γ. Γιαννόπουλος

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Α. Διαβάστε τις ειδήσεις και εν συνεχεία σημειώστε. Οπτική γωνία είδησης 1:.

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Α.  Διαβάστε τις ειδήσεις και εν συνεχεία σημειώστε. Οπτική γωνία είδησης 1:. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Α 2 ειδήσεις από ελληνικές εφημερίδες: 1. Τα Νέα, 13-4-2010, Σε ανθρώπινο λάθος αποδίδουν τη συντριβή του αεροσκάφους, http://www.tanea.gr/default.asp?pid=2&artid=4569526&ct=2 2. Τα Νέα,

Διαβάστε περισσότερα

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Examinations Cambridge International General Certificate of Secondary Education *4358398658* GREEK 0543/04 Paper 4 Writing May/June 2015 1 hour Candidates answer on the Question

Διαβάστε περισσότερα

Ενημερωτική εκδήλωση για τις ερευνητικές υποδομές 26.04.2013. Δημήτρης Δενιόζος Γενική Γραμματεία Δημοσίων Επενδύσεων και ΕΣΠΑ

Ενημερωτική εκδήλωση για τις ερευνητικές υποδομές 26.04.2013. Δημήτρης Δενιόζος Γενική Γραμματεία Δημοσίων Επενδύσεων και ΕΣΠΑ Ενημερωτική εκδήλωση για τις ερευνητικές υποδομές 26.04.2013 Δημήτρης Δενιόζος Γενική Γραμματεία Δημοσίων Επενδύσεων και ΕΣΠΑ Οι «αιρεσιμότητες» του «νέου ΕΣΠΑ» Θεματικός στόχος 1: Ενδυνάμωση της έρευνας,

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. του ΠΕΤΡΟΥ Ι. ΒΕΝΕΤΗ. Καθηγητής Ε..Μ.Π. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. του ΠΕΤΡΟΥ Ι. ΒΕΝΕΤΗ. Καθηγητής Ε..Μ.Π. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ Αποδοτικά ευρετήρια για ερωτήματα ομοιότητας σε τυχαίους υποχώρους πολυδιάστατων

Διαβάστε περισσότερα

Εργαστήριο 7: Ο αλγόριθμος ταξινόμησης Radix Sort

Εργαστήριο 7: Ο αλγόριθμος ταξινόμησης Radix Sort Εργαστήριο 7: Ο αλγόριθμος ταξινόμησης Radix Sort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Ο αλγόριθμος ταξινόμησης Radix Sort -Δυο εκδοχές: Most Significant Digit (MSD) και Least Significant

Διαβάστε περισσότερα

Αρχιτεκτονική υπολογιστών

Αρχιτεκτονική υπολογιστών 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Αρχιτεκτονική υπολογιστών Ενότητα 4 : Κρυφή Μνήμη Καρβούνης Ευάγγελος Δευτέρα, 30/11/2015 Χαρακτηριστικά Θέση Χωρητικότητα Μονάδα Μεταφοράς

Διαβάστε περισσότερα