Ψηφιακές Υπογραφές (Digital Signatures)

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ψηφιακές Υπογραφές (Digital Signatures)"

Transcript

1 Ψηφιακές Υπογραφές (Digital Signatures) 1

2 Ψηφιακές υπογραφές (Digital signatures) ψηφιακός ( digital ): αποτελείται από ακολουθίες ψηφίων Συμπέρασμα: οτιδήποτε ψηφιακό μπορεί να αντιγραφεί π.χ., αντιγράφοντας ένα ψηφίο τη φορά: αφού μπορούμε να το διαβάσουμε, μπορούμε και να το αντιγράψουμε υπογραφή ( signature ): σχήμα που να μπορεί να διαβαστεί αλλά (στόχος είναι) να μη μπορεί να αντιγραφεί από κανέναν άλλον εκτός από τον συγγραφέα της Πώς μπορεί να δημιουργηθεί ψηφιακή υπογραφή που να μη μπορεί να αντιγραφεί; 2

3 Πού χρησιμοποιούνται ψηφιακές υπογραφές; Σκέψη 1: για ό,τι και οι κλασσικές υπογραφές σε χαρτί π.χ., σε επιταγές ή άλλα νομικά έγγραφα Σκέψη 2: μάλλον όχι αφού όταν κάνουμε πληρωμή είτε με πιστωτική κάρτα είτε με online τραπεζική συναλλαγή δεν υπογράφουμε πουθενά Πιστωτικές κάρτες: δεν απαιτούν υπογραφή Online τραπεζικές συναλλαγές: απαιτούν όνομα σύνδεσης και κωδικό για να πιστοποιηθεί η ταυτότητά μας και δεν απαιτείται υπογραφή για πραγματοποίηση πληρωμών 3

4 Πού χρησιμοποιούνται ψηφιακές υπογραφές; Συνήθως οι άλλοι υπογράφουν το υλικό που μάς στέλνουν, δεν υπογράφουμε εμείς το υλικό που στέλνουμε χωρίς βέβαια να το καταλαβαίνουμε αφού οι ψηφιακές υπογραφές επαληθεύονται αυτόματα από τον υπολογιστή μας Όταν κατεβάζουμε λογισμικό από το internet, το πρόγραμμα πλοήγησης που χρησιμοποιούμε (Internet Εxplorer, Firefox, Chrome, ) πιθανώς ελέγχει αν το λογισμικό έχει έγκυρη ψηφιακή υπογραφή και παρουσιάζει προειδοποίηση όπως οι παρακάτω 4

5 5

6 Πού χρησιμοποιούνται ψηφιακές υπογραφές; Αν το λογισμικό έχει έγκυρη ψηφιακή υπογραφή ο υπολογιστής μπορεί να πει με σιγουριά το όνομα της εταιρείας που έφτιαξε το λογισμικό αυτό φυσικά δεν εγγυάται ότι το λογισμικό είναι ασφαλές αλλά τουλάχιστον μπορούμε να πάρουμε απόφαση για το αν θα το κατεβάσουμε με βάση την εμπιστοσύνη που έχουμε στη συγκεκριμένη εταιρεία Αν το λογισμικό δεν έχει έγκυρη ψηφιακή υπογραφή ή αν δεν έχει καμμία υπογραφή δεν έχουμε καμμία διαβεβαίωση για την πηγή του λογισμικού μπορεί φυσικά το λογισμικό να φτιάχτηκε από κάποιο άτομο που δεν είχε χρόνο ή κίνητρο να δημιουργήσει μια ψηφιακή υπογραφή, οπότε εναπόκειται σε εμάς να αποφασίσουμε αν εμπιστευόμαστε ή όχι το συγκεκριμένο λογισμικό 6

7 Πού χρησιμοποιούνται ψηφιακές υπογραφές; Οι ψηφιακές υπογραφές χρησιμοποιούνται κυρίως σε πακέτα λογισμικού Επιπλέον, ο υπολογιστής μας λαμβάνει και επαληθεύει συνεχώς ψηφιακές υπογραφές επειδή συχνά χρησιμοποιούμενα πρωτόκολλα στο internet χρησιμοποιούν ψηφιακές υπογραφές για να επαληθεύσουν την ταυτότητα των υπολογιστών με τους οποίους αλληλεπιδρούμε Ασφαλείς εξυπηρετητές (servers) των οποίων η διεύθυνση ξεκινάει με https συνήθως στέλνουν στον υπολογιστή μας ένα ψηφιακά υπογεγραμμένο πιστοποιητικό πριν εγκαθιδρυθεί ασφαλής σύνδεση Ψηφιακές υπογραφές χρησιμοποιούνται για την επαλήθευση της γνησιότητας πολλών τμημάτων λογισμικού όπως επιπρόσθετων προγραμμάτων (plugins) για προγράμματα πλοήγησης στο internet Ίσως έχετε δει τέτοια μηνύματα όταν πλοηγήστε στο web Όταν κάποια websites μάς ζητάνε να γράψουμε το όνομά μας σε κάποια online φόρμα σαν υπογραφή, αυτό ΔΕΝ είναι ψηφιακή υπογραφή Τέτοιου είδους υπογραφή μπορεί εξάλλου απλούστατα να πλαστογραφηθεί από οποιονδήποτε γνωρίζει το όνομά μας Θα δούμε στη συνέχεια πώς μπορούν να δημιουργηθούν ψηφιακές υπογραφές που δεν μπορούν να πλαστογραφηθούν 7

8 Συνηθισμένες υπογραφές Όταν χρησιμοποιούμε τις παραδοσιακές υπογραφές σε χαρτί, αποσκοπούμε στο να επικυρώσουμε έγγραφα και φυσικά κάτι τέτοιο προϋποθέτει την ύπαρξη κι άλλων μερών (π.χ., ατόμων) Φανταστείτε ότι βρίσκουμε ένα χαρτί που λέει ότι Υπόσχομαι να δώσω 100 στην Κατερίνα. Υπογραφή, Εύη Πώς μπορούμε να επαληθεύσουμε ότι πράγματι η Εύη υπέγραψε αυτό το έγγραφο; Απάντηση: χρειαζόμαστε κάποιο αρχείο υπογραφών που ξέρουμε ότι είναι αληθές όπου μπορούμε να ελέγξουμε ότι η υπογραφή της Εύης είναι αυθεντική Στην πραγματικότητα, οργανισμοί όπως τράπεζες και υπηρεσίες παίζουν αυτό το ρόλο: κρατάνε πράγματι αρχεία με τις υπογραφές των πελατών τους τα οποία μπορούν να ελεγχθούν αν χρειαστεί Υποθέτουμε ότι στο δικό μας σενάριο ο οργανισμός που εμπιστευόμαστε καλείται τράπεζα χειρόγραφων υπογραφών και κρατάει αντίγραφο από τις υπογραφές ατόμων 8

9 Υπόσχομαι να δώσω 100 στην Κατερίνα. Υπογραφή Evi Εύη Χαρτί με χειρόγραφη υπογραφή τράπεζα χειρόγραφων υπογραφών Εύη Σταύρος Κατερίνα Evi Stavros Katerina Τράπεζα που φυλάσσει τις ταυτότητες των πελατών της μαζί με δείγματα χειρόγραφων υπογραφών τους 9

10 Συνηθισμένες υπογραφές Για να επαληθεύσουμε την υπογραφή της Εύης αρκεί να πάμε στην τράπεζα χειρόγραφων υπογραφών και να ελέγξουμε την υπογραφή της Εύης Στο σημείο αυτό κάνουμε δύο σημαντικές υποθέσεις: 1. υποθέτουμε ότι η τράπεζα είναι αξιόπιστη: θεωρητικά θα μπορούσαν οι υπάλληλοι της τράπεζας χειρόγραφων υπογραφών να τροποποιήσουν την υπογραφή της Εύης με την υπογραφή κάποιου άλλου 2. υποθέτουμε ότι κάποιος κακόβουλος δεν μπορεί να πλαστογραφήσει την υπογραφή της Εύης: κάτι τέτοιο δεν είναι γενικά αληθές αφού κάποιος πλαστογράφος μπορεί εύκολα να αναπαράγει μια υπογραφή Όπως θα δούμε στη συνέχεια, οι ψηφιακές υπογραφές ΔΕΝ είναι δυνατόν να πλαστογραφηθούν 10

11 Υπογραφή με χρήση λουκέτου Ξεχνάμε τις χειρόγραφες υπογραφές και υιοθετούμε μια νέα μέθοδο διαπίστωσης της γνησιότητας εγγράφων που βασίζεται στη χρήση λουκέτων, κλειδιών και κλειδωμένων κουτιών Κάθε συμμετέχων (δηλ., στο παράδειγμά μας η Εύη, ο Σταύρος και η Κατερίνα) λαμβάνει μεγάλο αριθμό λουκέτων: λουκέτα που δίνονται στο ίδιο άτομο είναι ίδια μεταξύ τους Τα λουκέτα κάθε συμμετέχοντος ανοίγουν αποκλειστικά από τον ίδιον (δεν μπορεί να τα ξεκλειδώσει κανείς άλλος) Όλα τα λουκέτα έχουν το εξής μη συνηθισμένο χαρακτηριστικό: έχουν βιομετρικό αισθητήρα που διασφαλίζει ότι μόνο ο κάτοχός τους μπορεί να τα ξεκλειδώσει (κάθε συμμετέχων μπορεί να ξεκλειδώσει τα δικά του λουκέτα αλλά κανενός άλλου) Αυτές είναι οι αρχικές υποθέσεις για την ιδέα της χρήσης φυσικών λουκέτων 11

12 Εύη Εύη Με βάση την ιδέα της χρήσης φυσικών λουκέτων, κάθε συμμετέχων διαθέτει μεγάλο αριθμό λουκέτων και κλειδιών και μόνο αυτός μπορεί να ξεκλειδώσει τα δικά του λουκέτα 12

13 Υπογραφή με χρήση λουκέτου Υποθέτουμε ότι η Εύη χρωστάει στη Κατερίνα 100 και η Κατερίνα θέλει να το καταγράψει με επαληθεύσιμο τρόπο: θέλει δηλ., ένα έγγραφο σαν αυτό που είδαμε αλλά χωρίς χειρόγραφη υπογραφή η Εύη φτιάχνει ένα έγγραφο που δηλώνει ότι η Εύη θα δώσει 100 στη Κατερίνα και το τοποθετεί σε ένα κουτί με λουκέτο, το κλειδώνει με ένα από τα λουκέτα της και δίνει το κλειδωμένο κουτί στη Κατερίνα: το κλειδωμένο κουτί αποτελεί τώρα την υπογραφή για το έγγραφο Παρατήρηση: θα ήταν καλή ιδέα είτε η Κατερίνα είτε κάποιος άλλος αξιόπιστος μάρτυρας να παρακολουθεί τη διαδικασία δημιουργίας της υπογραφής: αλλιώς η Εύη θα μπορούσε να τοποθετήσει ένα άσχετο έγγραφο στο κουτί 13

14 Η Εύη υπόσχεται να δώσει 100 στην Κατερίνα. Εύη Για να φτιάξει μια επαληθεύσιμη υπογραφή με χρήση φυσικού λουκέτου, η Εύη τοποθετεί αντίγραφο του εγγράφου σε ένα κουτί το οποίο κλειδώνει με ένα από τα δικά της λουκέτα 14

15 Υπογραφή με χρήση λουκέτου Πώς μπορεί τώρα η Κατερίνα να πιστοποιήσει τη γνησιότητα του εγγράφου της Εύης; Αν κάποιος άλλος ή ακόμα και η ίδια η Εύη αρνηθεί τη γνησιότητα του εγγράφου η Κατερίνα μπορεί να πει Ok Εύη, δως μου ένα από τα κλειδιά σου και θα προσπαθήσω να ανοίξω το κλειδωμένο κουτί με αυτό Παρουσία της Εύης και άλλων μαρτύρων, η Κατερίνα ξεκλειδώνει το λουκέτο και εμφανίζει το περιεχόμενο του κουτιού και παρατηρεί: Εύη, αφού είσαι το μόνο άτομο με πρόσβαση σε λουκέτα που ανοίγουν με αυτό το κλειδί κανείς άλλος δεν μπορεί να είναι υπεύθυνος για τα περιεχόμενα του κουτιού. Επομένως, εσύ έγραψες το σημείωμα και το τοποθέτησες στο κουτί και μου χρωστάς 100! Αυτή η μέθοδος πιστοποίησης γνησιότητας είναι πρακτική και ισχυρή: το μόνο πρόβλημα είναι ότι απαιτεί τη συνεργασία της Εύης: πριν να μπορέσει η Κατερίνα να αποδείξει οτιδήποτε πρέπει η Εύη να της δανείσει ένα από τα κλειδιά της Φυσικά η Εύη θα μπορούσε να αρνηθεί ή να προσποιηθεί ότι συνεργάζεται και να δώσει κλειδί που δεν ανοίγει το λουκέτο ισχυριζόμενη ότι το έγγραφο τοποθετήθηκε στο κουτί χωρίς δική της γνώση ή συναίνεση 15

16 Υπογραφή με χρήση λουκέτου Για να αποτρέψουμε την Εύη από το να ισχυριστεί ότι δεν κλείδωσε αυτή το κουτί, χρειαζόμαστε ένα τρίτο εμπιστευόμενο μέρος όπως μία τράπεζα που να φυλάσσει κλειδιά Τώρα οι συμμετέχοντες δίνουν στην τράπεζα ένα κλειδί που ανοίγει τα δικά τους λουκέτα Οπότε αν η Κατερίνα χρειαστεί να αποδείξει ότι η Εύη έγραψε το έγγραφο πηγαίνει το κουτί στην τράπεζα παρουσία κάποιου μάρτυρα και το ξεκλειδώνει εκεί με το κλειδί της Εύης Το ότι το κουτί ανοίγει αποδεικνύει ότι μόνο η Εύη μπορεί να είναι υπεύθυνη για το περιεχόμενο του κουτιού και ότι το κουτί περιέχει το έγγραφο του οποίου τη γνησιότητα προσπαθεί να αποδείξει η Κατερίνα Τράπεζα Αποθήκευσης κλειδιών Εύη Σταύρος Κατερίνα Εύη Σταύρος Κατερίνα 16

17 Πώς χρησιμοποιούνται οι ψηφιακές υπογραφές; 17 Σχήματα από

18 Υπογραφή με χρήση πολλαπλασιαστικού λουκέτου Η ιδέα με τα κλειδιά και τα λουκέτα που μόλις περιγράψαμε αποτελεί την απαραίτητη προσέγγιση για τις ψηφιακές υπογραφές Προφανώς, δεν μπορούμε να χρησιμοποιούμε λουκέτα και κλειδιά για υπογραφές που πρέπει να μεταδοθούν ηλεκτρονικά Θα αντικαταστήσουμε επομένως λουκέτα και κλειδιά με ανάλογα μαθηματικά αντικείμενα που μπορούν να αναπαρασταθούν ψηφιακά Τα λουκέτα θα αναπαρασταθούν από αριθμούς Το κλείδωμα/ξεκλείδωμά τους θα αναπαρασταθεί από πολλαπλασιασμό με αριθμητική ρολογιού (που ουσιαστικά κάνει χρήση υπολοίπων διαιρέσεων) 18

19 Υπογραφή με χρήση πολλαπλασιαστικού λουκέτου Οι υπολογιστές για να δημιουργήσουν ψηφιακές υπογραφές που δεν μπορούν να πλαστογραφηθούν χρησιμοποιούν τεράστια μεγέθη ρολογιού συνήθως μήκους δεκάδων ή εκατοντάδων ψηφίων Εμείς για χάρη του παραδείγματος θα χρησιμοποιήσουμε μέγεθος ρολογιού 11 δείτε στην επόμενη διαφάνεια έναν πίνακα που περιέχει όλες τις τιμές που προκύπτουν από πολλαπλασιασμό αριθμών μικρότερων του 11 Τότε για να υπολογίζουμε το 7 5 κάνουμε πρώτα τον υπολογισμό με κανονική αριθμητική: 7 5 = 35 και στη συνέχεια λαμβάνουμε το υπόλοιπο της διαίρεσης με 11 που είναι 2 (35=3*11+2) Κοιτάζοντας στον πίνακα στη γραμμή 7 και τη στήλη 5 (ή ανάποδα στήλη 7, γραμμή 5) βλέπουμε ότι το αποτέλεσμα είναι πράγματι 2 19

20 20 Πίνακας πολλαπλασιασμού για μέγεθος ρολογιού 11 Κάθε κελί προκύπτει ως: (γραμμή*στήλη)mod 11, δηλ., κρατάμε το υπόλοιπο της διαίρεσης (γραμμή*στήλη)/

21 Υπογραφή με χρήση πολλαπλασιαστικού λουκέτου Μέχρι τώρα αναζητούσαμε τρόπους για να υπογράψει η Εύη ένα μήνυμα προς την Κατερίνα το οποίο ήταν γραμμένο στα αγγλικά Από εδώ και πέρα θα δουλεύουμε μόνο με αριθμούς και τα μηνύματα θα είναι «μεταφρασμένα» σε ακολουθίες αριθμών (αφού είναι πάντα δυνατόν να μεταφραστούν ακολουθίες αριθμών σε γράμματα και αντίστροφα) Υποθέτουμε ότι το μήνυμα που θέλει να υπογράψει η Εύη είναι εξαιρετικά σύντομο, π.χ., ένα μόνο ψηφίο πώς θα το κάνει με χρήση της ιδέας του πολλαπλασιαστικού λουκέτου; η Εύη χρειάζεται ένα λουκέτο και ένα κλειδί που να το ξεκλειδώνει Επιλέγει πρώτα μέγεθος ρολογιού Μετά επιλέγει κάποιον αριθμό μικρότερο από το μέγεθος ρολογιού σαν το αριθμητικό της λουκέτο (στην πραγματικότητα, κάποιοι αριθμοί είναι καλύτεροι): υποθέτουμε ότι η Εύη διαλέγει μέγεθος ρολογιού 11 και για λουκέτο τον αριθμό 6 21

22 Η Εύη θα δώσει 100 στην Κατερίνα. Η Εύη θα δώσει 100 στην Κατερίνα. Εύη Εύη μήνυμα λουκέτο υπογραφή Πολλαπλασιασμός με 6, Με μέγεθος ρολογιού 11 Το μήνυμα που θέλουμε να υπογράψουμε είναι ο αριθμός 5, το λουκέτο είναι ένας άλλος αριθμός, το 6 και η διαδικασία κλειδώματος αντιστοιχεί σε πολλαπλασιασμό με δοσμένο μέγεθος ρολογιού: το τελικό αποτέλεσμα, δηλ., ο αριθμός 8 αποτελεί την ψηφιακή υπογραφή για το μήνυμα 22

23 Υπογραφή με χρήση πολλαπλασιαστικού λουκέτου Πώς κλειδώνει η Εύη το μήνυμά της στο κουτί χρησιμοποιώντας το λουκέτο της; Μέσω πολλαπλασιασμού ως εξής: η κλειδωμένη εκδοχή του μηνύματός της είναι το λουκέτο της πολλαπλασιασμένο με το μήνυμα (χρησιμοποιώντας μέγεθος ρολογιού 11) Υποθέτουμε ότι το μήνυμα της Εύης είναι το 5 Το κλειδωμένο μήνυμά της θα είναι το 6 5, που με χρήση μεγέθους ρολογιού 11 είναι το 8 που αποτελεί και την ψηφιακή υπογραφή της Εύης 23

24 Υπογραφή με χρήση πολλαπλασιαστικού λουκέτου Πώς μπορούμε να ξεκλειδώσουμε το κλειδωμένο μήνυμα; Χρησιμοποιώντας κάποιου είδους μαθηματικό κλειδί Η ιδέα είναι να ξαναχρησιμοποιήσουμε πολλαπλασιασμό με χρήση αριθμητικής ρολογιού αλλά αυτή τη φορά θα πολλαπλασιάσουμε με διαφορετικό αριθμό ειδικά επιλεγμένο η Εύη χρησιμοποιεί μέγεθος ρολογιού 11 και σα λουκέτο τον αριθμό 6 Αποδεικνύεται ότι το κλειδί που ξεκλειδώνει το μήνυμα είναι το 2 ΓΙΑΤΙ; 1=μέγεθος ρολογιού*k+λουκέτο*κλειδί (1=11*(-1)+6*κλειδί) Για να δούμε αν ισχύει αλήθεια αυτό: ξεκλειδώνουμε το κλειδωμένο μήνυμα πολλαπλασιάζοντας με το κλειδί η Εύη κλείδωσε το μήνυμα 5 με το λουκέτο 6 και έλαβε το κλειδωμένο μήνυμα ή αλλιώς την ψηφιακή υπογραφή 8 Για να ξεκλειδώσουμε, παίρνουμε το 8 και το πολλαπλασιάζουμε με το κλειδί 2 που δίνει 5 με χρήση αριθμητικής ρολογιού μεγέθους 11 Δείτε επίσης ότι το μήνυμα 3 γίνεται 7 όταν κλειδωθεί και ξεκλειδώνεται σε 3 όταν χρησιμοποιηθεί το κλειδί Όμοια, το μήνυμα 2 γίνεται 1 όταν κλειδωθεί και ξεκλειδώνεται σε 2 όταν χρησιμοποιηθεί το κλειδί 24

25 Η Εύη θα δώσει 100 στην Κατερίνα. Η Εύη θα δώσει 100 στην Κατερίνα. Εύη Η Εύη θα δώσει 100 στην Κατερίνα. Εύη Εύη μήνυμα λουκέτο υπογραφή κλειδί επαληθευμένη υπογραφή Πολλαπλασιασμός με 6, Με μέγεθος ρολογιού 11 Πολλαπλασιασμός με 6, Με μέγεθος ρολογιού 11 Πολλαπλασιασμός με 2, Με μέγεθος ρολογιού 11 Πολλαπλασιασμός με 2, Με μέγεθος ρολογιού 11 Πολλαπλασιασμός με 6, Με μέγεθος ρολογιού 11 Πολλαπλασιασμός με 2, Με μέγεθος ρολογιού 11 Η διαδικασία κλειδώματος παράγει μια ψηφιακή υπογραφή ενώ η διαδικασία ξεκλειδώματος παράγει ένα μήνυμα: αν το ξεκλειδωμένο μήνυμα ταιριάζει με το αρχικό, η ψηφιακή υπογραφή επαληθεύεται και πιστοποιείται η γνησιότητα του αρχικού μηνύματος αλλιώς το αρχικό μήνυμα έχει πλαστογραφηθεί 25

26 Υπογραφή με χρήση πολλαπλασιαστικού λουκέτου Στο σχήμα της επόμενης διαφάνειας η τιμή του λουκέτου είναι 9 και η τιμή του αντίστοιχου κλειδιού είναι το 5 (τιμή ρολογιού =11) Στο πρώτο παράδειγμα το μήνυμα είναι το 4 και η ψηφιακή του υπογραφή το 3 η υπογραφή ξεκλειδώνεται δίνοντας το 4 που ταιριάζει με το αρχικό μήνυμα η υπογραφή είναι γνήσια Στο δεύτερο παράδειγμα το μήνυμα είναι το 8 και η ψηφιακή υπογραφή το 6 Στο τελευταίο παράδειγμα η ψηφιακή υπογραφή είναι πλαστογραφημένη: το μήνυμα είναι το 8 αλλά η υπογραφή του είναι το 7 η υπογραφή όταν ξεκλειδωθεί δίνει το 2 που δεν ταιριάζει με το αρχικό μήνυμα 26

27 Μήνυμα Ψηφιακή υπογραφή Ξεκλειδωμένη υπογραφή Ταιριάζει με το μήνυμα; Πλαστογραφημένη υπογραφή; Για την αυθεντική υπογραφή, πολλαπλασιάζουμε το μήνυμα με τιμή λουκέτου 9. Για πλαστογράφηση, διαλέγουμε τυχαίο αριθμό. Για να ξεκλειδώσουμε την υπογραφή, πολλαπλασιάζουμε με τιμή κλειδιού ΝΑΙ ΟΧΙ ΝΑΙ ΟΧΙ ΟΧΙ! ΝΑΙ! Δείτε πώς ανιχνεύεται πλαστογραφημένη ψηφιακή υπογραφή: Στα παραδείγματα χρησιμοποιείται το 9 σα λουκέτο και το 5 σαν κλειδί (τιμή ρολογιού =11) Οι πρώτες δύο υπογραφές είναι γνήσιες ενώ η τρίτη πλαστογραφημένη 27

28 Υπογραφή με χρήση πολλαπλασιαστικού λουκέτου Στο αρχικό σενάριο με τα φυσικά λουκέτα και κλειδιά, τα λουκέτα είχαν βιομετρικούς αισθητήρες για να αποτραπεί η χρήση τους από άλλους που δεν είναι κάτοχοί τους Το ίδιο ισχύει και για τα πολλαπλασιαστικά λουκέτα και κλειδιά: η Εύη κρατάει κρυφό τον αριθμό του λουκέτου της: κάθε φορά που υπογράφει ένα μήνυμα μπορεί να αποκαλύψει και το μήνυμα και την ψηφιακή υπογραφή αλλά όχι τον αριθμό λουκέτου που χρησιμοποίησε για να παράγει την υπογραφή η Εύη πρέπει να κρατήσει επίσης κρυφά το μέγεθος ρολογιού και το αριθμητικό της κλειδί; ΟΧΙ η Εύη μπορεί να ανακοινώσει το μέγεθος ρολογιού και το κλειδί (π.χ. σε ένα website) χωρίς να αποδυναμώσει τον τρόπο επαλήθευσης της γνησιότητας της υπογραφής της: όποιος γνωρίζει το μέγεθος ρολογιού και το κλειδί μπορεί να διαπιστώσει τη γνησιότητα της υπογραφής της Εύης 28

29 Υπογραφή με χρήση πολλαπλασιαστικού λουκέτου Η μέθοδος αυτή εξαλείφει την ανάγκη ύπαρξης εμπιστευόμενης τράπεζας που υπήρχε τόσο στις χειρόγραφες υπογραφές όσο και στις υπογραφές με φυσικό λουκέτο-κλειδί; ΟΧΙ Χωρίς την ύπαρξη εμπιστευόμενης τράπεζας: η Εύη θα μπορούσε να διαδώσει ψεύτικη τιμή κλειδιού κάνοντας τις υπογραφές της να εμφανίζονται άκυρες Επιπλέον, οι εχθροί της Εύης θα μπορούσαν να δημιουργήσουν νέο αριθμητικό λουκέτο και αντίστοιχο αριθμητικό κλειδί, να ανακοινώσουν σε ένα website το κλειδί σα στοιχείο της Εύης και στη συνέχεια να υπογράφουν ψηφιακά κάθε μήνυμα που θέλουν με χρήση του νέου αριθμητικού λουκέτου τους: καθένας που πιστεύει ότι το νέο κλειδί ανήκει στη Εύη θα πιστέψει ότι το μήνυμα των εχθρών της υπεγράφη από την ίδια τη Εύη Η τράπεζα δεν διατηρεί κρυφό το κλειδί και το μέγεθος ρολογιού της Εύης αλλά αποτελεί την εμπιστευόμενη οντότητα για την τιμή του αριθμητικού κλειδιού και του μεγέθους ρολογιού της Εύης 29

30 όνομα τράπεζα αριθμητικών κλειδιών μέγεθος ρολογιού αριθμητικό κλειδί Εύη 11 2 Σταύρος Κατερίνα Τράπεζα αριθμητικών κλειδιών Ο ρόλος της δεν είναι να κρατάει κρυφά τα αριθμητικά κλειδιά και τα μεγέθη ρολογιών. Η τράπεζα αποτελεί την εμπιστευόμενη αρχή για να λάβει κανείς το πραγματικό κλειδί και το πραγματικό μέγεθος ρολογιού για κάθε άτομο και αποκαλύπτει αυτή την πληροφορία ελεύθερα σε όποιον τη ζητήσει. 30

31 Υπογραφή με χρήση πολλαπλασιαστικού λουκέτου Τα αριθμητικά λουκέτα είναι ιδιωτικά - τα αριθμητικά κλειδιά και μεγέθη ρολογιού είναι δημόσια αν και ακούγεται περίεργο κλειδί να διατίθεται δημόσια θυμηθείτε ότι στο σενάριο με τα φυσικά λουκέτα και κλειδιά, η τράπεζα κρατούσε αντίγραφο του κλειδιού της Εύης και το δάνειζε σε όποιον ήθελε να ελέγξει τη γνησιότητα της υπογραφής της Εύης κι εκεί το κλειδί ήταν κατά μία έννοια δημόσιο: το ίδιο ισχύει και για τα αριθμητικά κλειδιά Τι γίνεται αν θέλουμε να υπογράψουμε μήνυμα με περισσότερα τους ενός ψηφία; Λύση 1: χρησιμοποιούμε πολύ μεγαλύτερο μέγεθος ρολογιού: αν π.χ., χρησιμοποιήσουμε ρολόι 100 ψηφίων ακριβώς οι ίδιες μέθοδοι μάς επιτρέπουν να υπογράψουμε μηνύματα των 100 ψηφίων με υπογραφές των 100 ψηφίων Λύση 2: μηνύματα με περισσότερους από 100 χαρακτήρες μπορούν να τεμαχιστούν σε τμήματα των 100 χαρακτήρων και καθένα να υπογραφεί ξεχωριστά Λύση 3: υπάρχει και καλύτερος τρόπος να γίνει το (2): αποδεικνύεται ότι μεγάλα μηνύματα προκειμένου να υπογραφούν μπορούν να «χωρέσουν» σε ένα μόνο τμήμα π.χ., 100 ψηφίων με εφαρμογή μετασχηματισμού που είναι γνωστός ως κρυπτογραφική συνάρτηση κατακερματισμού (cryptographic hash function) Έχουμε ξανασυναντήσει τις κρυπτογραφικές συναρτήσεις κατακερματισμού σα μέθοδο αθροίσματος ελέγχου (checksum) της ορθότητας μεγάλων μηνυμάτων Η ιδέα χρήση των κρυπτογραφικών συναρτήσεων κατακερματισμού είναι η εξής: μεγάλα μηνύματα μετατρέπονται σε μικρότερα πριν υπογραφούν και επομένως αρκετά 31 μεγάλα μηνύματα όπως πακέτα λογισμικού μπορούν να υπογραφούν αποδοτικά

32 Υπογραφή με χρήση πολλαπλασιαστικού λουκέτου Από πού προέρχονται τα αριθμητικά λουκέτα και κλειδιά; Για πλήρη εξήγηση απαιτείται γνώση Θεωρίας Αριθμών αλλά συνοπτικά η ουσία είναι η εξής: Αν το μέγεθος ρολογιού είναι πρώτος αριθμός τότε κάθε θετική τιμή μικρότερη από το μέγεθος του ρολογιού μπορεί να δουλέψει σα λουκέτο διαφορετικά η κατάσταση είναι πιο περίπλοκη Πρώτος είναι ένας αριθμός όταν που δεν έχει άλλους διαιρέτες εκτός από τον εαυτό του και τη μονάδα (το μέγεθος ρολογιού 11 που χρησιμοποιούμε είναι πράγματι πρώτος αριθμός) 32

33 Υπογραφή με χρήση πολλαπλασιαστικού λουκέτου Άρα εύκολα διαλέγουμε αριθμητικό λουκέτο ειδικά αν το μέγεθος ρολογιού είναι πρώτος αριθμός Μετά πρέπει να καθορίσουμε κι ένα αριθμητικό κλειδί: αυτό αποτελεί ένα πολύ ενδιαφέρον, πολύ παλιό μαθηματικό πρόβλημα του οποίου η λύση είναι γνωστή αιώνες πριν και η βασική ιδέα της είναι ακόμα πιο παλιά: πρόκειται για τεχνική που είναι γνωστή ως ο εκτεταμένος αλγόριθμος του Ευκλείδη και παρουσιάστηκε από τον ίδιον περισσότερο από 2000 χρόνια πριν Επομένως, δεδομένης μιας τιμής λουκέτου, ο υπολογιστής μας βρίσκει αντίστοιχη τιμή κλειδιού χρησιμοποιώντας τον εκτεταμένο αλγόριθμο του Ευκλείδη: 1=μέγεθος ρολογιού*k+λουκέτο*κλειδί 33

34 Υπογραφή με χρήση πολλαπλασιαστικού λουκέτου Συνοψίζοντας, ποια είναι η ακολουθία στην πολλαπλασιαστική προσέγγιση; Οι τιμές λουκέτων είναι ιδιωτικές δηλ., μυστικές Ο συμμετέχων σε σχήμα δημιουργίας ψηφιακών υπογραφών επιλέγει χωρίς περιορισμούς μέγεθος ρολογιού που ανακοινώνεται δημόσια και τιμή λουκέτου που παραμένει ιδιωτική και στη συνέχεια παράγει ένα αντίστοιχο κλειδί με χρήση υπολογιστή (μέσω του εκτεταμένου αλγόριθμου του Ευκλείδη για την περίπτωση των πολλαπλασιαστικών κλειδιών) Το κλειδί αποθηκεύεται σε μια εμπιστευόμενη τράπεζα η οποία το αποκαλύπτει σε οποιονδήποτε το ζητάει Το πρόβλημα με την πολλαπλασιαστική προσέγγιση είναι ότι η ιδέα που χρησιμοποιείται για την παραγωγή του κλειδιού (δηλ., ο εκτεταμένος αλγόριθμος του Ευκλείδη) μπορεί να χρησιμοποιηθεί και αντίστροφα: με την ίδια τεχνική μπορεί ένας υπολογιστής να παράγει τιμή λουκέτου που αντιστοιχεί σε δοσμένη τιμή κλειδιού Επομένως: αφού οι τιμές των κλειδιών είναι δημόσιες, οι υποτιθέμενες μυστικές τιμές λουκέτων μπορούν να υπολογιστούν από τον καθένα Κατά συνέπεια, από τη στιγμή που γνωρίζουμε την τιμή του λουκέτου κάποιου μπορούμε να πλαστογραφήσουμε την ψηφιακή του υπογραφή 34

35 Αποστολέας Διαλέγει και ανακοινώνει μέγεθος ρολογιού (πρώτος αριθμός): 11 Διαλέγει και κρατάει κρυφή τιμή λουκέτου (αριθμός μικρότερος από μέγεθος ρολογιού): 6 Υπολογίζει κλειδί και το δίνει στην τράπεζα: 1=μέγεθος ρολογιού*k+λουκέτο*κλειδί 1=11*(-1)+6*κλειδί κλειδί =2 Δημιουργεί ψηφιακή υπογραφή για το μήνυμα 5: 5*τιμή λουκέτου mod μέγεθος ρολογιού=5*6mod11= 30mod11=8 Στέλνει δημόσια το μήνυμα και την ψηφιακή του υπογραφή Internet Κακόβουλος υποκλοπέας Μέγεθος ρολογιού: 11 Κλειδί: 2 Στέλνει: (5,8) Θέλει να βρει το λουκέτο του αποστολέα Υπολογίζει κάθε πιθανό λουκέτο για το οποίο ισχύει: 1=μέγεθος ρολογιού*k+λουκέτο*κλειδί Η τιμή του λουκέτου του αποστολέα είναι αυτή για την οποία ισχύει: μήνυμα*τιμή λουκέτου mod μέγεθος ρολογιού = 5*τιμή λουκέτου mod 11 = 8 Παραλήπτης Παίρνει το (5,8), ξεχωρίζει το μήνυμα = 5 από την ψηφιακή υπογραφή του αποστολέα = 8 Θέλει να διαπιστώσει αν πράγματι ο αποστολέας υπέγραψε ψηφιακά το μήνυμα Ξεκλειδώνει την ψηφιακή υπογραφή: (μήνυμα*κλειδί)modμέγεθος ρολογιού=(8*2)mod11=16mod11=5 Το 5 ταιριάζει με το μήνυμα πράγματι ο αποστολέας υπέγραψε το μήνυμα

36 Υπογραφή με χρήση εκθετικού λουκέτου Στη συνέχεια, θα παρουσιάσουμε μία αναβάθμιση του πολλαπλασιαστικού συστήματος παραγωγής ψηφιακών υπογραφών που είδαμε σε ένα νέο που είναι γνωστό με το όνομα RSA και είναι αυτό που χρησιμοποιείται στην πράξη Το νέο σύστημα χρησιμοποιεί αντί για τον πολλαπλασιασμό την πράξη ύψωση σε δύναμη (την έχουμε ξαναδεί όταν συζητήσαμε την κρυπτογράφηση με χρήση δημοσίου κλειδιού - public key cryptography PKC) σε συνδυασμό με αριθμητική ρολογιού 3 4 ( 3 εις την 4 ) σημαίνει 3 3x3 3 Στην έκφραση 3 4, το 4 καλείται εκθέτης ή δύναμη και το 3 καλείται βάση Η διαδικασία ύψωσης μίας βάσης σε έναν εκθέτη καλείται ύψωση σε δύναμη ( exponentiation ) Στα παραδείγματα που θα παρουσιάσουμε στη συνέχεια χρησιμοποιείται μέγεθος ρολογιού 22 και οι εκθέτες 3 και 7 36

37 Υπογραφή με χρήση εκθετικού λουκέτου Δείτε τον πίνακα για ύψωση σε δύναμη 3 και 7 με μέγεθος ρολογιού 22 Ασχολούμαστε με τη γραμμή n = 4 Χωρίς τη χρήση αριθμητικής ρολογιού, 4 3 = = 64 Με χρήση αριθμητικής ρολογιού μεγέθους 22, παρατηρούμε ότι το 22 χωράει στο 64 δύο φορές (δίνοντας 44) και μένουν 20 Επομένως, 4 3 mod22=20 Όμοια, προκύπτουν και οι άλλες τιμές του πίνακα 37

38 Υπογραφή με χρήση εκθετικού λουκέτου Το νέο σύστημα δουλεύει όπως και το πολλαπλασιαστικό με τη μόνη διαφορά ότι: αντί να κλειδώνουμε και να ξεκλειδώνουμε μηνύματα με χρήση πολλαπλασιασμού, τώρα χρησιμοποιούμε ύψωση σε δύναμη (όπως και πριν) η Εύη επιλέγει πρώτα ένα μέγεθος ρολογιού και το ανακοινώνει δημόσια: εδώ το μέγεθος ρολογιού είναι 22 Μετά επιλέγει μια μυστική τιμή λουκέτου που μπορεί να είναι οποιοσδήποτε αριθμός μικρότερος του μεγέθους ρολογιού: εδώ επιλέγεται για τιμή λουκέτου το 3 Μετά χρησιμοποιεί τον υπολογιστή για να υπολογίσει την τιμή του κλειδιού για δοσμένη τιμή λουκέτου και μεγέθους ρολογιού (ο υπολογιστής μπορεί να υπολογίσει πολύ γρήγορα το κλειδί με χρήση πολύ γνωστής μαθηματικής τεχνικής): εδώ, για τιμή λουκέτου 3, η τιμή του κλειδιού προκύπτει ότι είναι 7 38

39 Υπογραφή με χρήση εκθετικού λουκέτου Αν το αρχικό μήνυμα είναι το 4 η ψηφιακή υπογραφή είναι 20 Υψώνουμε το μήνυμα σε δύναμη ίση με την τιμή του λουκέτου δηλ., υπολογίζουμε το 4 3 που με χρήση αριθμητικής ρολογιού μεγέθους 22 δίνει 20 Όταν η Κατερίνα θέλει να επαληθεύσει την ψηφιακή υπογραφή της Εύης που είναι 20 : Ζητάει από την τράπεζα τις τιμές του μεγέθους ρολογιού και του κλειδιού που χρησιμοποιεί η Εύη η Κατερίνα παίρνει την ψηφιακή υπογραφή, υψώνει στη δύναμη του κλειδιού και κρατάει το υπόλοιπο της διαίρεσης με το μέγεθος του ρολογιού λαμβάνοντας τελικά : 20 7 = 4 Αν το αποτέλεσμα ταιριάζει με το αρχικό μήνυμα, η ψηφιακή υπογραφή είναι γνήσια 39

40 Η Εύη θα δώσει 100 στην Κατερίνα. Η Εύη θα δώσει 100 στην Κατερίνα. Εύη Η Εύη θα δώσει 100 στην Κατερίνα. Εύη Εύη μήνυμα λουκέτο υπογραφή κλειδί επαληθευμένη υπογραφή Ύψωση σε δύναμη 3, Με μέγεθος ρολογιού 22 Ύψωση σε δύναμη 3, Με μέγεθος ρολογιού 22 Ύψωση σε δύναμη 3, Με μέγεθος ρολογιού Ύψωση σε δύναμη 7, Με μέγεθος ρολογιού 22 Ύψωση σε δύναμη 7, Με μέγεθος ρολογιού 22 Ύψωση σε δύναμη 7, Με μέγεθος ρολογιού Κλείδωμα και ξεκλείδωμα μηνυμάτων με χρήση ύψωσης σε δύναμη 40

41 Υπογραφή με χρήση εκθετικού λουκέτου Δείτε στον επόμενο πίνακα πώς γίνεται η επαλήθευση ψηφιακών υπογραφών Στα δύο πρώτα παραδείγματα, οι ψηφιακές υπογραφές είναι γνήσιες Στο τρίτο παράδειγμα, το μήνυμα είναι 8 και η ψηφιακή υπογραφή 9 Ξεκλειδώνοντάς το χρησιμοποιώντας το κλειδί και το μέγεθος του ρολογιού, παίρνουμε 9 7 mod22 = 15, που ΔΕΝ ταιριάζει με το αρχικό μήνυμα η ψηφιακή υπογραφή έχει πλαστογραφηθεί Μήνυμα Ψηφιακή υπογραφή Ξεκλειδωμένη υπογραφή Ταιριάζει με το μήνυμα; Πλαστογραφημένη υπογραφή; Για την αυθεντική υπογραφή, υψώνουμε το μήνυμα σε δύναμη ίση με την τιμή λουκέτου 3. Για πλαστογράφηση, διαλέγουμε τυχαίο αριθμό. Για να ξεκλειδώσουμε την υπογραφή, υψώνουμε σε δύναμη ίση με την τιμή κλειδιού ΝΑΙ ΟΧΙ ΝΑΙ ΟΧΙ! ΟΧΙ ΝΑΙ! 41

42 Αποστολέας Διαλέγει και ανακοινώνει μέγεθος ρολογιού (γινόμενο δύο πρώτων αριθμών p,q): 2*11=22 Υπολογίζει και κρατάει δευτερεύον μέγεθος ρολογιού: (p-1)*(q-1)=1*10=10 Διαλέγει και κρατάει κρυφή τιμή λουκέτου (αριθμός μικρότερος από μέγεθος ρολογιού): 3 Υπολογίζει κλειδί και το δίνει στην τράπεζα: κλειδί=(δευτερεύον μέγεθος ρολογιού*λ+1)/λουκέτο= (10*λ+1)/3, για το μικρότερο λ κλειδί= (10*2+1)/3=21/3=7 Δημιουργεί ψηφιακή υπογραφή για το μήνυμα 4: 4 τιμή λουκέτου mod μέγεθος ρολογιού=4 3 mod22=64mod22=20 Στέλνει δημόσια το μήνυμα και την ψηφιακή του υπογραφή Internet Κακόβουλος υποκλοπέας (πρωτεύον) Μέγεθος ρολογιού: 22 Κλειδί: 7 Στέλνει: (4,20) Θέλει να βρει το λουκέτο του αποστολέα Πρέπει να προσδιορίσει τους πρώτους p και q τέτοιους ώστε p*q= μέγεθος ρολογιού (δηλ., να παραγοντοποιήσει το μέγεθος του ρολογιού) για να βρει το δευτερεύον μέγεθος ρολογιού Να υπολογίσει κάθε πιθανό λουκέτο ώστε κλειδί=(δευτερεύον μέγεθος ρολογιού*λ+1)/λουκέτο Η τιμή του λουκέτου του αποστολέα είναι αυτή για την οποία ισχύει: μήνυμα τιμή λουκέτου mod μέγεθος ρολογιού= 4 τιμή λουκέτου mod 22=20 Παραλήπτης Παίρνει το (4,20), ξεχωρίζει το μήνυμα = 4 από την ψηφιακή υπογραφή του αποστολέα = 20 Θέλει να διαπιστώσει αν πράγματι ο αποστολέας υπέγραψε ψηφιακά το μήνυμα Ξεκλειδώνει την ψηφιακή υπογραφή: (υπογεγραμμένο μήνυμα κλειδί )mod μέγεθος ρολογιού=(20 7 )mod22= mod22=4 Το 4 ταιριάζει με το μήνυμα πράγματι ο αποστολέας υπέγραψε το μήνυμα

43 Δημιουργία και επαλήθευση ψηφιακής υπογραφής Συνοπτικά: Η χρήση της ηλεκτρονικής υπογραφής περιλαμβάνει δύο διαδικασίες: τη δημιουργία της υπογραφής και την επαλήθευσή της Αποστολέας 1. Ο αποστολέας χρησιμοποιώντας κάποιον αλγόριθμο κατακερματισμού (one way hash) δημιουργεί τη σύνοψη του μηνύματος (message digest) που θέλει να στείλει. Ανεξάρτητα από το μέγεθος του μηνύματος, αυτό που θα παραχθεί θα είναι μία συγκεκριμένου μήκους σειρά ψηφίων 2. Με το ιδιωτικό του κλειδί (λουκέτο), ο αποστολέας κρυπτογραφεί τη σύνοψη. Αυτό που παράγεται είναι η ψηφιακή υπογραφή. Η υπογραφή είναι ουσιαστικά μία σειρά ψηφίων συγκεκριμένου πλήθους 3. Η κρυπτογραφημένη σύνοψη (ψηφιακή υπογραφή) προσαρτάται στο κείμενο και το μήνυμα με τη ψηφιακή υπογραφή μεταδίδονται μέσω του δικτύου (σημειώνεται ότι ο αποστολέας αν επιθυμεί μπορεί να κρυπτογραφήσει το μήνυμά του με το δημόσιο κλειδί του παραλήπτη) Παραλήπτης 1. Ο παραλήπτης αποσπά από το μήνυμα την ψηφιακή υπογραφή (κρυπτογραφημένη, με το ιδιωτικό κλειδί του αποστολέα, σύνοψη) 2. Εφαρμόζοντας στο μήνυμα που έλαβε τον ίδιο αλγόριθμο κατακερματισμού, ο παραλήπτης δημιουργεί τη σύνοψη του μηνύματος 3. Στη συνέχεια, αποκρυπτογραφεί την κρυπτογραφημένη σύνοψη του μηνύματος (ψηφιακή υπογραφή) με το δημόσιο κλειδί του αποστολέα 4. Συγκρίνονται οι δύο συνόψεις και αν βρεθούν ίδιες, αυτό σημαίνει ότι το μήνυμα που έλαβε ο παραλήπτης είναι ακέραιο. Αν το μήνυμα έχει μεταβληθεί, η σύνοψη που θα παράγει ο παραλήπτης θα είναι διαφορετική από την σύνοψη που έχει κρυπτογραφηθεί 43

44 Δημιουργία ψηφιακής υπογραφής Σχήματα από

45 Επαλήθευση ψηφιακής υπογραφής Σχήματα από

46 Σύστημα RSA για παραγωγή ψηφιακών υπογραφών Αυτό το σύστημα παραγωγής ψηφιακών υπογραφών με εκθετικά λουκέτα και εκθετικά κλειδιά καλείται RSA από τα αρχικά των εφευρετών του Ronald Rivest, Adi Shamir, και Leonard Adleman, που το πρωτοδημοσίευσαν τη δεκαετία του 1970 Το σύστημα RSA είναι και τρόπος κρυπτογράφησης με χρήση δημοσίου κλειδιού και τρόπος παραγωγής ψηφιακών υπογραφών Αυτό δεν αποτελεί σύμπτωση: υπάρχει βαθιά θεωρητική σχέση μεταξύ αλγορίθμων κρυπτογράφησης με χρήση δημοσίου κλειδιού και αλγορίθμων παραγωγής ψηφιακών υπογραφών 46

47 Σύστημα RSA για παραγωγή ψηφιακών υπογραφών Η πιο σημαντική ιδιότητα του συστήματος RSA είναι ότι: ένας συμμετέχων μπορεί εύκολα να υπολογίσει κατάλληλο κλειδί από τη στιγμή που έχει επιλεχθεί τιμή λουκέτου ΑΛΛΑ είναι αδύνατον (με την τρέχουσα τεχνολογία) να αντιστραφεί η διαδικασία: αν είναι γνωστό το κλειδί και το μέγεθος ρολογιού δεν μπορούμε να υπολογίσουμε την αντίστοιχη τιμή λουκέτου Η ιδιότητα αυτή διορθώνει την αδυναμία του αντίστοιχου πολλαπλασιαστικού συστήματος Αυτό αποτελεί εικασία μιας και κανείς δεν γνωρίζει σίγουρα (δεν έχει παρουσιαστεί τυπική απόδειξη) αν ο αλγόριθμος RSA είναι πραγματικά ασφαλής Η απάντηση εξαρτάται από ένα αρχαίο άλυτο μαθηματικό πρόβλημα την ακέραια παραγοντοποίηση - και ένα πρόσφατο πολύ ενδιαφέρον πεδίο στην τομή της φυσικής και της επιστήμης των υπολογιστών τον κβαντικό υπολογισμό (quantum computing) 47

48 Ασφάλεια του RSA Η ασφάλεια ενός συστήματος ψηφιακών υπογραφών καθορίζεται από την απάντηση στην ερώτηση: Μπορούν οι εχθροί μας να πλαστογραφήσουν την υπογραφή μας; Ειδικότερα για τον RSA, η ερώτηση μετατρέπεται σε: Μπορούν οι εχθροί μας να υπολογίσουν τη μυστική τιμή λουκέτου μου, γνωρίζοντας το μέγεθος ρολογιού και το κλειδί που χρησιμοποιούμε; Η απάντηση είναι ΝΑΙ Είναι πάντα δυνατόν να υπολογίσουμε την τιμή λουκέτου με επανειλημμένες προσπάθειες μέχρι να πετύχουμε τη σωστή: Μάς δίνεται ένα μήνυμα, ένα μέγεθος κλειδιού και μια ψηφιακή υπογραφή Γνωρίζουμε ότι η τιμή λουκέτου είναι μικρότερη από το μέγεθος του ρολογιού Επομένως μπορούμε να δοκιμάσουμε κάθε πιθανή τιμή λουκέτου μέχρι να βρούμε αυτή που παράγει τη σωστή ψηφιακή υπογραφή: δοκιμάζουμε να υψώσουμε το μήνυμα σε κάθε πιθανή τιμή λουκέτου μέχρι να πάρουμε την υπογραφή που θέλουμε ΟΜΩΣ στην πράξη ο RSA χρησιμοποιεί τεράστιες τιμές μεγέθους ρολογιού με μήκος χιλιάδων ψηφίων ακόμα και ο ταχύτερος υπαρκτός υπερυπολογιστής θα χρειαζόταν τρισεκατομμύρια χρόνια για να δοκιμάσει όλες τις πιθανές τιμές λουκέτου Άρα, η ερώτηση δεν είναι αν κάποιος εχθρός μπορεί να υπολογίσει την τιμή λουκέτου μας με κάθε πιθανό τρόπο ΑΛΛΑ αν μπορεί να το κάνει αρκετά αποδοτικά ώστε να συνιστά απειλή στην πράξη Αν η καλύτερη μέθοδος του εχθρού είναι εξαντλητική δοκιμή όλων των πιθανών τιμών μέθοδος γνωστή και ως brute force (ωμή βία) - μπορούμε πάντα να επιλέγουμε μέγεθος ρολογιού αρκετά μεγάλο ώστε να εξουδετερώσουμε πρακτικά την επίθεση Αν ο εχθρός διαθέτει τεχνική που λειτουργεί πολύ πιο αποδοτικά από την τεχνική brute force τότε μάλλον πρέπει να ανησυχούμε 48

49 Ασφάλεια του RSA Η πολλαπλασιαστική μέθοδος παραγωγής ψηφιακών υπογραφών είναι μη ασφαλής για τον εξής λόγο: Μπορεί εύκολα να αντιστραφεί ΓΙΑΤΙ; Αυτός που υπογράφει διαλέγει τιμή λουκέτου και μετά υπολογίζει τιμή κλειδιού με χρήση του εκτεταμένου αλγόριθμου του Ευκλείδη Οι ενδεχόμενοι εχθροί δεν χρειάζεται να καταφύγουν στη μέθοδο brute force (να ψάξουν δηλ., μία μία όλες τις πιθανές λύσεις) για να αναστρέψουν τη διαδικασία: ο εκτεταμένος αλγόριθμος του Ευκλείδη μπορεί να υπολογίσει την τιμή λουκέτου όταν δίνεται το κλειδί και φυσικά ο εκτεταμένος αλγόριθμος του Ευκλείδη είναι πολύ πιο αποδοτικός από τη brute force αναζήτηση 49

50 Σχέση RSA και παραγοντοποίησης Πώς επιλέγεται το μέγεθος ρολογιού του RSA; Πρώτος αριθμός: αριθμός που διαιρείται μόνο με τον εαυτό του και τη μονάδα (π.χ., ο 31 είναι πρώτος γιατί 1 31 είναι ο μόνος τρόπος να παραχθεί ο 31 σα γινόμενο δύο αριθμών αλλά ο 33 δεν είναι πρώτος αφού 33 = 3 11) Πώς η Εύη μπορεί να παράγει μέγεθος ρολογιού για τον RSA; Πρέπει αρχικά να διαλέξει δύο μεγάλους πρώτους αριθμούς (συνήθως ο καθένας θα έχει μήκος εκατοντάδων ψηφίων): έστω ότι επιλέγει τους πρώτους αριθμούς 2 και 11 Μετά τους πολλαπλασιάζει και λαμβάνει το μέγεθος του ρολογιού που για το παράδειγμά μας είναι 2 11 = 22 Γνωρίζουμε ότι το μέγεθος του ρολογιού θα ανακοινωθεί δημόσια μαζί με την τιμή κλειδιού της Εύης ΟΜΩΣ οι δύο πρώτοι παράγοντες που έδωσαν το μέγεθος ρολογιού παραμένουν μυστικοί και μόνο η Εύη τους γνωρίζει Η μαθηματική τεκμηρίωση του RSA παρέχει στη Εύη μία μέθοδο για να χρησιμοποιεί αυτούς τους δύο πρώτους αριθμούς για να μπορεί να υπολογίζει τιμή λουκέτου από τιμή κλειδιού και αντίστροφα 50

51 Σχέση RSA και παραγοντοποίησης Οι εχθροί της Εύης δεν μπορούν να υπολογίσουν τη μυστική τιμή λουκέτου του χρησιμοποιώντας δημόσια διαθέσιμη πληροφορία (το μέγεθος ρολογιού και την τιμή του κλειδιού) Αν γνώριζαν τους δύο πρώτους παράγοντες του μεγέθους του ρολογιού, θα μπορούσαν εύκολα να υπολογίσουν τη μυστική τιμή λουκέτου Οι εχθροί της Εύης μπορούν να πλαστογραφήσουν την υπογραφή της αν μπορούν να παραγοντοποιήσουν το μέγεθος του ρολογιού (υπάρχουν φυσικά και άλλοι τρόποι) Στο παράδειγμά μας, η παραγοντοποίηση του μεγέθους του ρολογιού (και επομένως το σπάσιμο του συστήματος παραγωγής ψηφιακών υπογραφών) γίνεται απλά: είναι γνωστό ότι 22 = Αλλά όταν το μέγεθος του ρολογιού είναι εκατοντάδες ή χιλιάδες ψηφία, η εύρεση των παραγόντων είναι ένα εξαιρετικά δύσκολο πρόβλημα (που λέγεται ακέραια παραγοντοποίηση ( integer factorization )) Έχει μελετηθεί για αιώνες, αλλά κανείς δεν έχει βρει γενική μέθοδο λύσης του που να δουλεύει αρκετά αποδοτικά ώστε να αποτελεί κίνδυνο για ένα συνηθισμένο μέγεθος ρολογιού που χρησιμοποιεί ο RSA 51

52 πρώτος πρώτος Πρωτεύον μέγεθος ρολογιού αφαιρούμε 1 Δευτερεύον μέγεθος ρολογιού H Eύη επιλέγει δύο πρώτους αριθμούς (2 και 11 στο παράδειγμα) και τους πολλαπλασιάζει για να παράγει κάποιο μέγεθος ρολογιού (22) το οποίο καλούμε πρωτεύον μέγεθος ρολογιού. Μετά, η Εύη αφαιρεί 1 από καθέναν από τους αρχικούς πρώτους αριθμούς και πολλαπλασιάζει τα αποτελέσματα λαμβάνοντας έτσι το δευτερεύον μέγεθος ρολογιού. Στο παράδειγμα, η Εύη παίρνει 1 και 10 αφού αφαιρέσει 1 από κάθε αρχικό πρώτο αριθμό, επομένως το δευτερεύον μέγεθος ρολογιού είναι 1 10 = 10. Μετά, η Εύη επιλέγει λουκέτο και κλειδί σύμφωνα με το πολλαπλασιαστικό σύστημα αλλά χρησιμοποιεί το δευτερεύον μέγεθος ρολογιού αντί για το πρωτεύον. Υποθέτουμε ότι η Εύη επιλέγει το 3 σα λουκέτο της. Με χρήση του δευτερεύοντος μεγέθους ρολογιού που είναι 10, το αντίστοιχο πολλαπλασιαστικό κλειδί είναι το 7 (γιατί: βρίσκω το μικρότερο λ για το οποίο είναι: (3*κλειδί-1)mod μέγεθος δευτερεύοντος ρολογιού=0 3*κλειδί-1=10*λ κλειδί =(10*λ+1)/10). Εύκολα διαπιστώνουμε ότι αυτό δουλεύει: το μήνυμα 8 κλειδώνεται σε 8 3 = 24, ή 4 με μέγεθος ρολογιού 10. Ξεκλειδώνοντας το 4 με το κλειδί δίνει 4 7 = 28, που είναι 8 με χρήση ρολογιού ίσου μεγέθους με αυτό που χρησιμοποιήθηκε στο αρχικό μήνυμα. Τώρα, η Εύη παίρνει το πολλαπλασιαστικό λουκέτο και το κλειδί που μόλις επιλέχθηκαν και τα χρησιμοποιεί σαν εκθετικό λουκέτο και κλειδί στο σύστημα RSA. Οι τιμές τους θα χρησιμοποιηθούν σαν εκθέτες με το πρωτεύον μέγεθος ρολογιού που είναι 22.

53 Σχέση RSA και παραγοντοποίησης Η ιστορία των μαθηματικών είναι διανθισμένη με άλυτα προβλήματα που γοήτευσαν και μόνο με ιδιότητές τους και ενέπνευσαν για βαθιά έρευνα παρά την απώλεια πρακτικής εφαρμογής Κατά παράξενο τρόπο, πολλά από αυτά τα πολύ ενδιαφέροντα αλλά προφανώς «άχρηστα» προβλήματα αποδείχτηκαν αργότερα να έχουν τεράστια πρακτική σημασία γεγονός που ανακαλύφθηκε αφού τα προβλήματα αυτά είχαν μελετηθεί για αιώνες Ένα από αυτά τα προβλήματα είναι και η παραγοντοποίηση ακεραίων 53

54 Σχέση RSA και παραγοντοποίησης Οι πρώτες ερευνητικές προσπάθειες για το πρόβλημα της παραγοντοποίησης ακεραίων έγιναν το 17 ο αιώνα από τους μαθηματικούς Fermat και Mersenne Οι Euler και Gauss άλλοι δύο σπουδαίοι μαθηματικοί συνεισέφεραν στους αιώνες που ακολούθησαν και πολλοί άλλοι έχτισαν πάνω στη δουλειά τους Αλλά μέχρι την ανακάλυψη της κρυπτογράφησης δημοσίου κλειδιού στη δεκαετία του 1970 δεν είχε συνειδητοποιηθεί η δυσκολία της παραγοντοποίησης μεγάλων ακεραίων Προφανώς, οποιοσδήποτε ανακαλύψει αποδοτικό αλγόριθμο παραγοντοποίησης μεγάλων ακεραίων θα μπορεί να πλαστογραφήσει ψηφιακές υπογραφές κατά βούληση Φυσικά από το 1970, έχουν προταθεί και πολλά άλλα συστήματα ψηφιακών υπογραφών που βασίζονται στη δυσκολία κάποιου άλλου θεμελιώδους μαθηματικού προβλήματος, οπότε η ανακάλυψη αποδοτικού αλγορίθμου παραγοντοποίησης θα καταρρίψει μόνο συστήματα που μοιάζουν με το RSA 54

55 Σχέση RSA και παραγοντοποίησης Ισχύει βέβαια ότι κανένα από τα συστήματα παραγωγής ψηφιακών υπογραφών δεν έχει αποδειχθεί ασφαλές: καθένα βασίζεται σε κάποιο προφανώς δύσκολο και πολυμελετημένο μαθηματικό πρόβλημα για το οποίο οι θεωρητικοί δεν έχουν μπορέσει να αποδείξουν ότι δεν υπάρχει αποδοτική λύση Επομένως, αν και οι ειδικοί το θεωρούν εξαιρετικά απίθανο, ενδέχεται καθένα από τα κρυπτογραφικά συστήματα ή τα συστήματα παραγωγής ψηφιακών υπογραφών να καταρριφθεί οποιαδήποτε στιγμή 55

56 Σχέση RSA με Κβαντικούς Υπολογιστές Δεδομένο: στην κβαντική μηχανική, η κίνηση των αντικειμένων καθορίζεται από πιθανότητες σε αντίθεση με τους ντετερμινιστικούς νόμους της κλασικής φυσικής Κατά συνέπεια, αν φτιάξουμε έναν υπολογιστή από τμήματα που υπακούν στους νόμους της κβαντικής μηχανικής οι τιμές που θα υπολογίζει θα καθορίζονται από πιθανότητες και δεν θα είναι ακολουθίες σίγουρων τιμών από 0 και 1 που παράγει ένας κλασικός υπολογιστής Ένας κβαντικός υπολογιστής αποθηκεύει πολλές διαφορετικές τιμές ταυτόχρονα: οι διαφορετικές τιμές έχουν διαφορετικές πιθανότητες αλλά μέχρι να απαιτήσουμε από τον υπολογιστή να δώσει τελική απάντηση, οι τιμές αυτές υπάρχουν ταυτόχρονα Αυτό σημαίνει ότι ένας κβαντικός υπολογιστής μπορεί να υπολογίσει πολλές διαφορετικές πιθανές απαντήσεις ταυτόχρονα Για ειδικούς τύπους προβλημάτων μπορούμε να χρησιμοποιήσουμε brute force προσέγγιση για να δοκιμάσουμε όλες τις πιθανές λύσεις ταυτόχρονα! 56

57 Chip της εταιρείας D-Wave Systems Inc.. Ο επεξεργαστής D-Wave χρησιμοποιεί 128 υπεραγώγιμα λογικά στοιχεία που επιδεικνύουν ελέγξιμους και ρυθμιζόμενους συνδυασμούς για την εκτέλεση υπολογισμών.

58 Σχέση RSA με Κβαντικούς Υπολογιστές Η ιδέα αυτή δουλεύει για συγκεκριμένους τύπους προβλημάτων ένα από τα οποία είναι και η παραγοντοποίηση ακεραίων που μπορεί να πραγματοποιηθεί με πολύ μεγαλύτερη αποδοτικότητα σε κβαντικούς υπολογιστές από ό,τι σε κλασικούς Αν μπορούσαμε να κατασκευάσουμε κβαντικό υπολογιστή ικανό να χειρίζεται αριθμούς με χιλιάδες ψηφία, θα μπορούσαμε να πλαστογραφήσουμε υπογραφές RSA: θα παραγοντοποιούσαμε το δημόσιο μέγεθος ρολογιού, θα χρησιμοποιούσαμε τους παράγοντες για να καθορίσουμε το δευτερεύον μέγεθος ρολογιού και θα το χρησιμοποιούσαμε για να καθορίσουμε το μυστικό λουκέτο από την τιμή του δημοσίου κλειδιού Βέβαια η θεωρία των κβαντικών υπολογιστών είναι πολύ πιο προχωρημένη από την αντίστοιχη πρακτική εξέλιξή τους Ερευνητές έχουν καταφέρει να φτιάξουν πραγματικούς κβαντικούς υπολογιστές, αλλά η μεγαλύτερη παραγοντοποίηση που έκαναν με κβαντικό υπολογιστή μέχρι τώρα ήταν η 15 = 3 5 Και πρέπει να λυθούν πολλά πρακτικά προβλήματα πριν γίνει δυνατή η κατασκευή μεγαλύτερων κβαντικών υπολογιστών και κανείς δεν γνωρίζει αν και πότε κάτι τέτοιο θα γίνει 58

59 Ψηφιακές υπογραφές στην πράξη Χρήστες όπως εμείς δεν έχουν μεγάλη ανάγκη από ψηφιακές υπογραφές: ίσως μερικοί κάπως προχωρημένοι να τις χρησιμοποιούν στα τους αλλά για τους περισσότερους από εμάς η βασική χρήση των ψηφιακών υπογραφών γίνεται για επαλήθευση υλικού που κατεβάζουμε από το internet Το πιο προφανές παράδειγμα είναι όταν κατεβάζουμε νέο λογισμικό από το internet: αν το λογισμικό είναι υπογεγραμμένο ο υπολογιστής ξεκλειδώνει την υπογραφή χρησιμοποιώντας το δημόσιο κλειδί του υπογράφοντος και συγκρίνει το αποτέλεσμα με το μήνυμα του υπογράφοντος, δηλ., το ίδιο το λογισμικό Στην πράξη, το λογισμικό μειώνεται σε ένα πολύ μικρότερο μήνυμα πριν υπογραφεί Αν η ξεκλειδωμένη υπογραφή ταιριάζει με το λογισμικό προχωράμε αλλιώς παροτρυνόμαστε να ξανασκεφτούμε τι θέλουμε να κάνουμε 59

60 Ψηφιακές υπογραφές στην πράξη Οι αξιόπιστες τράπεζες που φυλάσσουν το δημόσιο κλειδί και το δημόσιο μέγεθος ρολογιού κάθε υπογράφοντα είναι στην πραγματικότητα αξιόπιστοι οργανισμοί που αποθηκεύουν δημόσια κλειδιά και ονομάζονται αρχές πιστοποίησης Οι αρχές πιστοποίησης διατηρούν εξυπηρετητές (servers) οι οποίοι μπορούν να προσπελασθούν ηλεκτρονικά και από τους οποίους μπορούμε να κατεβάσουμε δημόσια κλειδιά Όταν ο υπολογιστής μας λαμβάνει μία ψηφιακή υπογραφή αυτή θα συνοδεύεται και από πληροφορία για το από ποια αρχή πιστοποίησης θα πρέπει να αναζητηθεί το δημόσιο κλειδί του υπογράφοντος 60

61 Ψηφιακές υπογραφές στην πράξη Αλλά πώς μπορούμε να είμαστε σίγουροι ότι μπορούμε να εμπιστευθούμε την αρχή πιστοποίησης; Αυτό που γίνεται είναι να μεταφέρεται το πρόβλημα επαλήθευσης της ταυτότητας ενός οργανισμού (π.χ., της εταιρείας NanoSoft.com που μάς έστειλε το λογισμικό) στο πρόβλημα επαλήθευσης της ταυτότητας ενός άλλου οργανισμού (της αρχής πιστοποίησης π.χ., της TrustMe Inc.) Αυτός με τη σειρά του μάς παραπέμπει σε κάποια άλλη αρχή πιστοποίησης (π.χ., την εταιρεία PleaseTrustUs Ltd.) για επαλήθευση πάλι μέσω ψηφιακής υπογραφής Αυτή η αλυσίδα εμπιστοσύνης μπορεί να επεκτείνεται συνεχώς αλλά το πρόβλημα παραμένει: να εμπιστευθούμε τον οργανισμό στο τέλος της αλυσίδας; Συγκεκριμένοι οργανισμοί έχουν επίσημα αναγνωριστεί σαν πηγαίες αρχές πιστοποίησης μερικοί από τους πιο γνωστούς είναι οι VeriSign, GlobalSign και GeoTrust Πληροφορίες για επικοινωνία με κάποιους αυτούς (καθώς και διευθύνσεις internet και δημόσια κλειδιά) υπάρχει προεγκατεστημένη στα προγράμματα πλοήγησης που χρησιμοποιούμε κι έτσι η αλυσίδα εμπιστοσύνης σταματάει σε ένα εμπιστεύσιμο σημείο 61

62 πάρε κλειδί από πάρε κλειδί από πάρε κλειδί από κλειδί προ-αποθηκευμένο στο browser Αλυσίδα εμπιστοσύνης για την απόκτηση κλειδιών που απαιτούνται για την επαλήθευση ψηφιακών υπογραφών 62

63 Ένα παράδοξο αναλύθηκε Η φράση ψηφιακή υπογραφή αποτελεί σχήμα οξύμωρο: κάθε τι ψηφιακό μπορεί να αντιγραφεί - όμως μια ψηφιακή υπογραφή θα πρέπει να είναι αδύνατον να αντιγραφεί Πώς λύθηκε τελικά αυτό το παράδοξο; Η απάντηση είναι ότι μια ψηφιακή υπογραφή βασίζεται (i) σε ένα μυστικό που είναι γνωστό μόνο στον υπογράφοντα και (ii) στο μήνυμα που υπογράφεται Το μυστικό που αποκαλέσαμε λουκέτο παραμένει το ίδιο για κάθε μήνυμα που υπογράφεται από συγκεκριμένη οντότητα αλλά η υπογραφή είναι διαφορετική για κάθε μήνυμα Επομένως, το ότι καθένας μπορεί εύκολα να αντιγράψει την υπογραφή είναι άσχετο: η υπογραφή δεν μπορεί να μεταφερθεί σε διαφορετικό μήνυμα οπότε και να την αντιγράψουμε δεν κερδίζουμε κάτι Οι ψηφιακές υπογραφές έχουν τεράστια πρακτική σημασία: χωρίς αυτές δεν θα υπήρχε το internet όπως το γνωρίζουμε: τα δεδομένα υα μπορούσαν να ανταλλάσσονται με ασφάλεια με χρήση κρυπτογραφίας αλλά θα ήταν εξαιρετικά δύσκολο να επαληθευθεί η πηγή των λαμβανόμενων δεδομένων 63

64 Εφαρμογή Δείτε πώς μπορεί να εισαχθεί και να αφαιρεθεί ψηφιακή υπογραφή σε αρχείο Word ή Excel στο Office

Ψηφιακές Υπογραφές (Digital Signatures)

Ψηφιακές Υπογραφές (Digital Signatures) Ψηφιακές Υπογραφές (Digital Signatures) 1 Ψηφιακές υπογραφές (Digital signatures) ψηφιακός ( digital ): αποτελείται από ακολουθίες ψηφίων Συμπέρασμα: οτιδήποτε ψηφιακό μπορεί να αντιγραφεί π.χ., αντιγράφοντας

Διαβάστε περισσότερα

Εισαγωγή στους Αλγόριθμους

Εισαγωγή στους Αλγόριθμους Εισαγωγή στους Αλγόριθμους Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών Σκοποί ενότητας Παρουσίαση και μελέτη αλγορίθμων

Διαβάστε περισσότερα

ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Lab 3

ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Lab 3 ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Lab 3 Η Aσύμμετρη Kρυπτογραφία ή Κρυπτογραφία Δημοσίου Κλειδιού χρησιμοποιεί δύο διαφορετικά κλειδιά για την κρυπτογράφηση και αποκρυπτογράφηση. Eπινοήθηκε στο τέλος της δεκαετίας

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστημάτων

Ασφάλεια Πληροφοριακών Συστημάτων Ασφάλεια Πληροφοριακών Συστημάτων Κρυπτογραφία/Ψηφιακές Υπογραφές Διάλεξη 2η Δρ. Β. Βασιλειάδης Τμ. Διοίκησης Επιχειρήσεων, ΤΕΙ Δυτ. Ελλάδας Kρυπτανάλυση Προσπαθούμε να σπάσουμε τον κώδικα. Ξέρουμε το

Διαβάστε περισσότερα

Ηλεκτρονικό εμπόριο. HE 7 Τεχνολογίες ασφάλειας

Ηλεκτρονικό εμπόριο. HE 7 Τεχνολογίες ασφάλειας Ηλεκτρονικό εμπόριο HE 7 Τεχνολογίες ασφάλειας Πρόκληση ανάπτυξης ασφαλών συστημάτων Η υποδομή του διαδικτύου παρουσίαζε έλλειψη υπηρεσιών ασφάλειας καθώς η οικογένεια πρωτοκόλλων TCP/IP στην οποία στηρίζεται

Διαβάστε περισσότερα

Ψηφιακά Πιστοποιητικά Ψηφιακές Υπογραφές

Ψηφιακά Πιστοποιητικά Ψηφιακές Υπογραφές ΤΕΙ Κρητης Τμήμα Μηχανικών Πληροφορικής Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων Ψηφιακά Πιστοποιητικά Ψηφιακές Υπογραφές Ψηφιακά Πιστοποιητικά Υποδομή δημόσιου κλειδιού (Public Key Infrastructure

Διαβάστε περισσότερα

ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ ΤΕΙ Κρήτης ΕΠΠ Εργαστήριο Ασφάλεια Πληροφοριακών Συστηµάτων ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ ΤΕΙ Κρητης Τµηµα Εφαρµοσµενης Πληροφορικης Και Πολυµεσων Fysarakis Konstantinos, PhD kfysarakis@staff.teicrete.gr Εισαγωγή

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ψηφιακές Υπογραφές Ορίζονται πάνω σε μηνύματα και είναι αριθμοί που εξαρτώνται από κάποιο

Διαβάστε περισσότερα

8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές

8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές Κεφάλαιο 8 8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές Σελ. 320-325 Γεώργιος Γιαννόπουλος ΠΕ19, ggiannop (at) sch.gr http://diktya-epal-g.ggia.info/ Creative

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια ΣΤΟΧΟΙ ΚΕΦΑΛΑΙΟΥ Ορισµός τριών στόχων ασφάλειας - Εµπιστευτικότητα, ακεραιότητα και διαθεσιµότητα Επιθέσεις Υπηρεσίες και Τεχνικές

Διαβάστε περισσότερα

Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι)

Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι) Κρυπτογραφία Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι) Κρυπτοσυστήματα Δημοσίου κλειδιού Αποστολέας P Encryption C Decryption P Παραλήπτης Προτάθηκαν το 1976 Κάθε συμμετέχων στο

Διαβάστε περισσότερα

Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών Ασφάλεια Δεδομένων.

Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών Ασφάλεια Δεδομένων. Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής στην Επιστήμη των Υπολογιστών 2015-16 Ασφάλεια Δεδομένων http://www.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Οι απειλές Ένας κακόβουλος χρήστης Καταγράφει μηνύματα

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ασύμμετρη Κρυπτογράφηση (Κρυπτογραφία Δημόσιου Κλειδιού) Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org

Διαβάστε περισσότερα

Κρυπτογράφηση με χρήση Δημοσίου Κλειδιού (Public Key Cryptography PKC)

Κρυπτογράφηση με χρήση Δημοσίου Κλειδιού (Public Key Cryptography PKC) Κρυπτογράφηση με χρήση Δημοσίου Κλειδιού (Public Key Cryptography PKC) Σύνοψη Πρόβλημα: θέλωναστείλωμήνυμασεκάποιον δημόσια χωρίς να μπορούν να το καταλάβουν οι άλλοι Λύση: το κωδικοποιώ Γνωρίζω τον παραλήπτη:

Διαβάστε περισσότερα

Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων. Συναρτήσεις Κατακερματισμού

Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων. Συναρτήσεις Κατακερματισμού ΤΕΙ ΚΡΗΤΗΣ ΤΜΉΜΑ ΜΗΧΑΝΙΚΏΝ ΠΛΗΡΟΦΟΡΙΚΉΣ Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων Συναρτήσεις Κατακερματισμού Ο όρος συνάρτηση κατακερματισμού (hash function) υποδηλώνει ένα μετασχηματισμό που παίρνει

Διαβάστε περισσότερα

7. O κβαντικός αλγόριθμος του Shor

7. O κβαντικός αλγόριθμος του Shor 7. O κβαντικός αλγόριθμος του Shor Σύνοψη Ο κβαντικός αλγόριθμος του Shor μπορεί να χρησιμοποιηθεί για την εύρεση της περιόδου περιοδικών συναρτήσεων και για την ανάλυση ενός αριθμού σε γινόμενο πρώτων

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια

Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη

Διαβάστε περισσότερα

Οι απειλές. Απόρρητο επικοινωνίας. Αρχές ασφάλειας δεδομένων. Απόρρητο (privacy) Μέσω κρυπτογράφησης

Οι απειλές. Απόρρητο επικοινωνίας. Αρχές ασφάλειας δεδομένων. Απόρρητο (privacy) Μέσω κρυπτογράφησης Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής στην Επιστήμη των Υπολογιστών 2014-015 Ασφάλεια Δεδομένων http://www.ionio.gr/~mistral/tp/csintro/ Οι απειλές Ένας κακόβουλος χρήστης Καταγράφει μηνύματα που ανταλλάσσονται

Διαβάστε περισσότερα

Κρυπτογραφία Δημόσιου Κλειδιού II Αλγόριθμος RSA

Κρυπτογραφία Δημόσιου Κλειδιού II Αλγόριθμος RSA Κρυπτογραφία Δημόσιου Κλειδιού II Αλγόριθμος RSA Τμήμα Μηχ. Πληροφορικής ΤΕΙ Κρήτης Κρυπτογραφία Δημόσιου Κλειδιού -RSA 1 Κρυπτογραφία Δημόσιου Κλειδιού - Ιστορία Ηνωμένες Πολιτείες 1975: Ο Diffie οραματίζεται

Διαβάστε περισσότερα

Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ

Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ Παύλος Εφραιμίδης Βασικές Έννοιες Κρυπτογραφίας Ασφ Υπολ Συστ 1 θα εξετάσουμε τα ακόλουθα εργαλεία κρυπτογραφίας: ψηφιακές υπογραφές κατακερματισμός (hashing) συνόψεις μηνυμάτων μ (message digests) ψευδοτυχαίοι

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΥΠΟΓΡΑΦΗ. Απόστολος Πλεξίδας Προϊστάµενος της ιεύθυνσης ιαφάνειας & Ηλεκτρονικής ιακυβέρνησης της Περιφέρεια Κεντρικής Μακεδονίας

ΨΗΦΙΑΚΗ ΥΠΟΓΡΑΦΗ. Απόστολος Πλεξίδας Προϊστάµενος της ιεύθυνσης ιαφάνειας & Ηλεκτρονικής ιακυβέρνησης της Περιφέρεια Κεντρικής Μακεδονίας ΨΗΦΙΑΚΗ ΥΠΟΓΡΑΦΗ Προϊστάµενος της ιεύθυνσης ιαφάνειας & Ηλεκτρονικής ιακυβέρνησης της Περιφέρεια Κεντρικής Μακεδονίας 1 ΠΕΡΙΕΧΟΜΕΝΑ Hλεκτρονική υπογραφή, τι είναι, τρόπος λειτουργίας Χειρογραφη Ηλεκτρονική

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Ασύμμετρη Κρυπτογραφία. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Ασύμμετρη Κρυπτογραφία. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Ασύμμετρη Κρυπτογραφία Χρήστος Ξενάκης Ασύμμετρη κρυπτογραφία Μονόδρομες συναρτήσεις με μυστική πόρτα Μια συνάρτηση f είναι μονόδρομη, όταν δοθέντος

Διαβάστε περισσότερα

Παράρτημα Α Περισσότερα για την Ασφάλεια στο Διαδίκτυο

Παράρτημα Α Περισσότερα για την Ασφάλεια στο Διαδίκτυο Παράρτημα Α Περισσότερα για την Ασφάλεια στο Διαδίκτυο A.1 Κρυπτογράφηση Δημόσιου Κλειδιού Όπως αναφέρθηκε στην παράγραφο 2.3.2, η πιο διαδεδομένη μέθοδος κρυπτογραφίας στο Διαδίκτυο είναι η κρυπτογράφηση

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ψηφιακή Υπογραφή και Αυθεντικοποίηση Μηνύματος Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο

Διαβάστε περισσότερα

κρυπτογραϕία Ψηφιακή ασφάλεια και ιδιωτικότητα Γεώργιος Σπαθούλας Msc Πληροφορική και υπολογιστική βιοιατρική Πανεπιστήμιο Θεσσαλίας

κρυπτογραϕία Ψηφιακή ασφάλεια και ιδιωτικότητα Γεώργιος Σπαθούλας Msc Πληροφορική και υπολογιστική βιοιατρική Πανεπιστήμιο Θεσσαλίας κρυπτογραϕία Ψηφιακή ασφάλεια και ιδιωτικότητα Γεώργιος Σπαθούλας Msc Πληροφορική και υπολογιστική βιοιατρική Πανεπιστήμιο Θεσσαλίας ιδιότητες ασϕάλειας ιδιότητες ασϕάλειας αγαθών Εμπιστευτικότητα (Confidentiality)

Διαβάστε περισσότερα

Κρυπτογραφία ηµόσιου Κλειδιού Η µέθοδος RSA. Κασαπίδης Γεώργιος -Μαθηµατικός

Κρυπτογραφία ηµόσιου Κλειδιού Η µέθοδος RSA. Κασαπίδης Γεώργιος -Μαθηµατικός Κρυπτογραφία ηµόσιου Κλειδιού Η µέθοδος RSA Τον Απρίλιο του 977 οι Ρόναλντ Ρίβεστ, Άντι Σαµίρ και Λέοναρντ Άντλεµαν, ερευνητές στο Ινστιτούτο Τεχνολογίας της Μασσαχουσέτης (ΜΙΤ) µετά από ένα χρόνο προσπαθειών

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ

KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ 1 Γενικά Η ψηφιακή υπογραφή είναι µια µέθοδος ηλεκτρονικής υπογραφής όπου ο παραλήπτης ενός υπογεγραµµένου ηλεκτρονικού µηνύµατος µπορεί να διαπιστώσει τη γνησιότητα του,

Διαβάστε περισσότερα

Λειτουργικά Συστήματα (ΗΥ321)

Λειτουργικά Συστήματα (ΗΥ321) Λειτουργικά Συστήματα (ΗΥ321) Διάλεξη 19: Ασφάλεια Κρυπτογράφηση Βασική ιδέα: Αποθήκευσε και μετάδωσε την πληροφορία σε κρυπτογραφημένη μορφή που «δε βγάζει νόημα» Ο βασικός μηχανισμός: Ξεκίνησε από το

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

ΥΠΟΛΟΓΙΣΤΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ ΥΠΟΛΟΓΙΣΤΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Εισαγωγή Άρης Παγουρτζής Στάθης Ζάχος Σχολή ΗΜΜΥ ΕΜΠ Διοικητικά του μαθήματος Διδάσκοντες Στάθης Ζάχος Άρης Παγουρτζής Πέτρος Ποτίκας (2017-18) Βοηθοί διδασκαλίας Παναγιώτης Γροντάς

Διαβάστε περισσότερα

Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων. PGP (Pretty Good Privacy)

Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων. PGP (Pretty Good Privacy) Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων PGP (Pretty Good Privacy) Εισαγωγή Το λογισμικό Pretty Good Privacy (PGP), το οποίο σχεδιάστηκε από τον Phill Zimmerman, είναι ένα λογισμικό κρυπτογράφησης

Διαβάστε περισσότερα

Διαχείριση Ασφάλειας και Εμπιστοσύνης σε Πολιτισμικά Περιβάλλοντα

Διαχείριση Ασφάλειας και Εμπιστοσύνης σε Πολιτισμικά Περιβάλλοντα Διαχείριση Ασφάλειας και Εμπιστοσύνης σε Πολιτισμικά Περιβάλλοντα Ενότητα 6: ΑΣΦΑΛΕΙΑ ΚΑΙ ΕΜΠΙΣΤΟΣΥΝΗ ΣΤΟ ΔΙΑΔΙΚΤΥΟ, ΨΗΦΙΑΚΑ ΠΙΣΤΟΠΟΙΗΤΙΚΑ-ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης

Διαβάστε περισσότερα

Αριθμοθεωρητικοί Αλγόριθμοι

Αριθμοθεωρητικοί Αλγόριθμοι Αλγόριθμοι που επεξεργάζονται μεγάλους ακέραιους αριθμούς Μέγεθος εισόδου: Αριθμός bits που απαιτούνται για την αναπαράσταση των ακεραίων. Έστω ότι ένας αλγόριθμος λαμβάνει ως είσοδο έναν ακέραιο Ο αλγόριθμος

Διαβάστε περισσότερα

Cryptography and Network Security Chapter 9. Fifth Edition by William Stallings

Cryptography and Network Security Chapter 9. Fifth Edition by William Stallings Cryptography and Network Security Chapter 9 Fifth Edition by William Stallings Chapter 9 Κρυπτογραφια Δημοσιου Κλειδιου και RSA Every Egyptian received two names, which were known respectively as the true

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 1: Εισαγωγή- Χαρακτηριστικά Παραδείγματα Αλγορίθμων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Αλγόριθµοι δηµόσιου κλειδιού

Αλγόριθµοι δηµόσιου κλειδιού Αλγόριθµοι δηµόσιου κλειδιού Αλγόριθµοι δηµόσιου κλειδιού Ηδιανοµή του κλειδιού είναι ο πιο αδύναµος κρίκος στα περισσότερα κρυπτογραφικά συστήµατα Diffie και Hellman, 1976 (Stanford Un.) πρότειναν ένα

Διαβάστε περισσότερα

Κρυπτογράφηση με χρήση Δημοσίου Κλειδιού (Public Key Cryptography PKC) στέλνοντας μυστικά σε μία κάρτ ποστάλ

Κρυπτογράφηση με χρήση Δημοσίου Κλειδιού (Public Key Cryptography PKC) στέλνοντας μυστικά σε μία κάρτ ποστάλ Κρυπτογράφηση με χρήση Δημοσίου Κλειδιού (Public Key Cryptography PKC) στέλνοντας μυστικά σε μία κάρτ ποστάλ 1 Σύνοψη Πρόβλημα: θέλω να στείλω μήνυμα σε κάποιον δημόσια χωρίς να μπορούν να το καταλάβουν

Διαβάστε περισσότερα

Εισαγωγή στους Αλγόριθμους

Εισαγωγή στους Αλγόριθμους Εισαγωγή στους Αλγόριθμους Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών Σκοποί ενότητας Παρουσίαση και μελέτη κρυπτογράφησης

Διαβάστε περισσότερα

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 5: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστηµάτων

Ασφάλεια Πληροφοριακών Συστηµάτων Ασφάλεια Πληροφοριακών Συστηµάτων Κρυπτογραφία/Ψηφιακές Υπογραφές Διάλεξη 3η Δρ. A. Στεφανή Τµ. Διοίκησης Επιχειρήσεων, ΤΕΙ Δυτ. Ελλάδας Ψηφιακές Υπογραφές- Βασικές Αρχές Η Ψηφιακή Υπογραφή είναι ένα µαθηµατικό

Διαβάστε περισσότερα

Σχεδίαση Εφαρμογών και Υπηρεσιών Διαδικτύου 11η Διάλεξη: Ασφάλεια στο Web

Σχεδίαση Εφαρμογών και Υπηρεσιών Διαδικτύου 11η Διάλεξη: Ασφάλεια στο Web Σχεδίαση Εφαρμογών και Υπηρεσιών Διαδικτύου 11η Διάλεξη: Ασφάλεια στο Web Δρ. Απόστολος Γκάμας Λέκτορας (407/80) gkamas@uop.gr Σχεδίαση Εφαρμογών και Υπηρεσιών Διαδικτύου Διαφάνεια 1 1 Εισαγωγικά Βασικές

Διαβάστε περισσότερα

Θεμελιώδη Θέματα Επιστήμης Υπολογιστών

Θεμελιώδη Θέματα Επιστήμης Υπολογιστών http://www.corelab.ntua.gr/courses/ Θεμελιώδη Θέματα Επιστήμης Υπολογιστών 5ο εξάμηνο ΣΕΜΦΕ Ενότητα 0: Εισαγωγή Διδάσκοντες: Στάθης Ζάχος, Άρης Παγουρτζής Υπεύθυνη εργαστηρίου / ασκήσεων: Δώρα Σούλιου

Διαβάστε περισσότερα

Ασφάλεια στο Ηλεκτρονικό Επιχειρείν. ΤΕΙ Δυτικής Ελλάδας Τμήμα Διοίκησης Επιχειρήσεων - Πάτρα Κουτσονίκος Γιάννης

Ασφάλεια στο Ηλεκτρονικό Επιχειρείν. ΤΕΙ Δυτικής Ελλάδας Τμήμα Διοίκησης Επιχειρήσεων - Πάτρα Κουτσονίκος Γιάννης Ασφάλεια στο Ηλεκτρονικό Επιχειρείν ΤΕΙ Δυτικής Ελλάδας Τμήμα Διοίκησης Επιχειρήσεων - Πάτρα Κουτσονίκος Γιάννης 1 Κίνδυνοι Η-Ε Μερικοί από τους κινδύνους ενός δικτυακού τόπου Ε-εμπορίου περιλαμβάνουν:

Διαβάστε περισσότερα

ΠΡΟΣΤΑΣΙΑ ΠΡΟΣΩΠΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΣΤΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΘΩΣ ΚΑΙ ΣΤΟ ΔΙΑΔΙΚΤΥΟ

ΠΡΟΣΤΑΣΙΑ ΠΡΟΣΩΠΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΣΤΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΘΩΣ ΚΑΙ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΠΡΟΣΤΑΣΙΑ ΠΡΟΣΩΠΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΣΤΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΘΩΣ ΚΑΙ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΔΙΑΔΙΚΤΥΟ Το διαδίκτυο προσφέρει: Μετατροπή των δεδομένων σε ψηφιακή - ηλεκτρονική μορφή. Πρόσβαση

Διαβάστε περισσότερα

Υποθέσεις - - Θεωρήματα Υποθέσεις - Θεωρήματα Στα μαθηματικά και στις άλλες επιστήμες κάνουμε συχνά υποθέσεις. Οταν δείξουμε ότι μια υπόθεση είναι αλη

Υποθέσεις - - Θεωρήματα Υποθέσεις - Θεωρήματα Στα μαθηματικά και στις άλλες επιστήμες κάνουμε συχνά υποθέσεις. Οταν δείξουμε ότι μια υπόθεση είναι αλη Υποθέσεις - - Θεωρήματα Μαθηματικά Πληροφορικής 1ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Υποθέσεις - - Θεωρήματα Υποθέσεις - Θεωρήματα Στα μαθηματικά και στις άλλες επιστήμες

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών

Στοιχεία Θεωρίας Αριθμών Ε Μ Π Σ Ε Μ & Φ Ε Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Κωστής Γ Διδάσκοντες: Στάθης Ζ Άρης Π 9 Δεκεμβρίου 2011 1 Πιθανές Επιθέσεις στο RSA Υπενθύμιση

Διαβάστε περισσότερα

Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ. Διάλεξη 8 η. Βασίλης Στεφανής

Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ. Διάλεξη 8 η. Βασίλης Στεφανής Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ Διάλεξη 8 η Βασίλης Στεφανής Περιεχόμενα Τι είναι κρυπτογραφία Ιστορική αναδρομή Αλγόριθμοι: Καίσαρα Μονοαλφαβιτικοί Vigenere Vernam Κρυπτογραφία σήμερα Κρυπτογραφία Σκοπός Αποστολέας

Διαβάστε περισσότερα

Κρυπτογραφία. Κεφάλαιο 1 Γενική επισκόπηση

Κρυπτογραφία. Κεφάλαιο 1 Γενική επισκόπηση Κρυπτογραφία Κεφάλαιο 1 Γενική επισκόπηση Ανασκόπηση ύλης Στόχοι της κρυπτογραφίας Ιστορικό Γενικά χαρακτηριστικά Κλασσική κρυπτογραφία Συμμετρικού κλειδιού (block ciphers stream ciphers) Δημοσίου κλειδιού

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Ψηφιακές Υπογραφές Υπογραφές Επιπρόσθετης Λειτουργικότητας Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστημάτων

Ασφάλεια Πληροφοριακών Συστημάτων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Ασφάλεια Πληροφοριακών Συστημάτων Ενότητα 5: Διαχείριση κλειδιών Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΗ ΔΙΑΚΥΒΕΡΝΗΣΗ ΣΤΗΝ ΕΕ

ΗΛΕΚΤΡΟΝΙΚΗ ΔΙΑΚΥΒΕΡΝΗΣΗ ΣΤΗΝ ΕΕ ΗΛΕΚΤΡΟΝΙΚΗ ΔΙΑΚΥΒΕΡΝΗΣΗ Ψηφιακές υπογραφές ΝΙΚΟΣ ΣΑΡΙΔΑΚΗΣ ΣΤΑΣΗΣ ΑΝΤΩΝΗΣ Γενική Γραμματεία Δημόσιας Διοίκησης και Ηλεκτρονικής Διακυβέρνησης ΥΠΕΣΔΔΑ 1 ΗΛΕΚΤΡΟΝΙΚΗ ΔΙΑΚΥΒΕΡΝΗΣΗ ΣΤΗΝ ΕΕ ΠΟΛΙΤΕΣ ΕΠΙΧΕΙΡΗΣΕΙΣ

Διαβάστε περισσότερα

Πρόβληµα 2 (15 µονάδες)

Πρόβληµα 2 (15 µονάδες) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2013-2014 ΔΙΔΑΣΚΩΝ: Ε. Μαρκάκης Πρόβληµα 1 (5 µονάδες) 2 η Σειρά Ασκήσεων Προθεσµία Παράδοσης: 19/1/2014 Υπολογίστε

Διαβάστε περισσότερα

1 Ψηφιακές Υπογραφές. 1.1 Η συνάρτηση RSA : Η ύψωση στην e-οστή δύναμη στο Z n. Κρυπτογραφία: Αρχές και πρωτόκολλα Διάλεξη 6. Καθηγητής Α.

1 Ψηφιακές Υπογραφές. 1.1 Η συνάρτηση RSA : Η ύψωση στην e-οστή δύναμη στο Z n. Κρυπτογραφία: Αρχές και πρωτόκολλα Διάλεξη 6. Καθηγητής Α. 1 Ψηφιακές Υπογραφές Η ψηφιακή υπογραφή είναι μια βασική κρυπτογραφική έννοια, τεχνολογικά ισοδύναμη με την χειρόγραφη υπογραφή. Σε πολλές Εφαρμογές, οι ψηφιακές υπογραφές χρησιμοποιούνται ως δομικά συστατικά

Διαβάστε περισσότερα

Ασφάλεια κωδικών: Ένας hacker συμβουλεύει

Ασφάλεια κωδικών: Ένας hacker συμβουλεύει Ασφάλεια κωδικών: Ένας hacker συμβουλεύει Το συναίσθημα που προκαλεί ένα password που καταρρέει μέσα σε κλάσματα του δευτερολέπτου ακροβατεί μεταξύ πανικού και τάσης για γέλια. Αν είναι τόσο εύκολο, γιατί

Διαβάστε περισσότερα

Παύλος Εφραιμίδης. προηγμένα κρυπτογραφικά πρωτόκολλα. Ασφ Υπολ Συστ

Παύλος Εφραιμίδης. προηγμένα κρυπτογραφικά πρωτόκολλα. Ασφ Υπολ Συστ Παύλος Εφραιμίδης προηγμένα κρυπτογραφικά πρωτόκολλα Ασφ Υπολ Συστ 1 Zero-Knowledge Proofs Zero-Knowledge Proofs of Identity Blind Signatures Oblivious Signatures Simultaneous Contract Signing Simultaneous

Διαβάστε περισσότερα

Πρώτοι αριθμοί και κρυπτογραφικός αλγόριθμος RSA. Άριστος Χαραλάμπους, Δημήτρης Χαραλάμπους, Νικόλας Παρασκευάς

Πρώτοι αριθμοί και κρυπτογραφικός αλγόριθμος RSA. Άριστος Χαραλάμπους, Δημήτρης Χαραλάμπους, Νικόλας Παρασκευάς Πρώτοι αριθμοί και κρυπτογραφικός αλγόριθμος RSA Άριστος Χαραλάμπους, Δημήτρης Χαραλάμπους, Νικόλας Παρασκευάς Πρώτοι Αριθμοί Πρώτος αριθμός ονομάζεται ένας φυσικός αριθμός (δηλ. θετικός ακέραιος) μεγαλύτερος

Διαβάστε περισσότερα

1. Τι είναι ακεραιότητα δεδομένων, με ποιους μηχανισμούς επιτυγχάνετε κ πότε θα χρησιμοποιούσατε τον καθένα εξ αυτών;

1. Τι είναι ακεραιότητα δεδομένων, με ποιους μηχανισμούς επιτυγχάνετε κ πότε θα χρησιμοποιούσατε τον καθένα εξ αυτών; 1. Τι είναι ακεραιότητα δεδομένων, με ποιους μηχανισμούς επιτυγχάνετε κ πότε θα χρησιμοποιούσατε τον καθένα εξ αυτών; Η ακεραιότητα δεδομένων(data integrity) Είναι η ιδιότητα που μας εξασφαλίζει ότι δεδομένα

Διαβάστε περισσότερα

* * * ( ) mod p = (a p 1. 2 ) mod p.

* * * ( ) mod p = (a p 1. 2 ) mod p. Θεωρια Αριθμων Εαρινο Εξαμηνο 2016 17 Μέρος Α: Πρώτοι Αριθμοί Διάλεξη 1 Ενότητα 1. Διαιρετότητα: Διαιρετότητα, διαιρέτες, πολλαπλάσια, στοιχειώδεις ιδιότητες. Γραμμικοί Συνδυασμοί (ΓΣ). Ενότητα 2. Πρώτοι

Διαβάστε περισσότερα

YΒΡΙΔΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

YΒΡΙΔΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ ΤΕΙ Κρητης Τμήμα Μηχανικών Πληροφορικής Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων YΒΡΙΔΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Εισαγωγή Ο στόχος της υβριδικής μεθόδου είναι να αντισταθμίσει τα μειονεκτήματα της συμμετρικής

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΤΕΣΤ ΣΤΗΝ ΕΝΟΤΗΤΑ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΤΕΣΤ ΣΤΗΝ ΕΝΟΤΗΤΑ ΕΠΑ.Λ. Άμφισσας Σχολικό Έτος : 2011-2012 Τάξη : Γ Τομέας : Πληροφορικής Μάθημα : ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ ΙΙ Διδάσκων : Χρήστος Ρέτσας Η-τάξη : tiny.cc/retsas-diktya2 ΕΠΑΝΑΛΗΠΤΙΚΟ ΤΕΣΤ ΣΤΗΝ ΕΝΟΤΗΤΑ 8.3.1-8.3.3

Διαβάστε περισσότερα

ΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία

ΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία ΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία Παύλος Αντωνίου Γραφείο: ΘΕΕ 02 B176 Εαρινό Εξάμηνο 2011 Department of Computer Science Ασφάλεια - Απειλές Ασφάλεια Γενικά (Ι) Τα

Διαβάστε περισσότερα

Freedom of Speech. Κρυπτογραφία και ασφαλής ανταλλαγή πληροφοριών στο Internet

Freedom of Speech. Κρυπτογραφία και ασφαλής ανταλλαγή πληροφοριών στο Internet Freedom of Speech Κρυπτογραφία και ασφαλής ανταλλαγή πληροφοριών στο Internet Freedom of Speech Ποιός ; & Γιατί ; Τι είναι Ιστορικά Στόχοι Είδη Μοντέρνων Αλγορίθμων Μοντέλα Εμπιστοσύνης 14/03/2012 Freedom

Διαβάστε περισσότερα

Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, δέντρα κ.λ.π.

Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, δέντρα κ.λ.π. Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, 1.000 δέντρα κ.λ.π. Εκτός από πλήθος οι αριθμοί αυτοί μπορούν να δηλώσουν και τη θέση

Διαβάστε περισσότερα

Διαχείριση Ασφάλειας και Εμπιστοσύνης σε Πολιτισμικά Περιβάλλοντα

Διαχείριση Ασφάλειας και Εμπιστοσύνης σε Πολιτισμικά Περιβάλλοντα Διαχείριση Ασφάλειας και Εμπιστοσύνης σε Πολιτισμικά Περιβάλλοντα Ενότητα 5: ΚΡΥΠΤΟΓΡΑΦΗΣΗ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος

Διαβάστε περισσότερα

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας Κρυπτογραφία MAC - Γνησιότητα/Ακεραιότητα μηνύματος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 32 Περιεχόμενα 1 Message

Διαβάστε περισσότερα

Ασφάλεια Υπολογιστικών Συστηµάτων

Ασφάλεια Υπολογιστικών Συστηµάτων Ορισµοί Κρυπτογράφηση: η διεργασία µετασχηµατισµού ενός µηνύµατος µεταξύ ενός αποστολέα και ενός παραλήπτη σε µια ακατανόητη µορφή ώστε αυτό να µην είναι αναγνώσιµο από τρίτους Αποκρυπτογράφηση: η διεργασία

Διαβάστε περισσότερα

project RSA και Rabin-Williams

project RSA και Rabin-Williams Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών project RSA και Rabin-Williams Στοιχεία Θεωρίας Αριθμών& Εφαρμογές στην Κρυπτογραφία Ονοματεπώνυμο Σπουδαστών: Θανάσης Ανδρέου

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συνολικό Πλαίσιο Ασφάλεια ΠΕΣ Εμπιστευτικότητα Ακεραιότητα Πιστοποίηση Μη-αποποίηση Κρυπτογράφηση

Διαβάστε περισσότερα

Κρυπτοσύστημα RSA (Rivest, Shamir, Adlemann, 1977) Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Κρυπτοσύστημα RSA (Rivest, Shamir, Adlemann, 1977) Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Κρυπτογραφία Δημοσίου Κλειδιού Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κρυπτοσύστημα

Διαβάστε περισσότερα

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 6: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΣΕΜΙΝΑΡΙΟ. ΠΑΡΟΥΣΙΑΣΗ 19/5/11 Αµφιθέατρο

ΣΕΜΙΝΑΡΙΟ. ΠΑΡΟΥΣΙΑΣΗ 19/5/11 Αµφιθέατρο ΣΕΜΙΝΑΡΙΟ Θεµα : Τι είναι το SSL και πως χρησιµοποιείται. Τι χρειάζεται για να στηθεί ένα SSL. Οµάδα : Παναγιώτης Καλύβας Καρανίκας Γιώργος Μιχάλης Λιβάνιος ΠΑΡΟΥΣΙΑΣΗ 19/5/11 Αµφιθέατρο Εισαγωγή Τι είναι

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΗΣΗ ΔΗΜΟΣΙΟΥ ΚΛΕΙΔΙΟΥ

ΚΡΥΠΤΟΓΡΑΦΗΣΗ ΔΗΜΟΣΙΟΥ ΚΛΕΙΔΙΟΥ ΚΡΥΠΤΟΓΡΑΦΗΣΗ ΔΗΜΟΣΙΟΥ ΚΛΕΙΔΙΟΥ Η κρυπτογράφηση δημοσίου κλειδιού (Public Key Cryptography) ή ασύμμετρου κλειδιού (Asymmetric Cryptography) επινοήθηκε στο τέλος της δεκαετίας του 1970 από τους Whitfield

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΠΙΣΤΟΠΟΙΗΤΙΚΑ ΓΙΑ ΑΣΦΑΛΗ ΚΑΙ ΠΙΣΤΟΠΟΙΗΜΕΝΗ ΕΠΙΚΟΙΝΩΝΙΑ ΜΕ ΤΗΝ ΤΡΑΠΕΖΑ ΤΗΣ ΕΛΛΑΔΟΣ. Οδηγίες προς τις Συνεργαζόμενες Τράπεζες

ΨΗΦΙΑΚΑ ΠΙΣΤΟΠΟΙΗΤΙΚΑ ΓΙΑ ΑΣΦΑΛΗ ΚΑΙ ΠΙΣΤΟΠΟΙΗΜΕΝΗ ΕΠΙΚΟΙΝΩΝΙΑ ΜΕ ΤΗΝ ΤΡΑΠΕΖΑ ΤΗΣ ΕΛΛΑΔΟΣ. Οδηγίες προς τις Συνεργαζόμενες Τράπεζες ΨΗΦΙΑΚΑ ΠΙΣΤΟΠΟΙΗΤΙΚΑ ΓΙΑ ΑΣΦΑΛΗ ΚΑΙ ΠΙΣΤΟΠΟΙΗΜΕΝΗ ΕΠΙΚΟΙΝΩΝΙΑ ΜΕ ΤΗΝ ΤΡΑΠΕΖΑ ΤΗΣ ΕΛΛΑΔΟΣ Οδηγίες προς τις Συνεργαζόμενες Τράπεζες 1. Εισαγωγή Γνωριμία με τα Ψηφιακά Πιστοποιητικά Η χρήση ηλεκτρονικών

Διαβάστε περισσότερα

ρ. Κ. Σ. Χειλάς, ίκτυα Η/Υ ΙΙΙ, Τ.Ε.Ι. Σερρών, 2007

ρ. Κ. Σ. Χειλάς, ίκτυα Η/Υ ΙΙΙ, Τ.Ε.Ι. Σερρών, 2007 Ψηφιακές υπογραφές Ψηφιακές υπογραφές Υπάρχει ανάγκη αντικατάστασης των χειρόγραφων υπογραφών µε ψηφιακές (ΨΥ) Αυτές πρέπει να διαθέτουν τα εξής χαρακτηριστικά: Ο παραλήπτης πρέπει να είναι σε θέση να

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα

Ασφάλεια Στο Ηλεκτρονικό Εμπόριο. Λάζος Αλέξανδρος Α.Μ. 3530

Ασφάλεια Στο Ηλεκτρονικό Εμπόριο. Λάζος Αλέξανδρος Α.Μ. 3530 Ασφάλεια Στο Ηλεκτρονικό Εμπόριο Λάζος Αλέξανδρος Α.Μ. 3530 Ηλεκτρονικό Εμπόριο Χρησιμοποιείται για να περιγράψει την χρήση τηλεπικοινωνιακών μέσων (κυρίως δικτύων) για κάθε είδους εμπορικές συναλλαγές

Διαβάστε περισσότερα

Οι Φυσικοί Αριθμοί. Παρατήρηση: Δεν στρογγυλοποιούνται αριθμοί τηλεφώνων, Α.Φ.Μ., κωδικοί αριθμοί κλπ. Πρόσθεση Φυσικών αριθμών

Οι Φυσικοί Αριθμοί. Παρατήρηση: Δεν στρογγυλοποιούνται αριθμοί τηλεφώνων, Α.Φ.Μ., κωδικοί αριθμοί κλπ. Πρόσθεση Φυσικών αριθμών Οι Φυσικοί Αριθμοί Γνωρίζουμε ότι οι αριθμοί είναι ποσοτικές έννοιες και για να τους γράψουμε χρησιμοποιούμε τα αριθμητικά σύμβολα. Οι αριθμοί μετρούν συγκεκριμένα πράγματα και φανερώνουν το πλήθος της

Διαβάστε περισσότερα

Ασκήσεις και δραστηριότητες

Ασκήσεις και δραστηριότητες Ασκήσεις και δραστηριότητες 1. Ποιος είναι ο Ευκλείδης, συγγραφέας των Στοιχείων; Πότε έζησε; Τι γνωρίζουμε γι αυτόν και για το έργο του; Από πού; Να διαβάσεις σχετικά σε μιαν εγκυκλοπαίδεια ή ένα βιβλίο

Διαβάστε περισσότερα

Σύγχρονη Κρυπτογραφία

Σύγχρονη Κρυπτογραφία Σύγχρονη Κρυπτογραφία 50 Υπάρχουν μέθοδοι κρυπτογράφησης πρακτικά απαραβίαστες Γιατί χρησιμοποιούμε λιγότερο ασφαλείς μεθόδους; Η μεγάλη ασφάλεια κοστίζει σε χρόνο και χρήμα Πολλές φορές θυσιάζουμε ασφάλεια

Διαβάστε περισσότερα

El Gamal Αλγόριθμος. Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 7 2

El Gamal Αλγόριθμος. Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 7 2 Κρυπτογραφία Εργαστηριακό μάθημα 7 (Αλγόριθμοι Δημοσίου Κλειδιού) α) El Gamal β) Diffie-Hellman αλγόριθμος για την ανταλλαγή συμμετρικού κλειδιού κρυπτογράφησης El Gamal Αλγόριθμος Παράμετροι συστήματος:

Διαβάστε περισσότερα

Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές

Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές Βαγγέλης Φλώρος, BSc, MSc Τµήµα Πληροφορικής και Τηλεπικοινωνιών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών Εν αρχή είναι... Η Πληροφορία - Αρχείο

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο

Εθνικό Μετσόβιο Πολυτεχνείο Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία PROJECT Συνοπτική Παρουσίαση του Κβαντικού Αλγόριθμου Παραγοντοποίησης

Διαβάστε περισσότερα

Συνοπτική Μεθοδολογία Ασκήσεων Κεφαλαίου 7. Ασκήσεις στο IP Fragmentation

Συνοπτική Μεθοδολογία Ασκήσεων Κεφαλαίου 7. Ασκήσεις στο IP Fragmentation Συνοπτική Μεθοδολογία Ασκήσεων Κεφαλαίου 7 Οι σημειώσεις που ακολουθούν περιγράφουν τις ασκήσεις που θα συναντήσετε στο κεφάλαιο 7. Η πιο συνηθισμένη και βασική άσκηση αναφέρεται στο IP Fragmentation,

Διαβάστε περισσότερα

Κρυπτογραφία Δημοσίου Κλειδιού

Κρυπτογραφία Δημοσίου Κλειδιού Στοιχεία Θεωρίας Αριθμών και Εφαρμογές στην Κρυπτογραφία Κρυπτογραφία Δημοσίου Κλειδιού Άρης Παγουρτζής Στάθης Ζάχος Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών Εθνικού Mετσόβιου Πολυτεχνείου

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 7 Ο ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 1. Όταν μπροστα" (αριστερα") απο" ε"ναν αριθμο" γραφει" το συ"μβολο + το"τε ο αριθμο"ς

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

Υποθέσεις - Θεωρήματα. Μαθηματικά Πληροφορικής 1ο Μάθημα. Η χρυσή τομή. Υποθέσεις - Εικασίες

Υποθέσεις - Θεωρήματα. Μαθηματικά Πληροφορικής 1ο Μάθημα. Η χρυσή τομή. Υποθέσεις - Εικασίες Υποθέσεις - - Θεωρήματα Υποθέσεις - - Θεωρήματα Υποθέσεις - Θεωρήματα Μαθηματικά Πληροορικής ο Μάθημα Στα μαθηματικά και στις άλλες επιστήμες κάνουμε συχνά υποθέσεις. Οταν δείξουμε ότι μια υπόθεση είναι

Διαβάστε περισσότερα

a. b. c. d ΤΕΧΝΟΛΟΓΙΑ ΔΙΚΤΥΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

a. b. c. d ΤΕΧΝΟΛΟΓΙΑ ΔΙΚΤΥΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ 7.7 Πρωτόκολλο Μέχρι τώρα έχουμε αναφέρει, ότι, για να μεταδοθούν τα αυτοδύναμα πακέτα στο φυσικό μέσο, πρέπει αυτά να μετατραπούν σε πακέτα φυσικού δικτύου (π.χ. Ethernet). Όμως, δεν έχει ειπωθεί τίποτε

Διαβάστε περισσότερα

Αυθεντικότητα Μηνυμάτων Συναρτήσεις Hash/MAC

Αυθεντικότητα Μηνυμάτων Συναρτήσεις Hash/MAC Αυθεντικότητα Μηνυμάτων Συναρτήσεις Hash/MAC Τμήμα Μηχ. Πληροφορικής ΤΕΙ Κρήτης Αυθεντικότητα Μηνυμάτων 1 Αυθεντικότητα Μηνύματος Εφαρμογές Προστασία ακεραιότητας Εξακρίβωση ταυτότητας αποστολέα Μη άρνηση

Διαβάστε περισσότερα

Γ ε ν ι κ ό Λ ύ κ ε ι ο Ε λ ε υ θ ε ρ ο ύ π ο λ η ς. Α λ γ ό ρ ι θ μ ο ι

Γ ε ν ι κ ό Λ ύ κ ε ι ο Ε λ ε υ θ ε ρ ο ύ π ο λ η ς. Α λ γ ό ρ ι θ μ ο ι Α λ γ ό ρ ι θ μ ο ι Αριθμητικοί τελεστές Οι αριθμητικοί τελεστές είναι: πρόσθεση, αφαίρεση, πολλαπλασιασμός και διαίρεση +,-,*,/ ύψωση σε δύναμη ^ πηλίκο ακέραιης διαίρεσης δύο ακεραίων αριθμών div υπόλοιπο

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Δημήτριος Μπάκας Αθανάσιος

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 3 ο, Τμήμα Α Ο πυρήνας των μαθηματικών είναι οι τρόποι με τους οποίους μπορούμε να συλλογιζόμαστε στα μαθηματικά. Τρόποι απόδειξης Επαγωγικός συλλογισμός (inductive)

Διαβάστε περισσότερα

Κρυπτογραφία. Εργαστηριακό μάθημα 9 (Πρωτόκολλα πιστοποίησης ταυτότητας μηδενικής γνώσης Fiat-Shamir)

Κρυπτογραφία. Εργαστηριακό μάθημα 9 (Πρωτόκολλα πιστοποίησης ταυτότητας μηδενικής γνώσης Fiat-Shamir) Κρυπτογραφία Εργαστηριακό μάθημα 9 (Πρωτόκολλα πιστοποίησης ταυτότητας μηδενικής γνώσης Fiat-Shamir) Πρωτόκολλα μηδενικής γνώσης Βασική ιδέα: Ένας χρήστης Α (claimant) αποδεικνύει την ταυτότητά του σε

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ασύμμετρα Κρυπτοσυστήματα κλειδί κρυπτογράφησης k1 Αρχικό κείμενο (m) (δημόσιο κλειδί) Αλγόριθμος

Διαβάστε περισσότερα

Cryptography and Network Security Chapter 13. Fifth Edition by William Stallings

Cryptography and Network Security Chapter 13. Fifth Edition by William Stallings Cryptography and Network Security Chapter 13 Fifth Edition by William Stallings Chapter 13 Digital Signatures To guard against the baneful influence exerted by strangers is therefore an elementary dictate

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

Threshold Cryptography Algorithms. Εργασία στα πλαίσια του μαθήματος Τεχνολογίες Υπολογιστικού Νέφους

Threshold Cryptography Algorithms. Εργασία στα πλαίσια του μαθήματος Τεχνολογίες Υπολογιστικού Νέφους Threshold Cryptography Algorithms Εργασία στα πλαίσια του μαθήματος Τεχνολογίες Υπολογιστικού Νέφους Ορισμός Το σύστημα το οποίο τεμαχίζει ένα κλειδί k σε n τεμάχια έτσι ώστε οποιοσδήποτε συνδυασμός πλήθους

Διαβάστε περισσότερα

ΑΣΥΜΠΤΩΤΙΚΗ ΑΝΑΛΥΣΗ & ΠΡΟΣΘΕΣΗ

ΑΣΥΜΠΤΩΤΙΚΗ ΑΝΑΛΥΣΗ & ΠΡΟΣΘΕΣΗ ΑΣΥΜΠΤΩΤΙΚΗ ΑΝΑΛΥΣΗ & ΠΡΟΣΘΕΣΗ Θέματα μελέτης Ορθότητα και απόδοση αλγορίθμων Παρουσίαση και ανάλυση αλγορίθμου για πρόσθεση Al Khwarizmi Αλγόριθμοι Το δεκαδικό σύστημα εφευρέθηκε στην Ινδία περίπου το

Διαβάστε περισσότερα

Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ

Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ Παύλος Εφραιμίδης Βασικές Έννοιες Κρυπτογραφίας Ασφ Υπολ Συστ 1 Βασικές υπηρεσίες/εφαρμογές κρυπτογραφίες: Confidentiality, Authentication, Integrity, Non- Repudiation Βασικές έννοιες κρυπτογραφίας 2 3

Διαβάστε περισσότερα

Κρυπτογραφία και Ηλεκτρονικοί Υπολογιστές. ΣΥΝΤΕΛΕΣΤΕΣ: Κραβαρίτης Αλέξανδρος Μαργώνη Αγγελική Χαλιμούρδα Κων/να

Κρυπτογραφία και Ηλεκτρονικοί Υπολογιστές. ΣΥΝΤΕΛΕΣΤΕΣ: Κραβαρίτης Αλέξανδρος Μαργώνη Αγγελική Χαλιμούρδα Κων/να Κρυπτογραφία και Ηλεκτρονικοί Υπολογιστές ΣΥΝΤΕΛΕΣΤΕΣ: Κραβαρίτης Αλέξανδρος Μαργώνη Αγγελική Χαλιμούρδα Κων/να Ορισμός κρυπτογραφίας Με τον όρο κρυπτογραφία, αναφερόμαστε στη μελέτη μαθηματικών τεχνικών

Διαβάστε περισσότερα