HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems. Parallel and Distributed IR Παράλληλη και Κατανεμημένη ΑΠ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems. Parallel and Distributed IR Παράλληλη και Κατανεμημένη ΑΠ"

Transcript

1 Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Parallel and Distributed IR Παράλληλη και Κατανεμημένη ΑΠ Ενοποίηση Αποτελεσμάτων ( Results Merging, Fusion, Rank Aggregation,...) Γιάννης Τζίτζικας άλ ιάλεξη : Ημερομηνία : CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 65 Ενοποίηση Αποτελεσμάτων Διάρθρωση Κατηγορίες Τεχνικών Ενοποίησης: Απομονωμένες και Ολοκληρωμένες Τεχνικές Ενοποίησης Round Robin interleaving Score-based Weighted Score-based Global-statistics Μετα-Μηχανές Αναζήτησης Ενοποίηση Διατάξεων (Rank-Aggregation) Επιθυμητές Ιδιότητες Ενοποίηση κατά Borda Ενοποίηση κατά Condorcet Το Θεώρημα του Ανέφικτου του Κ. Arrow (Arrow s Impossibility theorem) Ενοποίηση κατά Kemeny Αποδοτικοί αλγόριθμοι υπολογισμού των κορυφαίων κ στοιχείων της ενοποιημένης ης διάταξης (Top-K Rank Aggregation) CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 66

2 Ενοποίηση Αποτελεσμάτων answer =? ans1 ans2 ans3 ans4 ans5 IRS1 IRS2 IRS3 IRS4 IRS5 UofCrete UofAthens UofPatras CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 67 Περιπτώσεις Ενοποίηση Συνόλων (π.χ. απαντήσεων σε Exact Match Queries) answer(q) = ans1(q) ansk(q) Άρα η ενοποίηση αποτελεσμάτων για το Boolean model είναι εύκολη Ενοποίηση Διατάξεων (απαντήσεων Partial Match Queries) H ενοποίηση αποτελεσμάτων είναι πιο δύσκολη οι διατάξεις/σκορ δεν είναι πάντα συγκρίσημες (αφού εξαρτώνται από τα στατιστικά της συλλογής του κάθε συστήματος (e.g. idf) υπάρχουν πολλοί διαφορετικοί τρόποι συνάθροισης διατάξεων Συχνά μας αρκεί η εύρεση των κορυφαίων στοιχείων της ενοποιημένης διάταξης CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 68

3 Κατηγορίες Στρατηγικών Ενοποίησης Διατάξεων (A) Ολοκληρωμένες Τεχνικές (Integrated) Οι πηγές παρέχουν επιπρόσθετη πληροφορία που χρησιμοποιείται κατά την ενοποίηση Αδυναμίες: Στενό πεδίο εφαρμογής - απαιτούν συμφωνία μεταξύ των πηγών (e.g. protocol) Συχνά λαμβάνουν υπόψη τους μέτρα όπως Precision/Recall, τα οποία δεν είναι πάντα «αντικειμενικά» ή συγκρίσιμα. (B) Απομονωμένες Μέθοδοι (Isolated) Δεν απαιτούν καμία επιπλέον πληροφορία από τις πηγές (μπορούν να εφαρμοστούν και στις μετα-μηχανές αναζήτησης) Είναι ανεξάρτητες των τεχνικών ευρετηρίασης και των μοντέλων ανάκτησης των υποκείμενων συστημάτων Άρα κατάλληλες για δυναμικά περιβάλλοντα όπου υπάρχουν πολλά συστήματα των οποίων η λειτουργία εξελίσσεται συχνά και απρόβλεπτα Σχετικές τεχνικές: round robin interleaving, score-based, Borda, Condorcet, download and re-index the contents of the objects (web pages) CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 69 Ενοποίηση Διατάξεων: Round Robin interleaving (isolated) (δηλαδή merge sort) Παράδειγμα: ans1(q) = <d10,d2, d30, d7> ans2(q) = <d4, d12, d5, d9> ANS(q) = < {d10,d4}, {d2,d12}, {d30,d5}, {d7,d9}> Προβλήματα στην πραγματικότητα όλα τα έγγραφα του ans1(q) μπορεί να είναι καλύτερα (πιο συναφή) από το 1ο στοιχείο της ans2(q) CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 70

4 Ενοποίηση Διατάξεων: Score-based (isolated) Παράδειγμα: ans1(q) = < (d3,0.8), (d2,0.7) > ans2(q) = < (d5,0.6), (d6,0.3) > ans3(q) = < (d4,0.9) > ANS(q) = < d4, d3, d2, d5, d6> Προβλήματα τα σκορ διαφορετικών συστημάτων δεν είναι συγκρίσιμα (κανονικοποιημένα), αφού εξαρτώνται από τα στατιστικά της συλλογής του κάθε συστήματος (e.g. idf). CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 71 Ενοποίηση Διατάξεων: Weighted Score-based Λαμβάνουμε υπόψη το σκορ της πηγής που υπολογίσαμε όταν κάναμε Επιλογή Πηγής (source selection) Πχ Score(IRS1) = 0.9 // υπολογίστηκε στη φάση επιλογής πηγής Score(IRS2) = 0.5 // υπολογίστηκε στη φάση επιλογής πηγής ans1(q) = <(d1, 0.7)> ans2(q) = <(d2, 0.9)> ANS(q) = < (d1, 0.63), (d2, 0.45)> // 0.63 = 0.9*0.7 Εδώ πολλαπλασιάσαμε το σκορ της πηγής με το σκορ των εγγράφων. Υπάρχουν και άλλες παραλλαγές (π.χ. [Callan94,95]) CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 72

5 Ενοποίηση Διατάξεων: Downlοad and re-index/re-score (isolated) ans1 ans2 Vector Space Model IRS1 Extended Boolean Model IRS4 Εδώ ανακτούμε τα έγγραφα των απαντήσεων κάθε πηγής, τα επαναευρετηριάζουμε και επαναυπολογίζουμε το βαθμό συνάφειας τους Μειονέκτημα Χρονοβόρα διαδικασία CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 73 Ενοποίηση Διατάξεων: Global term statistics (integrated) Μπορούμε να κάνουμε συγκρίσιμα τα σκορ διαφορετικών συστημάτων αν επιβάλουμε τα ίδια στατιστικά στοιχεία σε όλα τα συστήματα (global statistics) Τα στατιστικά αυτά στοιχεία μπορούν να αποκτηθούν στη φάση της επιλογής πηγής (πχ Διανύσματα Πηγής, Probe Queries, ) Αποτίμηση Επερωτήσεων σε 2 φάσεις στην 1η συλλέγονται τα στατιστικά (o server στέλνει την επερώτηση και οι πηγές απαντούν με τα στατιστικά των όρων που περιέχονται στην επερώτηση) στην 2η η ο server στέλνει σε κάθε πηγή την επερώτηση η μαζί με τα καθολικά στατιστικά των όρων της κάθε πηγή αποτιμά την επερώτηση με τα καθολικά στατιστικά και επιστρέφει την απάντηση Ο server λαμβάνει έτοιμα σκορ και απλά τα ενοποιεί (merge sort) CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 74

6 Ενοποίηση Διατάξεων: Global term statistics Παράδειγμα q= Hotels Crete idf(hotels)= log(2000/400) idf(crete)= log(2000/105) ans = score-based merging of ans1 ans2 ans1 ans2 S1 S2 S1 S2 S1 S2 S1 S2 N1 = 1000 N2 = 1000 N1Hotels = 300 N2Hotels = 100 N1Crete = 100 N2Crete = 5 CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 75 Μέτα-μηχανές Αναζήτησης

7 Μετα-Μηχανές Αναζήτησης Server: receives requests, initiates a thread for each request, combines the intermediate results into the final answer «Search Protocol»: HTTP/HTML TCP/IP IRS1 IRS2 IRS3 IRS4 IRS5 Google AltaVista Lycos Μετα-Μηχανή Αναζήτησης: Μηχανή αναζήτησης που προωθεί την επερώτηση σε πολλές μηχανές αναζήτησης και ενοποιεί τα αποτελέσματα που επιστρέφουν CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 77 Γιατί φτιάχνουμε μετα-μηχανές αναζήτησης; Καλύτερη κάλυψη: Το σύνολο των σελίδων που είναι γνωστές (ευρετηριασμένες) σε κάθε μηχανή είναι διαφορετικό Διάταξη Πλειοψηφούσας Γνώμης (consensus ranking) Η διαθεσιμότητα πολλών μηχανών μας δίνει την δυνατότητα να ορίσουμε ένα αθροιστικό (πλειοψηφικό) μέτρο συνάφειας Ενοποίηση αποτελεσμάτων = Πρόβλημα απόφασης ομάδας (group decision problem) Μείωση spam: Δύσκολα μια spam σελίδα μπορεί να ξεγελάσει όλες τις μηχανές CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 78

8 Μετα-Μηχανές Αναζήτησης Ενδεικτικές μηχανές: Dogpile (http://www.dogpile.com/) over Google, Yahoo!, msn, Ask Jeaves SurfWax (http://www.surfwax.com/) Metacrawler, SavvySearch, Βήματα Λειτουργίας Submit queries to host sites. Parse resulting HTML pages to extract search results. Integrate multiple rankings into a consensus ranking. Present integrated results to user. Διαφορές με την Κατανεμημένη Ανάκτηση Πληροφοριών οι υποκείμενες μηχανές δεν παρέχουν term-statistics, άρα μπορούμε να χρησιμοποιήσουμε μόνο απομονωμένες (isolated) τεχνικές ενοποίησης αποτελεσμάτων οι υποκείμενες μηχανές δεν υποστηρίζουν την ίδια ερωτηματική γλώσσα CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 79 Ενοποίηση Διατάξεων: Rank Aggregation (or Meta-Ranking) (isolated) Διατύπωση του Προβλήματος D: ένα σύνολο αντικειμένων (π.χ. χ εγγράφων) ) S1, Sk: ένα σύνολο διατάξεων του D Σκοπός: Ενοποίηση των διατάξεων S1,..Sk σε μία The metaphor: elections Objects Candidates Sources Electors Ordering by a system Elector s voting ticket Fused ordering Election list CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 80

9 Διάρθρωση Ενοποίηση κατά Borda κατά Condorcet κατά Kemeny Επιθυμητές Ιδιότητες Τεχνικών Ενοποίησης Διατάξεων Το Θεώρημα του Ανέφικτου του Arrow Αποδοτικοί αλγόριθμοι λό υπολογισμού των κορυφαίων κ στοιχείων της ενοποιημένης διάταξης (Top-K Rank Aggregation) CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 81 Plurality Ranking (Απλή Πλειοψηφία) O υποψήφιος με τις περισσότερες πρώτες θέσεις είναι ο νικητής. Έστω 6 πηγές (S1,,S6) και 4 σελίδες a,b,c,d. Κάθε σύστημα επιστρέφει μια γραμμική διάταξη των σελίδων: S1: <a,c,d,b> S2: <a,b,c,d> S3: <b,c,a,b> b S4: <b,a,d,c> S5: <a,d,c,b> S6: <c,a,b,d> Μετράμε πόσες πρώτες θέσεις κατέλαβε κάθε σελίδα a: 3 b: 2 c: 1 d: 0 Άρα η τελική κατάταξη είναι η <a,b,c,d> CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 82

10 Plurality Ranking (Απλή Πλειοψηφία) Κάποια προβλήματα 3 συστήματα <a,c,d,b> 6 συστήματα <a,d,c,b> 3 συστήματα <b,c,d,a> 5 συστήματα <b,d, c, a> 2 συστήματα <c,b,d,a> 5 συστήματα <c,d,b,a> 2 συστήματα <d,b,c,a> 4 συστήματα <d,c,b,a> Απόσυρση του d (που ήταν τελευταίο στην ενοποιημένη διάταξη) 3 συστήματα <a,c,b> 6 συστήματα <a,c,b> 3 συστήματα <b,c,a> 5 συστήματα <b,c, a> 2 συστήματα <c,b,a> 5 συστήματα <c,b,a> 2 συστήματα <b,c,a> 4 συστήματα <c,b,a> a:9 b:8 c:7 d:6 Τελική διάταξη: <a,b,c,d> a:9 b:10 c:11 Τελική διάταξη: <c,b,a> Αντίστροφη της αρχικής! CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 83 Plurality Ranking (Απλή Πλειοψηφία) Κάποια προβλήματα 3 συστήματα <a,c,d,b> 6 συστήματα <a,d,c,b> 3 συστήματα <b,c,d,a> 5 συστήματα <b,d, c, a> 2 συστήματα <c,b,d,a> 5 συστήματα <c,d,b,a> 2 συστήματα <d,b,c,a> 4 συστήματα <d,c,b,a> a:9 b:8 c:7 d:6 Τελική διάταξη: <a,b,c,d> Απόσυρση του d Τελική διάταξη: <c,b,a> Απόσυρση του a Τελική διάταξη: <d,c,b> Απόσυρση του b Τελική διάταξη: <d,c,a>, Απόσυρση του c Τελική διάταξη: <d,b,a> CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 84

11 Ενοποίηση Διατάξεων κατά Borda [Jean-Charles Borda 1770] The votes of an object o V ( o) = r i ( o) i= i 1....kk r ( o) : the position of the object The fused ordering Μ is derived by ordering the objects in ascending order wrt to their votes Reinvented (for the context of Meta-Searching) in [Tzitzikas 2001] o in the ordering of system i S i Example: S1 : < o1, o2, o S2 : < o1, o3, o S : < o, o, o > > > V ( o V ( o V ( o ) = = 4 ) = = 8 ) = = 6 M : o < o1, o3, 2 > If each source S r ( o i j i returns an ordered subset i i, if o j Oi position of o j in O ) = F + 1 otherwise O of Obj. where F = max{ O1,..., Ok } Γιατί; CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 85 Ενοποίηση Διατάξεων κατά Borda [Tzitzikas, 2001] Βαθμός Συμφωνίας The distance between two orderings i and j: dist( i, j) = ri ( o) rj ( o) The mean distance of the fused ordering 0 Dem The level lof agreement of the fused ordering 0: = i =.. o O dist(0, i) 1 k k linear transformation C Dem LA = C Dem inversion transformation LA = C C > 1,e.g.C = 2 High level may drive the user to read only the very first documents since probably they are the more relevant Low level may drive the user to read more documents CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 86

12 Ενοποίηση Διατάξεων κατά Condorcet [1785] Condorcet: the winner is a candidate that defeats every other candidate in pairwise majority-rule election S1: <a,b,c> S2: <b,a,c> S2: <c,a,b> a:b 2:1 a:c 2:1 // τo a νικά το b δύο φορές (και χάνει μία) // τo a νικά το c δύο φορές (και χάνει μία) Αρα η τελική κατάταξη κατά Condorset είναι: <a,b,c> CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 87 Ενοποίηση Διατάξεων κατά Condorcet [1785] S1: <a,b,c>, S2: <b,c,a> S3: <c,a,b> a:b 2:1 // άρα το b δεν μπορεί να είναι o νικητής a:c 12 1:2 //ά άρα το a δεν μπορεί να είναι o νικητής c:b 1:2 // άρα το c δεν μπορεί να είναι o νικητής Δεν υπάρχει πάντα Condorset νικητής! CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 88

13 Borda vs Condorcet S1: <a,b,c> S2: <b,a,c>, S2: <c,a,b> Condorset a:b 2:1 a:c 2:1 Condorset ordering: <a,b,c>, Borda a: = 5 b: = 6 c: = 7 Borda ordering: <a,b,c> CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 89 Borda Condorcet Borda (1770) Member of French Academy of Sciences Noted for work in hydraulics, optics, navigation instrument Condorcet (1785) Viewed Borda as an enemy Finding best ordering by hypothesis testing Switch to propose p Condorcet winner Purpose: Reforming the election procedure of French Academy. Criticize plurality method CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 90

14 Borda Condorcet S1: <a,b,c,d,e> S2: <b,c,e,d,a>,,, S3: <e,a,b,c,d> S4: <a,b,d,e,c> S5: <b,a,d,e,c> Borda Condorset a: = 11 a:b 3:2 b: = 9 a:c 4:1 c: =19 a:d 4:1 d: = 19 a:e :3:2 e: = 17 Condorset winner a Borda winner : b CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 91 Prurality Borda Condorcet 49 votes 48 votes 3 votes 1st x y z 2nd y z y 3rd z x x Prurality winner: x Borda winner: y Condorcet: z> x CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 92

15 Condorcet and Order Θεωρείστε την περίπτωση τριών υποψηφίων (a,b,c) και 13 εκλεκτόρων a b c a 5 7 b 8 2 c 6 11 Έχουμε συνοψίσει τις διατάξεις που έδωσαν οι εκλέκτορες κατασκευάζοντας έναν πίνακα C, όπου το C[i,j] εκφράζει πόσες φορές το i νικά το j Μπορούμε να υπολογίσουμε τη στήριξη (support) κάθε πιθανής γραμμικής διάταξης αθροίζοντας τη στήριξη της κάθε συσχέτισής της. <a,b,c>, has support 25 a>b:8, a>c:6, b>c:11 <b,c,a> has support 23 a<b:5, c>a:7, b>c:11 CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 93 Ενοποίηση Διατάξεων κατά Kemeny (1959) (Kemeny developed BASIC language) Απόσταση μεταξύ δυο διατάξεων = πλήθος των διαφωνιών στη διάταξη ζευγαριών Παράδειγμα 1 r1 = <a,b,c> r2 = <b, a, c> K(r1, r2) = 1 (a > r1 b, a < r2 b) Παράδειγμα 2 r1 = <a, b, c, d> r2 = <b, d, a, c> K(r1, r2) = 3 (a > r1 b, a < r2 b) (a > r1 d, a < r2 d) (c > r1 d, c < r2 d) CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 94

16 Ενοποίηση Διατάξεων κατά Kemeny (1959) Kemeny Optimal Aggregation Η καλύτερη ενοποιημένη διάταξη είναι εκείνη που απέχει το λιγότερο από όλες τις διατάξεις Έστω n διατάξεις: r1, r2,, rn Ενοποιημένη διάταξη r = arg min K(r,ri) Η εύρεση της ενοποιημένης διάταξης είναι ακριβή (πρόβλημα NP-hard) Reconciles Borda and Condorcet CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 95 Ενοποίηση Διατάξεων: Επιθυμητές Ιδιότητες Ουδετερότητα (Neutrality) Καμία εναλλακτική δεν πρέπει να ευνοείται Pareto Optimality Αν X > Y (σε όλες τις διατάξεις) τότε X>Y (στην τελική) Μονοτονία (Monotonicity) // Ranking higher should not hurt a candidate Χ νικητής (στην τελική), αλλαγή ενός ψηφοδελτίου YZX YXZ, o Χ παραμένει νικητής (στην τελική) Ανεξαρτησία από άσχετες εναλλακτικές (Independence from Irrelevant Alternatives) X > Y (στην τελική), αλλαγή ενός ψηφοδελτίου XZY ZXY, to X>Y παραμένει στην τελική Συνέπεια (Consistency) Αν οι ψηφοφόροι διαιρεθούν σε δύο ομάδες και κάθε ομάδα αναδείξει τον ίδιο νικητή, τότε ο τελικός νικητής (αν λάβουμε υπόψη τις ψήφους και των 2 ομάδων) πρέπει να είναι ο ίδιος CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 96

17 Arrow s Impossibility Theorem Kenneth J. Arrow, Social Choice and Individual Values (1951). Won Nobel Prize in 1972 No voting scheme over three or more alternatives can satisfy the following conditions Universality (no restriction on individual ordering. All orderings are achievable) Monotonicity Independence of irrelevant alternatives Pareto Optimality Non-dictatorship Συμπέρασμα: δεν υπάρχει μια απολύτως ικανοποιητική συνάρτηση ενοποίησης διατάξεων CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 97 Διάρθρωση Ενοποίηση κατά Borda κατά Condorcet κατά Kemeny Επιθυμητές Ιδιότητες Τεχνικών Ενοποίησης Διατάξεων Το Θεώρημα του Ανέφικτου του Arrow Αποδοτικοί αλγόριθμοι υπολογισμού των κορυφαίων κ στοιχείων της ενοποιημένης διάταξης (Top-K Rank Aggregation) g CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 98

18 Top-k Rank Aggregation Έχουμε Ν αντικείμενα και τους βαθμούς τους βάσει m διαφορετικών κριτηρίων. Έχουμε έναν τρόπο να συνδυάζουμε τα m σκορ κάθε αντικειμένου σε ένα ενοποιημένο σκορ π.χ. min, avg, sum Στόχος: Βρες τα κ αντικείμενα με το υψηλότερο ενοποιημένο σκορ. Εφαρμογές: Υπολογισμός των κορυφαίων-κ στοιχείων της απάντησης ενός ΣΑΠ που βασίζεται στο διανυσματικό μοντέλο (τα m κριτήρια είναι οι m όροι της επερώτησης) ενός μεσίτη (π.χ. μετα-μηχανής αναζήτησης) πάνω από m Συστήματα Ανάκτησης Πληροφοριών μιας επερώτησης ης σε μια Βάση Πολυμέσων κριτήρια (και συνάμα χαρακτηριστικά/features): χρώμα, μορφή, υφή, CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 99 Άλλο ένα παράδειγμα εφαρμογής Ενοποίηση απαντήσεων σε Μεσολαβητές (middleware) πάνω από πηγές που αποθηκεύουν δομημένες πληροφορίες έστω μια υπηρεσία εύρεσης εστιατορίων βάσει τριών κριτηρίων: απόσταση από ένα σημείο κατάταξη εστιατορίου τιμή γεύματος, και άλλα όπου ο χρήστης μπορεί να ορίσει τον επιθυμητό τρόπο υπολογισμού του ενοποιημένου σκορ ενός εστιατορίου π.χ. Σκορ(εστΧ) = Stars(εστΧ)* *DistanceFromHome(εστΧ) η υπηρεσία αυτή υλοποιείται με χρήση τριών απομακρυσμένων υπηρεσιών (α) getrestaurantsbystars επιστρέφει όλα τα εστιατόρια σε φθίνουσα σειρά ως προς τα αστέρια που έχουν (κάθε εστιατόριο συνοδεύεται με ένα σκορ) (β) getrestaurantsbydistance(x,y) επιστρέφει όλα τα εστιατόρια σε φθίνουσα σειρά ως προς την απόσταση τους από ένα συγκεκριμένο σημείο με συντεταγμένες (x,y) // κάθε εστιατόριο συνοδεύεται από την απόσταση του από το (x,y) Πως μπορώ να ελαχιστοποιήσω το πλήθος των στοιχείων που πρέπει να διαβάσω από την απάντηση της κάθε υπηρεσίας, προκειμένου να βρω τα κορυφαία 5 εστιατόρια (βάσει σκορ όπως υπολογίζεται από της συνάρτηση βαθμολόγησης που έδωσε ο χρήστης); CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 100

19 Εύρεση των κ-κορυφαίων Απλοϊκός Αλγόριθμος 1/ Ανέκτησε ολόκληρες τις m λίστες 2/ Υπολόγισε το ενοποιημένο σκορ του κάθε αντικειμένου 3/ Ταξινόμησε τα αντικείμενα βάσει του σκορ και επέλεξε τα πρώτα κ Παρατηρήσεις Κόστος γραμμικό ως προς το μήκος των λιστών Δεν αξιοποιεί το γεγονός ότι οι λίστες είναι ταξινομημένες CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 101 Εύρεση των κ-κορυφαίων Παράδειγμα: Απλοϊκός Τρόπος Έστω οτι θέλουμε να συναθροίσουμε τις διατάξεις που επιστρέφουν 3 πηγές S1, S2, S3 και ο τρόπος συνάθροισης είναι το άθροισμα. S1 = < Α 0.9, C 0.8, E 0.7, B 0.5, F 0.5, G 0.5, H 0.5 > S2 = < B 1.0, E 0.8, F 0.7, Α 0.7, C 0.5, H 0.5, G 0.5 > S3 = < Α , C , E , B , F , G , H 05> 0.5 Ο Απλοϊκός Τρόπος Score(Α) = = Score(B) = = 2 Score(C) = = 2.1 Score(E) = = Score(F) = = 1.7 Score(G) = = 1.5 Score(H) = = Τελική διάταξη: < A, E, C, B, F, G, H> CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 102

20 Εύρεση των κ-κορυφαίων Πιο Αποδοτικοί Αλγόριθμοι Γενική ιδέα: Άρχισε να διαβάζεις τις διατάξεις από την κορυφή. Προσπάθησε να καταλάβεις πότε πρέπει να σταματήσεις. Αλγόριθμοι Fagin Algorithm (FA) [Fagin 1999, J. CSS 58] Threshold Algorithm (ΤΑ) [Fagin et al., PODS 2001] Υποθέσεις Υποθέτουμε ότι έχουμε στη διάθεση μας 2 τρόπους πρόσβασης στα αποτελέσματα μιας πηγής: Σειριακή πρόσβαση στις διατάξεις: φθίνουσα ως προς το σκορ Τυχαία προσπέλαση: Δυνατότητα εύρεσης του σκορ ενός συγκεκριμένου αντικειμένου με μία πρόσβαση Συναρτήσεις βαθμολόγησης (σκορ) Τα σκορ ανήκουν στο διάστημα [0,1] Η συνάρτηση ενοποιημένου σκορ είναι μονότονη αν όλα (m) τα σκορ ενός αντικειμένου Α είναι μεγαλύτερα ή ίσα των αντίστοιχων σκορ ενός αντικειμένου Β, τότε σίγουρα το ενοποιημένο σκορ του Α είναι μεγαλύτερο ή ίσο του σκορ του Β CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 103 Εύρεση των κ-κορυφαίων Ο Αλγόριθμος του Fagin (FA) [1999] 1.α/ Κάνε σειριακή ανάκτηση αντικειμένων από κάθε λίστα (αρχίζοντας από την κορυφή), έως ότου η τομή των αντικειμένων από κάθε λίστα να έχει κ αντικείμενα 1β/Γ 1.β/ Για κάθε αντικείμενο που ανακτήθηκε (στο 1.α) συνέλεξε τα σκορ που λείπουν (με χρήση του μηχανισμού τυχαίας προσπέλασης) 2/ Υπολόγισε το ενοποιημένο σκορ του κάθε αντικειμένου 3/ Ταξινόμησε τα αντικείμενα βάσει του ενοποιημένου σκορ και επέλεξε τα πρώτα κ Σχόλια Αξιοποιεί (α) το γεγονός ότι οι λίστες είναι ταξινομημένες και (β) ότι η συνάρτηση ενοποίησης είναι μονότονη [-] Το πλήθος των αντικειμένων που θα ανακτηθούν μπορεί να είναι μεγάλο CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 104

21 Εύρεση των κ-κορυφαίων Παράδειγμα: Αλγόριθμος του Fagin (FA) S1 = < Α 0.9, C 0.8, E 0.7, B 0.5, F 0.5, G 0.5, H 0.5 > S2 = < B 1.0, E 0.8, F 0.7, Α 0.7, C 0.5, H 0.5, G 0.5 > S3 = < Α 0.8, C 0.8, E 0.7, B 0.5, F 0.5, G 0.5, H 0.5 > Το Ε εμφανίζεται σε όλες Έστω ότι θέλω το Top-1 (μονοτονία => δεν μπορεί κάποιο δεξιότερο του Ε να είναι καλύτερο του Ε Το Ε δεν είναι σίγουρα ο νικητής. Υποψήφιοι νικητές = {A, B, C, E, F}. Κάνουμε τυχαίες προσπελάσεις για vα βρούμε τα σκορ που μας λί λείπουν getscore(s2,a), getscore(s1,b), getscore(s3,b), getscore(s2,c), Πράγματι, top-1= {Α} CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 105 Εύρεση των κ-κορυφαίων Παράδειγμα: Αλγόριθμος του Fagin (FA) S1 = < Α 0.9, C 0.8, E 0.7, B 0.5, F 0.5, G 0.5, H 0.5 > S2 = < B 1.0, E 0.8, F 0.7, Α 0.7, C 0.5, H 0.5, G 0.5 > S3 = < Α 0.8, C 0.8, E 0.7, B 0.5, F 0.5, G 0.5, H 0.5 > Έστω ότι θέλω το Top-2 Το Ε, B (και το Α) εμφανίζονται σε όλες (μονοτονία => δεν μπορεί κάποιο δεξιότερο του Β να είναι καλύτερο του Β CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 106

22 Εύρεση των κ-κορυφαίων Ο Αλγόριθμος ΤΑ (Threshold Algorithm) [Fagin et al. 2001] Ιδέα: Υπολόγισε το μέγιστο σκορ που μπορεί να έχει ένα αντικείμενο που δεν έχουμε συναντήσει ακόμα. 1/ Κάνε σειριακή ανάκτηση αντικειμένων από κάθε λίστα (αρχίζοντας από την κορυφή) και με χρήση τυχαίας προσπέλασης βρες όλα τα σκορ κάθε αντικειμένου 2/ Ταξινόμησε τα αντικείμενα (βάσει του ενοποιημένου σκορ) και κράτησε τα καλύτερα κ 3/ Σταμάτησε την σειριακή ανάκτηση όταν τα σκορ των παραπάνω κ αντικειμένων δεν μπορεί να είναι μικρότερα του μέγιστου πιθανού σκορ των απαρατήρητων αντικειμένων (threshold). h CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 107 Εύρεση των κ-κορυφαίων Παράδειγμα: Αλγόριθμος TA: S1 = < Α 0.9, C 0.8, E 0.7, B 0.5, F 0.5, G 0.5, H 0.5 > S2 = < B 1.0, E 0.8, F 0.7, Α 0.7, C 0.5, H 0.5, G 0.5 > S3 = < Α 0.8, C 0.8, E 0.7, B 0.5, F 0.5, G 0.5, H 0.5 > Score(A) = = 2.4 Score(B) = = 2 UpperBound = = 2.7 αφού 2.7 > 2.4 συνεχίζω Score(C) = = 2.1 Score(E) = = 2.2 UpperBound = = αφού 2.4 δεν είναι μεγαλύτερο του 2.4 (σκορ του Α) σταματάω. Έστω ότι θέλω το Top-1 CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 108

23 Σύγκριση: Fagin vs. ΤΑ Ο FA ποτέ δεν τερματίζει ενωρίτερα του ΤΑ Ο ΤΑ χρειάζεται μόνο έναν μικρό (k) ενταμιευτή (buffer) Ο ΤΑ μπορεί όμως να κάνει περισσότερες τυχαίες προσπελάσεις Ο ΤA είναι βέλτιστος για όλες τις μονότονες συναρτήσεις ρή σκορ Συγκεκριμένα, είναι instant optimal : είναι καλύτερος πάντα (όχι μόνο στην χειρότερη περίπτωση ή στην μέση περίπτωση) Επεκτάσεις Αλγόριθμος NRA (Non Random Access) Έκδοση του ΤΑ για την περίπτωση που η τυχαία πρόσβαση είναι αδύνατη. α Επίσης instant optimal. Do sequential access until there are k objects whose lower bound no less than the upper bound of all other objects Αλγόριθμος CA (Combined Algorithm) Έκδοση του ΤΑ που θεωρεί τις τυχαίες προσπελάσεις ακριβότερες των σειριακών. CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 109

Parallel and Distributed IR Παράλληλη και Κατανεμημένη ΑΠ

Parallel and Distributed IR Παράλληλη και Κατανεμημένη ΑΠ Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2008 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Parallel and Distributed IR Παράλληλη και Κατανεμημένη ΑΠ Γιάννης

Διαβάστε περισσότερα

Parallel and Distributed IR Παράλληλη και Κατανεμημένη ΑΠ

Parallel and Distributed IR Παράλληλη και Κατανεμημένη ΑΠ Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2006 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Parallel and Distributed IR Παράλληλη και Κατανεμημένη ΑΠ Γιάννης

Διαβάστε περισσότερα

Information Integration from the

Information Integration from the Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 ΗΥ562 Προχωρημένα Θέματα Βάσεων Δεδομένων Ενότητα Information Integration from the Information Retrieval (IR) perspective Διδάσκων: Γιάννης

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Το Πιθανοκρατικό Μοντέλο Κλασικά Μοντέλα Ανάκτησης Τρία είναι τα, λεγόμενα, κλασικά μοντέλα ανάκτησης: Λογικό (Boolean) που βασίζεται στη Θεωρία Συνόλων Διανυσματικό (Vector) που βασίζεται στη Γραμμική

Διαβάστε περισσότερα

4 η Σειρά ασκήσεων (Συμπίεση, Ομαδοποίηση, Ευρετηρίαση Πολυμέσων, Κατανεμημένη Ανάκτηση)

4 η Σειρά ασκήσεων (Συμπίεση, Ομαδοποίηση, Ευρετηρίαση Πολυμέσων, Κατανεμημένη Ανάκτηση) Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών HY463 -Συστήματα Ανάκτησης Πληροφοριών 2005-2006 Εαρινό Εξάμηνο 4 η Σειρά ασκήσεων (Συμπίεση, Ομαδοποίηση, Ευρετηρίαση Πολυμέσων, Κατανεμημένη Ανάκτηση)

Διαβάστε περισσότερα

Condorcet winner. (1) Αν U j (x) > U j (y) τότε U i (x) > U i (y) και (2) Αν U i (y) > U i (x) τότε U j (y) > U j (x).

Condorcet winner. (1) Αν U j (x) > U j (y) τότε U i (x) > U i (y) και (2) Αν U i (y) > U i (x) τότε U j (y) > U j (x). Οικονοµικό Πανεπιστήµιο Αθηνών Άνοιξη 2012 Τµήµα Οικονοµικής Επιστήµης ηµόσια Οικονοµική ΙI Η διαδικασία της ψηφοφορίας Ως µεθόδου παροχής των δηµοσίων αγαθών (για τα ιδιωτικά αγαθά, ο µηχανισµός των τιµών).

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #04 Εισαγωγή στα Μοντέλα Ανάκτησης Πληροφορίας Boolean Μοντέλο 1 Άδεια χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Φροντιστήριο 5. Το πρώτο πράγµα λοιπόν που πρέπει να κάνουµε είναι να βρούµε τις πιθανότητες εµφάνισης των συµβόλων. Έτσι έχουµε:

Φροντιστήριο 5. Το πρώτο πράγµα λοιπόν που πρέπει να κάνουµε είναι να βρούµε τις πιθανότητες εµφάνισης των συµβόλων. Έτσι έχουµε: Πανεπιστήµιο Κρήτης, Τµήµα Επιστήµης Υπολογιστών HY463 - Συστήµατα Ανάκτησης Πληροφοριών 2006-2007 Εαρινό Εξάµηνο Φροντιστήριο 5 Άσκηση 1 Θεωρείστε το αλφάβητο {α,β,γ,δ,ε} και την εξής φράση: «α α β γ

Διαβάστε περισσότερα

Parallel and Distributed IR

Parallel and Distributed IR Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Parallel and Distributed IR Παράλληλη η και Κατανεμημένη η ΑΠ Γιάννης

Διαβάστε περισσότερα

Προτεινόμενες Λύσεις 1 ης Σειράς Ασκήσεων (Αξιολόγηση της Αποτελεσματικότητας της Ανάκτησης & Μοντέλα Ανάκτησης)

Προτεινόμενες Λύσεις 1 ης Σειράς Ασκήσεων (Αξιολόγηση της Αποτελεσματικότητας της Ανάκτησης & Μοντέλα Ανάκτησης) Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών ΗΥ463 Συστήματα Ανάκτησης Πληροφοριών 28-29 Εαρινό Εξάμηνο Προτεινόμενες Λύσεις 1 ης Σειράς Ασκήσεων (Αξιολόγηση της Αποτελεσματικότητας της Ανάκτησης &

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #05 Ακρίβεια vs. Ανάκληση Extended Boolean Μοντέλο Fuzzy Μοντέλο 1 Άδεια χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών HY463 - Συστήματα Ανάκτησης Πληροφοριών Εαρινό Εξάμηνο. Φροντιστήριο 3.

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών HY463 - Συστήματα Ανάκτησης Πληροφοριών Εαρινό Εξάμηνο. Φροντιστήριο 3. Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών HY6 - Συστήματα Ανάκτησης Πληροφοριών 007 008 Εαρινό Εξάμηνο Φροντιστήριο Retrieval Models Άσκηση Θεωρείστε μια συλλογή κειμένων που περιέχει τα ακόλουθα

Διαβάστε περισσότερα

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009. HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009. HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Στατιστικά Κειμένου Text Statistics Γιάννης Τζίτζικας άλ ιάλεξη :

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Ανάκτηση Πληροφορίας Αποτίμηση Αποτελεσματικότητας Μέτρα Απόδοσης Precision = # σχετικών κειμένων που επιστρέφονται # κειμένων που επιστρέφονται Recall = # σχετικών κειμένων που επιστρέφονται # συνολικών

Διαβάστε περισσότερα

Μία αξιωματική προσέγγιση για τη διαφοροποίηση των αποτελεσμάτων

Μία αξιωματική προσέγγιση για τη διαφοροποίηση των αποτελεσμάτων Μία αξιωματική προσέγγιση για τη διαφοροποίηση των αποτελεσμάτων ΜΑΘΗΜΑ Ανάκτηση Πληροφορίας Παππάς Χρήστος Ιωάννινα, Ιανουάριος 2010 Διάρθρωση Εισαγωγή Πρόβλημα Σημαντικότητα Ενδιαφέροντα θέματα Τεχνικό

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Μοντελοποίηση: Πιθανοκρατικό Μοντέλο Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Λανθάνουσα Σημασιολογική Ανάλυση (Latent Semantic Analysis) Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Ανάκτηση Πληροφορίας Το μοντέλο Boolean Το μοντέλο Vector Ταξινόμηση Μοντέλων IR Ανάκτηση Περιήγηση Κλασικά Μοντέλα Boolean Vector Probabilistic Δομικά Μοντέλα Non-Overlapping Lists Proximal Nodes Browsing

Διαβάστε περισσότερα

HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems. Μοντέλα Ανάκτησης Ι

HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems. Μοντέλα Ανάκτησης Ι Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Μοντέλα Ανάκτησης Ι (Retrieval Models) Γιάννης Τζίτζικας άλ ιάλεξη

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

Λύση (από: Τσιαλιαμάνης Αναγνωστόπουλος Πέτρος) (α) Το trie του λεξιλογίου είναι

Λύση (από: Τσιαλιαμάνης Αναγνωστόπουλος Πέτρος) (α) Το trie του λεξιλογίου είναι Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών HY463 - Συστήματα Ανάκτησης Πληροφοριών 2006-2007 Εαρινό Εξάμηνο 3 η Σειρά ασκήσεων (Ευρετηρίαση, Αναζήτηση σε Κείμενα και Άλλα Θέματα) (βαθμοί 12: όποιος

Διαβάστε περισσότερα

HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems. Ανάκτηση Πληροφοριών & Συστήματα Ομοτίμων (Peer-to-Peer Systems) & IR

HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems. Ανάκτηση Πληροφοριών & Συστήματα Ομοτίμων (Peer-to-Peer Systems) & IR Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2007 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Ανάκτηση Πληροφοριών & Συστήματα Ομοτίμων (Peer-to-Peer Systems)

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

Η ακρίβεια ορίζεται σαν το πηλίκο των ευρεθέντων συναφών εγγράφων προς τα ευρεθέντα έγγραφα. Άρα για τα τρία συστήµατα έχουµε τις εξής τιµές:

Η ακρίβεια ορίζεται σαν το πηλίκο των ευρεθέντων συναφών εγγράφων προς τα ευρεθέντα έγγραφα. Άρα για τα τρία συστήµατα έχουµε τις εξής τιµές: Πανεπιστήµιο Κρήτης, Τµήµα Επιστήµης Υπολογιστών HY463 - Συστήµατα Ανάκτησης Πληροφοριών 2005-2006 Εαρινό Εξάµηνο 1 η Σειρά Ασκήσεων (Αξιολόγηση Αποτελεσµατικότητας Ανάκτησης) Άσκηση 1 (4 βαθµοί) Θεωρείστε

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #06 Πιθανοτικό Μοντέλο 1 Άδεια χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Model) Retrieval Model)... 18

Model) Retrieval Model)... 18 Πανεπιστήμιο Πατρών Πολυτεχνική Σχολή Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής Αποδοτική Ιεραρχημένη Ανάκτηση Κοινωνικού Περιεχομένου με Χρήση Ταξονομιών Ετικετών Κοντοτάσιου Ιωάννα ΑΜ:

Διαβάστε περισσότερα

Διαδικασιακός Προγραμματισμός

Διαδικασιακός Προγραμματισμός Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 12 η Αναζήτηση/Ταξινόμηση Πίνακα Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα

Πληροφοριακά Συστήματα Πληροφοριακά Συστήματα Ανακτώντας Πληροφορία και Γνώση στον Παγκόσμιο Ιστό Γιάννης Τζίτζικας Επίκουρος Καθηγητής Τμήματος Επιστήμης Υπολογιστών και Συνεργαζόμενος Ερευνητής του ΙΤΕ-ΙΠ 3 Απριλίου 2015 Διάρθρωση

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

Κεφάλαιο 4. Διαίρει και Βασίλευε (Divide and Conquer) Παύλος Εφραιμίδης V1.1,

Κεφάλαιο 4. Διαίρει και Βασίλευε (Divide and Conquer) Παύλος Εφραιμίδης V1.1, Κεφάλαιο 4 Διαίρει και Βασίλευε (Divide and Conquer) Παύλος Εφραιμίδης V1.1, 2015-01-19 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 Διαίρει και Βασίλευε (Divide-and-Conquer) Διαίρει-και-βασίλευε

Διαβάστε περισσότερα

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο ΔΙΑΛΕΞΗ 3: Αλγοριθµική Ελαχιστοποίηση (Quine-McCluskey, tabular method)

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο ΔΙΑΛΕΞΗ 3: Αλγοριθµική Ελαχιστοποίηση (Quine-McCluskey, tabular method) ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 3: Αλγοριθµική Ελαχιστοποίηση (Quine-McCluskey, tabular method) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy)

Διαβάστε περισσότερα

Επερωτήσεις σύζευξης με κατάταξη

Επερωτήσεις σύζευξης με κατάταξη Επερωτήσεις σύζευξης με κατάταξη Επερωτήσεις κατάταξης Top-K queries Οι επερωτήσεις κατάταξης επιστρέφουν τις k απαντήσεις που ταιριάζουν καλύτερα με τις προτιμήσεις του χρήστη. Επερωτήσεις κατάταξης Top-K

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Επεξεργασία Ερωτήσεων

Επεξεργασία Ερωτήσεων Εισαγωγή Σ Β Σύνολο από προγράμματα για τη διαχείριση της Β Επεξεργασία Ερωτήσεων Αρχεία ευρετηρίου Κατάλογος συστήματος Αρχεία δεδομένων ΒΑΣΗ Ε ΟΜΕΝΩΝ Σύστημα Βάσεων εδομένων (ΣΒ ) Βάσεις Δεδομένων 2007-2008

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Στόχοι και αντικείμενο ενότητας. Πέρασμα Πίνακα σε Συνάρτηση (συν.) Πέρασμα Πίνακα σε Συνάρτηση. #8.. Ειδικά Θέματα Αλγορίθμων

Στόχοι και αντικείμενο ενότητας. Πέρασμα Πίνακα σε Συνάρτηση (συν.) Πέρασμα Πίνακα σε Συνάρτηση. #8.. Ειδικά Θέματα Αλγορίθμων Στόχοι και αντικείμενο ενότητας Πέρασμα Πίνακα σε Συνάρτηση #8.. Ειδικά Θέματα Αλγορίθμων Προβλήματα Αναζήτησης Γραμμική Αναζήτηση (Linear Search) Ενημέρωση Μέτρηση Δυαδική Αναζήτηση (Binary Search) Προβλήματα

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ

ΑΛΓΟΡΙΘΜΟΙ  Άνοιξη I. ΜΗΛΗΣ ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/inf161/ Άνοιξη 216 - I. ΜΗΛΗΣ ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 216 - Ι. ΜΗΛΗΣ 9 DP II 1 Dynamic Programming ΓΕΝΙΚΗ ΙΔΕΑ 1. Ορισμός υπο-προβλήματος/ων

Διαβάστε περισσότερα

auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο

auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο Σχεδίαση Αλγορίθμων Διαίρει και Βασίλευε http://delab.csd.auth.gr/courses/algorithms/ auth 1 Διαίρει και Βασίλευε Η γνωστότερη ρημέθοδος σχεδιασμού αλγορίθμων: 1. Διαιρούμε το στιγμιότυπο του προβλήματος

Διαβάστε περισσότερα

Ενότητα 3: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ

Ενότητα 3: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 3: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΔΕΔΟΜΕΝΑ ΑΛΓΟΡΙΘΜΟΙ -ΠΛΗΡΟΦΟΡΙΑ: Δεδομένα: Αναπαράσταση της Πραγματικότητας Μπορούν να γίνουν αντιληπτά με μια από τις αισθήσεις μας Πληροφορία: Προκύπτει από

Διαβάστε περισσότερα

Query-Driven Indexing for Scalable Peer-to-Peer Text Retrieval. Gleb Skobeltsyn, Toan Luu, Ivana Podnar Zarko, Martin Rajman, Karl Aberer

Query-Driven Indexing for Scalable Peer-to-Peer Text Retrieval. Gleb Skobeltsyn, Toan Luu, Ivana Podnar Zarko, Martin Rajman, Karl Aberer Query-Driven Indexing for Scalable Peer-to-Peer Text Retrieval Gleb Skobeltsyn, Toan Luu, Ivana Podnar Zarko, Martin Rajman, Karl Aberer Περιγραφή του προβλήματος Ευρετηριοποίηση μεγάλων συλλογών εγγράφων

Διαβάστε περισσότερα

Επεξεργασία Ερωτήσεων

Επεξεργασία Ερωτήσεων Εισαγωγή Επεξεργασία Ερωτήσεων ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήματος 1. Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασμός) 2. Προγραμματισμός (Σχεσιακή Άλγεβρα, SQL) ημιουργία/κατασκευή Εισαγωγή εδομένων

Διαβάστε περισσότερα

Αντισταθμιστική ανάλυση

Αντισταθμιστική ανάλυση Αντισταθμιστική ανάλυση Θεωρήστε έναν αλγόριθμο Α που χρησιμοποιεί μια δομή δεδομένων Δ : Κατά τη διάρκεια εκτέλεσης του Α η Δ πραγματοποιεί μία ακολουθία από πράξεις. Παράδειγμα: Θυμηθείτε το πρόβλημα

Διαβάστε περισσότερα

Επεξεργασία Ερωτήσεων

Επεξεργασία Ερωτήσεων Εισαγωγή Επεξεργασία Ερωτήσεων Σ Β Βάση εδομένων Η ομή ενός ΣΒ Βάσεις Δεδομένων 2006-2007 Ευαγγελία Πιτουρά 1 Βάσεις Δεδομένων 2006-2007 Ευαγγελία Πιτουρά 2 Εισαγωγή Εισαγωγή ΜΕΡΟΣ 1 (Χρήση Σ Β ) Γενική

Διαβάστε περισσότερα

Πιθανοκρατικό μοντέλο

Πιθανοκρατικό μοντέλο Πιθανοκρατικό μοντέλο Το μοντέλο MAP Αλέξανδρος Γκιμπερίτης Βασίλης Μπούργος Δημήτρης Σουραβλιάς 1 Εισαγωγικές έννοιες Κάθε έγγραφο d της συλλογής παριστάνεται από το δυαδικό διάνυσμα x = (x 1, x 2,...,

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2015-2016 Θέμα Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις προτάσεις 1-4 και δίπλα τη λέξη ΣΩΣΤΟ,

Διαβάστε περισσότερα

Gemini, FastMap, Applications. Εαρινό Εξάμηνο Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών

Gemini, FastMap, Applications. Εαρινό Εξάμηνο Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών Gemini,, Applications Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών Εαρινό Εξάμηνο 2011-2012 Table of contents 1 Table of contents 1 2 Table of contents 1 2 3 Table of contents

Διαβάστε περισσότερα

EFFICIENT TOP-K QUERYING OVER SOCIAL-TAGGING NETWORKS

EFFICIENT TOP-K QUERYING OVER SOCIAL-TAGGING NETWORKS EFFICIENT TOP-K QUERYING OVER SOCIAL-TAGGING NETWORKS Ralf Schenkel, Tom Crecelious, Mouna Kacimi, Sebastian Michel, Thomas Neumann, Josiane Xavier Parreira, Gerhard Weikum ΠΡΟΒΛΗΜΑ Εύρεση ενός αποτελεσματικού

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Εισαγωγή. Γενική Εικόνα του Μαθήµατος. Το εσωτερικό ενός Σ Β. Εισαγωγή. Εισαγωγή Σ Β Σ Β. Αρχεία ευρετηρίου Κατάλογος συστήµατος Αρχεία δεδοµένων

Εισαγωγή. Γενική Εικόνα του Μαθήµατος. Το εσωτερικό ενός Σ Β. Εισαγωγή. Εισαγωγή Σ Β Σ Β. Αρχεία ευρετηρίου Κατάλογος συστήµατος Αρχεία δεδοµένων Βάσεις εδοµένων 2003-2004 Ευαγγελία Πιτουρά 1 ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήµατος Επεξεργασία Ερωτήσεων Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασµός) Προγραµµατισµός (Σχεσιακή Άλγεβρα, SQL)

Διαβάστε περισσότερα

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Εισαγωγή στην Επεξεργασία Ερωτήσεων 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα 2 Βήματα Επεξεργασίας Τα βασικά βήματα στην επεξεργασία

Διαβάστε περισσότερα

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Εισαγωγή στην Επεξεργασία Ερωτήσεων Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα Βάσεις

Διαβάστε περισσότερα

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2007 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Στατιστικά Κειμένου Text Statistics Γιάννης Τζίτζικας ιάλεξη : 14a

Διαβάστε περισσότερα

Παλεπηζηήκην Πεηξαηώο Τκήκα Πιεξνθνξηθήο Πξόγξακκα Μεηαπηπρηαθώλ Σπνπδώλ «Πξνεγκέλα Σπζηήκαηα Πιεξνθνξηθήο»

Παλεπηζηήκην Πεηξαηώο Τκήκα Πιεξνθνξηθήο Πξόγξακκα Μεηαπηπρηαθώλ Σπνπδώλ «Πξνεγκέλα Σπζηήκαηα Πιεξνθνξηθήο» Παλεπηζηήκην Πεηξαηώο Τκήκα Πιεξνθνξηθήο Πξόγξακκα Μεηαπηπρηαθώλ Σπνπδώλ «Πξνεγκέλα Σπζηήκαηα Πιεξνθνξηθήο» Μεηαπηπρηαθή Γηαηξηβή Τίηινο Γηαηξηβήο Ανάπτυξη διαδικτυακού εκπαιδευτικού παιχνιδιού για τη

Διαβάστε περισσότερα

Notes. Notes. Notes. Notes. A B C x y z y z x z x y

Notes. Notes. Notes. Notes. A B C x y z y z x z x y Κοινωνική επιλογή και Ευημερία Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. 3 Δεκεμβρίου 01 Κώστας Ρουμανιάς (Δ.Ε.Ο.Σ.) Κοινωνική επιλογή και Ευημερία 3 Δεκεμβρίου 01 1 / 50 Κοινωνική επιλογή. Κοινωνική επιλογή.

Διαβάστε περισσότερα

ΜΥΥ105: Εισαγωγή στον Προγραμματισμό. Αναζήτηση και Ταξινόμηση Χειμερινό Εξάμηνο 2016

ΜΥΥ105: Εισαγωγή στον Προγραμματισμό. Αναζήτηση και Ταξινόμηση Χειμερινό Εξάμηνο 2016 ΜΥΥ105: Εισαγωγή στον Προγραμματισμό Αναζήτηση και Ταξινόμηση Χειμερινό Εξάμηνο 2016 Αναζήτηση και Ταξινόμηση Βασικές λειτουργίες σε προγράμματα Αναζήτηση (searching): Βρες ένα ζητούμενο στοιχείο σε μια

Διαβάστε περισσότερα

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό

Διαβάστε περισσότερα

Διάλεξη 04: Παραδείγματα Ανάλυσης

Διάλεξη 04: Παραδείγματα Ανάλυσης Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

Εισαγωγή στην. Εισαγωγή Σ Β. Αρχεία ευρετηρίου Κατάλογος. συστήματος. Αρχεία δεδομένων

Εισαγωγή στην. Εισαγωγή Σ Β. Αρχεία ευρετηρίου Κατάλογος. συστήματος. Αρχεία δεδομένων Εισαγωγή στην Επεξεργασία Ερωτήσεων 1 Εισαγωγή Σ Β Σύνολο από προγράμματα για τη διαχείριση της Β Αρχεία ευρετηρίου Κατάλογος ΒΑΣΗ Ε ΟΜΕΝΩΝ Αρχεία δεδομένων συστήματος Σύστημα Βάσεων εδομένων (ΣΒ ) 2 :

Διαβάστε περισσότερα

Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων

Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα

Διαβάστε περισσότερα

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Examinations Cambridge International General Certificate of Secondary Education *3148288373* GREEK 0543/04 Paper 4 Writing May/June 2016 1 hour Candidates answer on the Question

Διαβάστε περισσότερα

EU-Profiler: User Profiles in the 2009 European Elections

EU-Profiler: User Profiles in the 2009 European Elections ZA5806 EU-Profiler: User Profiles in the 2009 European Elections Country Specific Codebook Cyprus COUNTRY SPECIFIC CODEBOOK: CYPRUS Variable answer_29 answer_30 saliency_29 saliency_30 party_val_49 party_val_50

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ανάλυση Αλγορίθμων Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ανάλυση Αλγορίθμων Η ανάλυση αλγορίθμων περιλαμβάνει τη διερεύνηση του τρόπου

Διαβάστε περισσότερα

Το εσωτερικό ενός Σ Β

Το εσωτερικό ενός Σ Β Επεξεργασία Ερωτήσεων 1 Εισαγωγή ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήµατος Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασµός) Προγραµµατισµός (Σχεσιακή Άλγεβρα, SQL) ηµιουργία/κατασκευή Εισαγωγή εδοµένων

Διαβάστε περισσότερα

5. Απλή Ταξινόμηση. ομές εδομένων. Χρήστος ουλκερίδης. Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων

5. Απλή Ταξινόμηση. ομές εδομένων. Χρήστος ουλκερίδης. Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 5. Απλή Ταξινόμηση 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 11/11/2016 Εισαγωγή Η

Διαβάστε περισσότερα

Κατώτερα φράγματα Κατώτερο φράγμα: εκτίμηση της ελάχιστης εργασίας που απαιτείται για την επίλυση ενός προβλήματος. Παραδείγματα: Αριθμός συγκρίσεων π

Κατώτερα φράγματα Κατώτερο φράγμα: εκτίμηση της ελάχιστης εργασίας που απαιτείται για την επίλυση ενός προβλήματος. Παραδείγματα: Αριθμός συγκρίσεων π Περιορισμοί Αλγοριθμικής Ισχύος Κατηγοριοποίηση πολυπλοκοτήτων Κατώτερα φράγματα Κατώτερο φράγμα: εκτίμηση της ελάχιστης εργασίας που απαιτείται για την επίλυση ενός προβλήματος. Παραδείγματα: Αριθμός

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ

ΑΛΓΟΡΙΘΜΟΙ  Άνοιξη I. ΜΗΛΗΣ ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/inf161/ Άνοιξη 2016 - I. ΜΗΛΗΣ ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 2016 - Ι. ΜΗΛΗΣ 08 DP I 1 Dynamic Programming Richard Bellman (1953) Etymology (at

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 9η: Basics of Game Theory Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 9η: Basics of Game Theory Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 9η: Basics of Game Theory Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Course Outline Part II: Mathematical Tools Firms - Basics of Industrial

Διαβάστε περισσότερα

Data mining Εξόρυξη εδοµένων. o Association rules mining o Classification o Clustering o Text Mining o Web Mining

Data mining Εξόρυξη εδοµένων. o Association rules mining o Classification o Clustering o Text Mining o Web Mining Data mining Εξόρυξη εδοµένων o Association rules mining o Classification o Clustering o Text Mining o Web Mining ιάγραµµα της παρουσίασης Association rule Frequent itemset mining Γνωστοί Αλγόριθµοι Βελτιώσεις

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ταξινόμηση. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ταξινόμηση. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Ταξινόμηση Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Είσοδος n αντικείμενα a 1, a 2,..., a n με κλειδιά (συνήθως σε ένα πίνακα, ή λίστα, κ.τ.λ)

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Συναίνεση χωρίς την παρουσία σφαλμάτων Κατανεμημένα Συστήματα Ι 4η Διάλεξη 27 Οκτωβρίου 2016 Παναγιώτα Παναγοπούλου Κατανεμημένα Συστήματα Ι 4η Διάλεξη 1 Συναίνεση χωρίς την παρουσία σφαλμάτων Προηγούμενη

Διαβάστε περισσότερα

Σχεδίαση & Ανάλυση Αλγορίθμων

Σχεδίαση & Ανάλυση Αλγορίθμων Σχεδίαση & Ανάλυση Αλγορίθμων Ενότητα 3 Αλγόριθμοι Επιλογής Σταύρος Δ. Νικολόπουλος Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Αλγόριθμοι Επιλογής Γνωρίζουμε

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4: Μοντελοποίηση: Διανυσματικό μοντέλο Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Advanced Data Indexing

Advanced Data Indexing Advanced Data Indexing (Προηγμένη ευρετηρίαση δεδομένων) Μοντέλα - Αλγόριθμοι Ταξινόμηση Μοντέλα Δευτερεύουσας Μνήμης I/O Αποδοτικοί Αλγόριθμοι Οι εσωτερικές τεχνικές caching και prefetching των Η/Υ είναι

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών και Επικοινωνιακών Συστημάτων

Ασφάλεια Πληροφοριακών και Επικοινωνιακών Συστημάτων Πανεπιστήμιο Αιγαίου Τμήμα μηχανικών πληροφοριακών & επικοινωνιακών συστημάτων Ασφάλεια πληροφοριακών & επικοινωνιακών συστημάτων Ασφάλεια Πληροφοριακών και Επικοινωνιακών Συστημάτων Έλεγχος Πρόσβασης

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών NP-Completeness (2) x 1 x 1 x 2 x 2 x 3 x 3 x 4 x 4 12 22 32 11 13 21

Διαβάστε περισσότερα

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2008 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Στατιστικά Κειμένου Text Statistics Γιάννης Τζίτζικας ιάλεξη : 14a

Διαβάστε περισσότερα

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Examinations Cambridge International General Certificate of Secondary Education *4358398658* GREEK 0543/04 Paper 4 Writing May/June 2015 1 hour Candidates answer on the Question

Διαβάστε περισσότερα

Ερωτήσεις Χωροχρονικών. Προτύπων-Κινήσεων

Ερωτήσεις Χωροχρονικών. Προτύπων-Κινήσεων Ερωτήσεις Χωροχρονικών Προτύπων-Κινήσεων Μ. Χατζηελευθερίου Γ. Κόλλιος P. Bakalov Β. Ι. Τσότρας Τα Κίνητρα Η ανάγκη ανεύρεσης αντικειµένων τα οποία ακολουθούν συγκεκριµένες τροχιές. Παραδείγµατα: Εντοπισµός

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΣΤΑ ΠΛΑΙΣΙΑ ΤΟΥ ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΕΙΔΙΚΕΥΣΗΣ ΕΠΙΣΤΗΜΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ του Γεράσιμου Τουλιάτου

Διαβάστε περισσότερα

ΙΚΤΥΩΤΟ ΜΟΝΤΕΛΟ (Network Model) Μαθ. # 15

ΙΚΤΥΩΤΟ ΜΟΝΤΕΛΟ (Network Model) Μαθ. # 15 ΙΚΤΥΩΤΟ ΜΟΝΤΕΛΟ (Network Model) Μαθ. # 15 DBTG Γλώσσα επεξεργασίας Σκελετός ενός προγράµµατος Βρες την εγγραφή FIND FIND...... FIND Ανάκτησε την τιµή εγγραφής στον κατάλληλο επίγραµµα τύπου GET RECORD

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Διαίρει και Βασίλευε Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Διαίρει και Βασίλευε Divide and Conquer Η τεχνική διαίρει και βασίλευε αναφέρεται

Διαβάστε περισσότερα

Επεξεργασία ερωτημάτων

Επεξεργασία ερωτημάτων Επεξεργασία ερωτημάτων Βάσεις Δεδομένων Διδάσκων: Μαρία Χαλκίδη Σε τι αφορά η επεξεργασία ερωτημάτων? Αναφέρεται στο σύνολο των δραστηριοτήτων που περιλαμβάνονται στην ανάκτηση δεδομένων από μία βάση δεδομένων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ «ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ»

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ «ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ» ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ «ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ» ΗΜΕΡ.ΑΝΑΘΕΣΗΣ: Δευτέρα 21 Δεκεμβρίου 2015 ΗΜΕΡ.ΠΑΡΑΔΟΣΗΣ: Δευτέρα 25 Ιανουαρίου 2016 Διδάσκοντες:

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 17η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 17η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 17η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται: στο βιβλίο Artificia Inteigence A Modern Approach των S. Russe και

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΛΑΜΑΤΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ

Διαβάστε περισσότερα

Advanced Subsidiary Unit 1: Understanding and Written Response

Advanced Subsidiary Unit 1: Understanding and Written Response Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes

Διαβάστε περισσότερα

ΛΥΣΕΙΣ 2 ης ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ

ΛΥΣΕΙΣ 2 ης ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ ΛΥΣΕΙΣ 2 ης ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ Άσκηση 1 Θεωρείστε μια συλλογή κειμένων που περιέχει τα ακόλουθα 5 έγγραφα: Έγγραφο 1: «Computer Games» Έγγραφο 2: «Computer Games Computer Games» Έγγραφο 3: «Games Theory and

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΝΟΜΙΚΟ ΚΑΙ ΘΕΣΜΙΚΟ ΦΟΡΟΛΟΓΙΚΟ ΠΛΑΙΣΙΟ ΚΤΗΣΗΣ ΚΑΙ ΕΚΜΕΤΑΛΛΕΥΣΗΣ ΠΛΟΙΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που υποβλήθηκε στο

Διαβάστε περισσότερα

Εργασία Μαθήματος Αξία: 40% του τελικού σας βαθμού Ανάθεση: Παράδοση:

Εργασία Μαθήματος Αξία: 40% του τελικού σας βαθμού Ανάθεση: Παράδοση: Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών ΗΥ463 Συστήματα Ανάκτησης Πληροφοριών 2009-2010 Φθινοπωρινό Εξάμηνο Εργασία Μαθήματος Αξία: 40% του τελικού σας βαθμού Ανάθεση: Παράδοση: Σκοπός αυτής της

Διαβάστε περισσότερα

Investigating the fuzzy areas of accuracy and confidence of muslim pupils- learners of Greek as Second Language in Thrace, Greece

Investigating the fuzzy areas of accuracy and confidence of muslim pupils- learners of Greek as Second Language in Thrace, Greece Investigating the fuzzy areas of accuracy and confidence of muslim pupils- learners of Greek as Second Language in Thrace, Greece Polyxeni Intze & Nikolaos Mathioudakis Democritus University of Thrace,

Διαβάστε περισσότερα

Ανάκτηση πληροφορίας

Ανάκτηση πληροφορίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ανάκτηση πληροφορίας Ενότητα 6: Ο Αντεστραμμένος Κατάλογος Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Με βάση τα παραπάνω ορίζουμε την αναμενόμενη χρησιμότητα (expected utility) EU(A) μιας επιλογής A ως εξής:

Με βάση τα παραπάνω ορίζουμε την αναμενόμενη χρησιμότητα (expected utility) EU(A) μιας επιλογής A ως εξής: ΚΟΙΝΩΝΙΚΗ ΕΠΙΛΟΓΗ Στην παρούσα ενότητα θα ασχοληθούμε με την περιγραφή και ανάλυση των μηχανισμών με τους οποίους κοινωνικές ομάδες μπορούν να επιλέγουν μεταξύ εναλλακτικών προτάσεων. Απόρροια κάθε τέτοιας

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων

Σχεδίαση και Ανάλυση Αλγορίθμων Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4.0 Επιλογή Αλγόριθμοι Επιλογής Select και Quick-Select Σταύρος Δ. Νικολόπουλος 2016-17 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros

Διαβάστε περισσότερα

John Nash. Παύλος Στ. Εφραιµίδης. Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

John Nash. Παύλος Στ. Εφραιµίδης. Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ορισµένα αποτελέσµατα του τα σηµεία ισορροπίας Nash (NE Nash Equilibrium) ύπαρξη σηµείου

Διαβάστε περισσότερα