ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ- ΠΡΑΞΕΙΣ ΑΥΤΩΝ 1.2 ΠΡΟΒΛΗΜΑΤΑ ΔΙΔΑΣΚΑΛΙΑΣ ΤΩΝ ΑΡΝΗΤΙΚΩΝ ΑΡΙΘΜΩΝ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ- ΠΡΑΞΕΙΣ ΑΥΤΩΝ 1.2 ΠΡΟΒΛΗΜΑΤΑ ΔΙΔΑΣΚΑΛΙΑΣ ΤΩΝ ΑΡΝΗΤΙΚΩΝ ΑΡΙΘΜΩΝ"

Transcript

1 ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ- ΠΡΑΞΕΙΣ ΑΥΤΩΝ 1.1 ΕΙΣΑΓΩΓΗ Ασχολήθηκα 30 χρόνια με τη διδασκαλία των Μαθηματικών του Γυμνασίου, τόσο στην Μέση Εκπαίδευση όσο και σε Φροντιστήρια. Η μέθοδος που χρησιμοποιούσα για τη διδασκαλία των πράξεων των ακεραίων στηρίζονταν στο τυπικό μοντελοποιημένο πλαίσιο του σχολικού βιβλίου. Ουδέποτε οι μαθητές αναρωτήθηκαν ή αναζήτησαν περισσότερα πράγματα από όσα τους έδινα. Φέτος διδάσκω το θέμα αυτό στο Β έτος του ΣΔΕ Ιωαννίνων, σε ανθρώπους ενήλικες, όπου το μοντελοποιημένο, φορμαλιστικό, αποδεικτικό πρότυπο δεν τους ικανοποιεί. Οι ενήλικες είναι σαν την παιδική ψυχή, που αναζητά το γιατί, θέλοντας να στηρίξει τη γνώση που προέρχεται απ όσα βλέπει, ακούει, αισθάνεται. Άρα, μια μέθοδος που θα ερευνά και θα ανακαλύπτει το γιατί, που θα οδηγεί στα θεμέλια της γνώσης, θα την θεμελιώνει και θα κάνει τον μαθητή ικανό να μην την ξεχνά εύκολα, να μην την μπερδεύει και κυρίως να νιώθει σιγουριά, είναι απαίτηση του εκπαιδευόμενου και ζητούμενο του εκπαιδευτικού. Ανέτρεξα, λοιπόν, στη βιβλιογραφία Διδακτικής των Μαθηματικών και κατέληξα σε εναλλακτικούς τρόπους παρουσίασης και διδακτικής προσέγγισης του αντικειμένου. Θεώρησα καλό να γράψω όλα αυτά ως υλικό, για όσους συναδέλφους θα ήθελαν να το συμβουλευτούν. 1.2 ΠΡΟΒΛΗΜΑΤΑ ΔΙΔΑΣΚΑΛΙΑΣ ΤΩΝ ΑΡΝΗΤΙΚΩΝ ΑΡΙΘΜΩΝ Ο Πρώσος μαθηματικός του 19 ου αιώνα Leopold Kronecker είπε ότι: «Οι Φυσικοί αριθμοί είναι δώρο του Θεού προς τους ανθρώπους, όλα τα υπόλοιπα, είναι κατασκευάσματα των ανθρώπων.» Όσο και αν δε θελήσουμε να δεχτούμε τη θεϊκή καταγωγή των μαθηματικών, δε θα μπορέσουμε να αρνηθούμε την αδυναμία μας να περιγράψουμε με φυσικούς αριθμούς όλα τα μεγέθη και φαινόμενα της ανθρώπινης καθημερινότητας. Η άνεση, η ευχέρεια και εξοικείωση του δασκάλου των μαθηματικών με τους αρνητικούς αριθμούς, δε θα πρέπει να τον οδηγήσει στην παράβλεψη των δυσκολιών της διδασκαλίας τους στο σχολικό επίπεδο. Η παράγραφος αυτή αποδεικνύει, ότι αυτός ο οποίος έχει κατανοήσει τα μαθηματικά δεν είναι κατ ανάγκη σε θέση και να τα διδάξει. Ο καλύτερος τρόπος για να εξηγήσει κανείς στους μαθητές τις δυσκολίες που εμφανίζονται στους αρνητικούς αριθμούς, είναι εκείνος που βοηθά να κατανοήσουν σε βάθος μια μαθηματική έννοια. Η Γενετική- Ιστορική μέθοδος δηλαδή, που εξετάζει την έννοια στα διάφορα στάδια ανάπτυξης και εξέλιξής της.

2 1.3 ΙΣΤΟΡΙΚΗ ΑΝΑΔΡΟΜΗ ΣΤΗΝ ΕΝΝΟΙΟΛΟΓΙΚΗ ΕΞΕΛΙΞΗ ΤΩΝ ΑΡΝΗΤΙΚΩΝ ΑΡΙΘΜΩΝ Η πάλη των ιδεών γύρω από τη σημασία των αρνητικών αριθμών και ο αγώνας για την τελική της επικράτηση με τη σημερινή τους μορφή, καθυστέρησε το εννοιολογικό τους ξεκαθάρισμα και δυσκόλεψε τα πράγματα. Περισσότερα από χρόνια χρειάστηκαν, από την εποχή του Διόφαντου, μέχρι να θεωρηθούν οι κανόνες των προσήμων ως αποδεκτοί και να νομιμοποιηθούν (Arcaviet et al. 1982, Hefendehl- Hebeker 1991) Οι αρχαίοι Έλληνες μαθηματικοί, επηρεασμένοι από την Πλατωνική αντίληψη γεωμετροποίησης των μαθηματικών, γνώριζαν μεν τους αρνητικούς αριθμούς, αλλά θεωρούσαν αδύνατη κάθε εξίσωση με αρνητικές ρίζες. Ο Διόφαντος (250 μ.χ) εξηγούσε το «αρνητικό» σαν «αυτό που υπολείπεται». Οι Κινέζοι χρησιμοποιούσαν ένα υπολογιστικό μηχάνημα στο οποίο οι αριθμητικές σειρές ήταν χρωματισμένες κόκκινες και μαύρες για να ξεχωρίζουν τους θετικούς από τους αρνητικούς αριθμούς. Οι Ινδοί από τον 7 ο αιώνα, φαίνεται να χρησιμοποιούν τους αρνητικούς, σε εμπορικά προβλήματα με έλλειμμα. Δεν χρησιμοποιούσαν το στους αρνητικούς, αλλά τον αριθμό μέσα σε κύκλο π.χ. = -C Άραβας μαθηματικός του 9 ου αιώνα, τοποθετούσε τον κύκλο πάνω από τον αριθμό. Μέχρι το 15 ο αιώνα- αρχές του 16 ου, πολλοί Ευρωπαίοι μαθηματικοί, αρνούνται να δεχθούν τους αρνητικούς αριθμούς. Οι αρνητικοί αρχίζουν να κερδίζουν την εμπιστοσύνη των μαθηματικών από τις εργασίες του Albert Girard (1629). Αντιφάσεις και σύγχυση επικρατούσε όμως κατά τον 17 ο και 18 ο αιώνα από πολλούς μαθηματικούς. Τον 19 ο αιώνα δόθηκε η πραγματική εξήγηση των ιδιοτήτων των αρνητικών. 1.4 ΠΑΡΑΣΤΑΣΗ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ Αν θέλουμε να κατανοήσουμε και ερμηνεύσουμε την έκφραση < κάτω από το μηδέν> θα μπορούσαμε να σκεφτούμε τη <σκάλα> των ακεραίων.

3 Ομοίως αν συνεχίσουμε τον άξονα- αριθμογραμμή των Φυσικών αριθμών προς τα αριστερά του μηδενός, θα έχουμε τον άξονα των ακεραίων Η απόσταση κάθε αριθμού από το μηδέν ονομάζεται απόλυτη τιμή και είναι πάντα θετικός αριθμός. 1.5 ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΠΡΟΣΘΕΣΗ ΕΤΕΡΟΣΗΜΩΝ ΑΡΙΘΜΩΝ

4 ΑΦΑΙΡΕΣΗ Αν οι αριθμοί είναι ομόσημοι και ο μειωτέος μεγαλύτερος από τον αφαιρετέο, τότε είναι σαν να αφαιρούμε από έναν αριθμό από λευκά ή μαύρα τόσα όσα δηλώνει ο αφαιρετέος. Αφαίρεση ετεροσήμων αριθμών, π.χ. (-5) (+4)

5

6 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ vγινόμενο ετεροσήμων αριθμών π.χ (-3). (+2) Α ΤΡΟΠΟΣ: ΑΝΑΠΑΡΑΣΤΑΣΗ ΤΗΣ ΠΡΑΞΗΣ Β ΤΡΟΠΟΣ: ΑΝΑΚΑΛΥΨΗ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΠΡΟΤΥΠΟΥ Δίνεται το παρακάτω πρότυπο Παράγοντες Γινόμενο ? -2.2? -3.2?

7 Οι μαθητές μπορούν να παρατηρήσουν ότι, όταν ο πολλαπλασιαστής ελαττώνεται κατά μια μονάδα κάθε φορά, το γινόμενο ελαττώνεται κατά 2 μονάδες. Έτσι, λογικά, μετά το 0 θα πάει στο -2, Έτσι (-3). (+2) = -6 Επομένως το γινόμενο ετεροσήμων είναι αρνητικός αριθμός. vγινόμενο αρνητικών αριθμών π.χ (-3)* (-2) Α ΤΡΟΠΟΣ: ΑΝΑΠΑΡΑΣΤΑΣΗ ΤΗΣ ΠΡΑΞΗΣ

8 Β ΤΡΟΠΟΣ: ΑΝΑΚΑΛΥΨΗ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΠΡΟΤΥΠΟΥ Παράγοντες Γινόμενο 3.(-2) -6 2.(-2) -4 1.(-2) -2 0.(-2) 0-1.(-2)? -2.(-2)? -3.(-2)? Οι μαθητές μπορούν να παρατηρήσουν ότι, όταν ο πολλαπλασιαστής ελαττώνεται κατά μια μονάδα κάθε φορά, το γινόμενο αυξάνει κατά 2 μονάδες. Έτσι, λογικά, μετά το 0 θα πάει στο 2, 4. 6 Έτσι (-3). (-2) = 6 Επομένως το γινόμενο αρνητικών είναι θετικός αριθμός. Γ ΤΡΟΠΟΣ : ΑΙΤΙΟΛΟΓΗΣΗ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΔΙΑΝΥΣΜΑΤΩΝ Αν πολ/σουμε το διάνυσμα μ με το (-3) παίρνουμε το διάνυσμα α= (-3) μ. Αν τώρα πολ/σουμε το α με το (-2) παίρνουμε το β=(-2)α=(-2).(-3)μ, έχει την φορά του μ και είναι, όπως φαίνεται, εξαπλάσιο του, δηλαδή β=6μ και συνεπώς (- 2).(-3)=6 Δ ΤΡΟΠΟΣ: Η < ΕΞ ΟΡΙΣΜΟΥ > ΠΡΟΣΕΓΓΙΣΗ Οι κανόνες προσήμων δίνονται εξ ορισμού ως: (+ ).(+)=(+), (-).(-)=(+),

9 (-).(+)=(-), (+).(-)=(-) Η μέθοδος αυτή δεν πείθει τον μαθητή, γι αυτό ο δάσκαλος καταφεύγει πολλές φορές σε κάποια παραδείγματα μοντέλων φυσικής ερμηνείας, όπως: Παράδειγμα 1 ο Συμβολίζω με ( +) τον φίλο και με (-) τον εχθρό, οπότε: Ο φίλος του φίλου= φίλος δηλαδή (+ ).(+)=(+) Ο φίλος του εχθρού= εχθρός δηλαδή (+).(-)=(-) Ο εχθρός του φίλου= εχθρός δηλαδή (-).(+)=(-) Ο εχθρός του εχθρού= φίλος δηλαδή (-).(-)=(+) Παράδειγμα 2 ο Συμβολίζω με (+) το άνοιγμα του καταστήματος και το κέρδος, και με (-) το κλείσιμο και τη ζημία, οπότε: Αν ένα κατάστημα κάθε μέρα που είναι ανοιχτό, έχει ζημία 300 ευρώ τότε αν κλείσει 3 μέρες θα έχει κέρδος 900 ευρώ δηλαδή: (-300).(-3)=(+900)

10 1.6 ΒΙΒΛΙΟΓΡΑΦΙΑ ΠΟΛΥΔΟΥΡΗΣ, Β. (1995). Η Αριθμητική των ακεραίων. Θεσσαλονίκη: Εκδόσεις Αφοι Κυριακίδη ΑΕ. ΤΟΥΜΑΣΗΣ, ΜΠ. (1994). Σύγχρονη διδακτική των Μαθηματικών. Εκδόσεις Gutenberg. ΤΡΙΑΝΤΑΦΥΛΛΙΔΗΣ, Α. ΤΡ. και ΣΔΡΟΛΙΑΣ, Α.Κ. (2000). Βασικές μαθηματικές έννοιες για τον εκπαιδευτικό της πρωτοβάθμιας εκπαίδευσης. Αθήνα: Εκδόσεις Τυπωθήτω. ΧΑΛΑΤΣΗΣ, Α. (1990). Αριθμητική. Θεσσαλονίκη: Εκδόσεις Ζήση. Κέντρο Έρευνας Επιστήμης και εκπαίδευσης (2001). Ευκλείδη στοιχεία, Τόμοι Ι, ΙΙ, και ΙΙΙ. Αθήνα

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε

Διαβάστε περισσότερα

Αρνητικοί αριθμοί Μια διδακτική παρέμβαση στα Μαθηματικά της Α Γυμνασίου

Αρνητικοί αριθμοί Μια διδακτική παρέμβαση στα Μαθηματικά της Α Γυμνασίου Αρνητικοί αριθμοί Μια διδακτική παρέμβαση στα Μαθηματικά της Α Γυμνασίου εμινάριο Εφαρμοσμένης Διδακτικής των Μαθηματικών: Παραδοσιακές και σύγχρονες μέθοδοι διδασκαλίας των Μαθηματικών. Ιστορική εξέλιξη

Διαβάστε περισσότερα

7.1 ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ

7.1 ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ 1 7.1 ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ 1. Τα πρόσηµα : Τα µαθηµατικά σύµβολα + και τα ονοµάζουµε πρόσηµα. 2. Θετικοί αρνητικοί αριθµοί : Όλοι οι αριθµοί που µπροστά τους έχουν το πρόσηµο + ονοµάζονται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

Σχολείο Δεύτερης Ευκαιρίας. Ιωαννίνων. Αριθμητικός Γραμματισμός. Εισηγήτρια : Σεντελέ Καίτη

Σχολείο Δεύτερης Ευκαιρίας. Ιωαννίνων. Αριθμητικός Γραμματισμός. Εισηγήτρια : Σεντελέ Καίτη Σχολείο Δεύτερης Ευκαιρίας Ιωαννίνων Αριθμητικός Γραμματισμός Εισηγήτρια : Σεντελέ Καίτη ΘΕΜΑ ΕΙΣΗΓΗΣΗΣ «Προγραμματισμός-Οργάνωση και υλοποίηση μιας διδακτικής ενότητας στον Αριθμητικό Γραμματισμό» ΠΡΟΣΘΕΣΗ

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

Α. Η γραφική παράσταση της συνάρτησης 2. f(x) = α x 2 + β x + γ, α 0. f (x) x. Παράδειγμα. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε.

Α. Η γραφική παράσταση της συνάρτησης 2. f(x) = α x 2 + β x + γ, α 0. f (x) x. Παράδειγμα. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (τεύχος 55) Μαθηματικά για την Α τάξη του Λυκείου Το τριώνυμο f(x) = α x + β x + γ, α Κώστα Βακαλόπουλου, Νίκου Ταπεινού Α. Η γραφική παράσταση της συνάρτησης f(x) αx βx γ,

Διαβάστε περισσότερα

Κατανόηση προφορικού λόγου

Κατανόηση προφορικού λόγου Κατανόηση προφορικού λόγου Επίπεδο Γ Δεύτερη διδακτική πρόταση Μυθολογία Ενδεικτική διάρκεια: Ομάδα-στόχος: Διδακτικός στόχος: Στρατηγικές: Υλικό: Ενσωμάτωση δραστηριοτήτων: 1 διδακτική ώρα έφηβοι και

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

Δυαδικη παρασταση αριθμων και συμβολων

Δυαδικη παρασταση αριθμων και συμβολων Δυαδικη παρασταση αριθμων και συμβολων Ενα αριθμητικο συστημα χαρακτηριζεται απο την βαση r και τα συμβολα a i που παιρνουν τις τιμες 0,1,...,r-1. (a n,,a 1,a 0. a -1,a -2,,a -m ) r = =a n r n + +a 1 r+a

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

g 0 5 0, των Παναγιώτη Χριστόπουλου Κώστα Βακαλόπουλου

g 0 5 0, των Παναγιώτη Χριστόπουλου Κώστα Βακαλόπουλου ΜΑΘΗΜΑΤΙΚΑ Α ΛΥΚΕΙΟΥ ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ ή ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ των Παναγιώτη Χριστόπουλου Κώστα Βακαλόπουλου Με τη φράση «πρόσημο τριωνύμου» δηλώνουμε τη μέθοδο με την οποία μπορούμε να γνωρίζουμε ποιο πρόσημο

Διαβάστε περισσότερα

Στη καθημερινή μας ζωή ακούμε συχνά εκφράσεις όπως: Ο πληθωρισμός αυξήθηκε τη περσινή χρονιά κατά 4%

Στη καθημερινή μας ζωή ακούμε συχνά εκφράσεις όπως: Ο πληθωρισμός αυξήθηκε τη περσινή χρονιά κατά 4% Ποσοστά: Τα Μαθηματικά της Αγοράς ===================================================================================== Κώστας Γ. Σάλαρης - Μάνια Κ. Σάλαρη Στη καθημερινή μας ζωή ακούμε συχνά εκφράσεις

Διαβάστε περισσότερα

Διδακτική της Πληροφορικής ΙΙ

Διδακτική της Πληροφορικής ΙΙ Διδακτική της Πληροφορικής ΙΙ Ομάδα Γ Βότσης Ευστάθιος Γιαζιτσής Παντελής Σπαής Αλέξανδρος Τάτσης Γεώργιος Προβλήματα που αντιμετωπίζουν οι αρχάριοι προγραμματιστές Εισαγωγή Προβλήματα Δυσκολίες Διδακτικό

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΕΡΓΑΣΙΑ ΓΙΑ ΤΟ ΜΑΘΗΜΑ: ΘΕΜΑ: «Αριθμοί στην καθημερινή ζωή»

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΕΡΓΑΣΙΑ ΓΙΑ ΤΟ ΜΑΘΗΜΑ: ΘΕΜΑ: «Αριθμοί στην καθημερινή ζωή» ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΕΡΓΑΣΙΑ ΓΙΑ ΤΟ ΜΑΘΗΜΑ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΙΙ ΘΕΜΑ: «Αριθμοί στην καθημερινή ζωή» Βόκα Δέσποινα & Δούρου

Διαβάστε περισσότερα

ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ ΕΠΙΛΥΣΗ ΑΝΙΣΩΣΕΩΝ 2 ου ΒΑΜΟΥ

ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ ΕΠΙΛΥΣΗ ΑΝΙΣΩΣΕΩΝ 2 ου ΒΑΜΟΥ 5 ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ ΕΠΙ ΑΝΙΣΩΣΕΩΝ ου ΒΑΜΟΥ ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ Για να βρούμε το πρόσημο του τριωνύμου αχ +βχ+γ βρίκουμε την διακρίνουσα Δ=β - 4αγ και αν: Δ>0,το τριώνυμο έχει δυο ρίζες χ 1,χ και το προσημό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Φοιτητής: Παύλου Νικόλαος, Α.Ε.Μ: 2245, Ε Εξάμηνο Σχολείο: 1 ο Πειραματικό

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 3 ο, Τμήμα Α Ο πυρήνας των μαθηματικών είναι οι τρόποι με τους οποίους μπορούμε να συλλογιζόμαστε στα μαθηματικά. Τρόποι απόδειξης Επαγωγικός συλλογισμός (inductive)

Διαβάστε περισσότερα

Α. 27 Β. 29 Γ. 45 Δ. 105 Ε. 127

Α. 27 Β. 29 Γ. 45 Δ. 105 Ε. 127 Α - Β Γυμνασίου η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 0. Αν = M = 60, η τιμή του M + N είναι: 5 45 N Α. Β. 9 Γ. 45 Δ. 05 Ε.. Ένα τετράγωνο και ένα τρίγωνο έχουν ίσες περιμέτρους. Το μήκος των τριών

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» Email : stvrentzou@gmail.com www.ma8eno.gr

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» Email : stvrentzou@gmail.com www.ma8eno.gr 1 Πρόσημο τριωνύμου - λύση ανίσωσης ου βαθμού Έστω το τριώνυμο f(x) = x - 4x - 1. Θέλουμε να εξετάσουμε για ποιες τιμές της μεταβλητής x το τριώνυμο f(x) γίνεται θετικό, για ποιες τιμές του x γίνεται αρνητικό,

Διαβάστε περισσότερα

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ.

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Σάλαρης Πολλές φορές μας δίνεται να λύσουμε ένα πρόβλημα που από την πρώτη

Διαβάστε περισσότερα

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΕΚΔΟΣΕΙΣ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ τη ΘΕΩΡΙΑ με τις απαραίτητες διευκρινήσεις ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

Δυνάμεις Φυσικών Αριθμών

Δυνάμεις Φυσικών Αριθμών Δυνάμεις Φυσικών Αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Δυνάμεις φυσικών αριθμών Δύναμη ονομάζουμε το γινόμενο πολλών ίσων παραγόντων Πχ: 8 8= 64, 4 4 4= 64, 3 3 3 3= 81. Έτσι, το γινόμενο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ-Β ΦΑΣΗ ΘΕΜΑ ΔΙΔΑΣΚΑΛΙΑΣ: ΣΤΡΑΤΗΓΙΚΕΣ ΔΙΑΧΕΙΡΙΣΗΣ ΑΡΙΘΜΩΝ-19 ο ΚΕΦΑΛΑΙΟ ΣΧΟΛΕΙΟ: 2 ο ΠΕΙΡΑΜΑΤΙΚΟ ΦΛΩΡΙΝΑΣ

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ...

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ... ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ορισμός : Μία ακολουθία ονομάζεται αριθμητική πρόοδος, όταν ο κάθε όρος της, δημιουργείται από τον προηγούμενο με πρόσθεση του ίδιου πάντοτε αριθμού. Ο σταθερός αριθμός που προστίθεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ

Διαβάστε περισσότερα

Μαθηματικά Γ Δημοτικού. Πέτρος Κλιάπης

Μαθηματικά Γ Δημοτικού. Πέτρος Κλιάπης Μαθηματικά Γ Δημοτικού Πέτρος Κλιάπης Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση ΌΧΙ απομνημόνευση Αξιοποίηση της προϋπάρχουσας

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 1.Σύνολα Σύνολο είναι μια ολότητα από σαφώς καθορισμένα και διακεκριμένα αντικείμενα. Τα φωνήεντα

Διαβάστε περισσότερα

Σχέδιο παρουσίασης των διδασκαλιών ή των project

Σχέδιο παρουσίασης των διδασκαλιών ή των project Σχέδιο παρουσίασης των διδασκαλιών ή των project Σην παρουσίαση των διδασκαλιών ή των project μπορούμε να ακολουθήσουμε την φόρμα που παρουσιάζεται παρακάτω. Μια παρουσίαση σύντομη και μια λεπτομερής.

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α 1. Ένα ψυγείο την περίοδο των εκπτώσεων πωλείται µε έκπτωση 18% αντί του ποσού των 779. Να βρείτε πόση ήταν η αξία του ψυγείου πριν τις εκπτώσεις. Αν x ήταν η αξία του ψυγείου

Διαβάστε περισσότερα

1.2 Εξισώσεις 1 ου Βαθμού

1.2 Εξισώσεις 1 ου Βαθμού 1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ

Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΠΡΟΛΟΓΟΣ Ξ εκινώντας τη προσπάθεια μου να γράψω αυτό το βιβλίο αναρωτιόμουν πως

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων

Διαβάστε περισσότερα

Αξιολόγηση του Εκπαιδευτικού Προγράμματος. Εκπαίδευση μέσα από την Τέχνη. [Αξιολόγηση των 5 πιλοτικών τμημάτων]

Αξιολόγηση του Εκπαιδευτικού Προγράμματος. Εκπαίδευση μέσα από την Τέχνη. [Αξιολόγηση των 5 πιλοτικών τμημάτων] Αξιολόγηση του Εκπαιδευτικού Προγράμματος Εκπαίδευση μέσα από την Τέχνη [Αξιολόγηση των 5 πιλοτικών τμημάτων] 1. Είστε ικανοποιημένος/η από το Πρόγραμμα; Μ. Ο. απαντήσεων: 4,7 Ικανοποιήθηκαν σε απόλυτο

Διαβάστε περισσότερα

ΑΝΙΣΩΣΕΙΣ. 3.1 ΑΝΙΣΩΣΕΙΣ 1 ου ΒΑΘΜΟΥ. Οι ανισώσεις: αx + β > 0 και αx + β < 0

ΑΝΙΣΩΣΕΙΣ. 3.1 ΑΝΙΣΩΣΕΙΣ 1 ου ΒΑΘΜΟΥ. Οι ανισώσεις: αx + β > 0 και αx + β < 0 3 ΝΙΣΩΣΕΙΣ 31 ΝΙΣΩΣΕΙΣ 1 ου ΒΘΜΟΥ Οι ανισώσεις: α + β > 0 και α + β < 0 Γνωρίσαμε στο Γυμνάσιο τη διαδικασία επίλυσης μιας ανίσωσης της μορφής α β 0 ή της μορφής α β 0, με α και β συγκεκριμένους αριθμούς

Διαβάστε περισσότερα

2.6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ

2.6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ 6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ Αν θέλουμε να δείξουμε ότι μια συνάρτηση είναι σταθερή σε ένα διάστημα Δ αποδεικνύουμε ότι η είναι συνεχής στο Δ και ότι για κάθε

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

Άρτιοι ( ζυγοί ) - Περιττοί ( μονοί ) αριθμοί

Άρτιοι ( ζυγοί ) - Περιττοί ( μονοί ) αριθμοί Άρτιοι ( ζυγοί ) - Περιττοί ( μονοί ) αριθμοί Σεντελέ Καίτη Μαθηματικός Σ.Δ.Ε. Ιωαννίνων Γενικός Στόχος Να μάθουν οι εκπαιδευόμενοι την έννοια των άρτιων και περιττών αριθμών Ειδικοί Στόχοι Να ανακαλύψουν

Διαβάστε περισσότερα

ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΜΑΘΗΤΕΣ. Σάββατο, 8 Ιουνίου 2013

ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΜΑΘΗΤΕΣ. Σάββατο, 8 Ιουνίου 2013 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Διεύθυνση: Προξένου Κορομηλά 51 Τ.Κ. 54622, Θεσσαλονίκη Τηλέφωνο και Fax 2310 285377 e-mail: emethes@otenet.gr http://www.emethes.gr ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ

Διαβάστε περισσότερα

ΘΕΜΕΛΙΩΔΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΑΡΙΘΜΟΙ ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΘΕΜΕΛΙΩΔΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΑΡΙΘΜΟΙ ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΕΛΙΩΔΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΑΡΙΘΜΟΙ ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Αριθμητικά συστήματα 123, 231, 312 Τι σημαίνουν; Τι δίνει αξία σε κάθε ίδιο ψηφίο; Ποια είναι η αξία του κάθε ψηφίου; Αριθμητικά

Διαβάστε περισσότερα

«Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano»

«Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano» «Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano» Ιορδανίδης Ι. Φώτιος Καθηγητής Μαθηματικών, 2 ο Γενικό Λύκειο Πτολεμαΐδας fjordaneap@gmail.com ΠΕΡΙΛΗΨΗ Το θεώρημα του Bolzano

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 20

ΕΝΟΤΗΤΑ 3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 20 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 20 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.9 Αναγνωρίζουν και ονομάζουν τους όρους: άθροισμα, διαφορά, γινόμενο, πηλίκο, μειωτέος, αφαιρετέος, προσθετέος,

Διαβάστε περισσότερα

Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων:

Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων: Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων: Φάμπιο Αντωνίου Στοιχεία Επικοινωνίας: email: fantoniou@cc.uoi.gr Τηλ:651005954 Προσωπική Ιστοσελίδα: fantoniou.wordpress.com Γραφείο: Κτίριο

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

Δεύτερη διδακτική πρόταση Έλεγχος επίδοσης στο σχολείο. 1 φωτοτυπία ανά μαθητή με τον έλεγχο παραγωγή προφορικού λόγου, παραγωγή γραπτού λόγου

Δεύτερη διδακτική πρόταση Έλεγχος επίδοσης στο σχολείο. 1 φωτοτυπία ανά μαθητή με τον έλεγχο παραγωγή προφορικού λόγου, παραγωγή γραπτού λόγου Κατανόηση προφορικού λόγου Επίπεδο B Δεύτερη διδακτική πρόταση Έλεγχος επίδοσης στο σχολείο Ενδεικτική διάρκεια: Ομάδα-στόχος: Διδακτικός στόχος: Στρατηγικές: Υλικό: Ενσωμάτωση δραστηριοτήτων: 1 διδακτική

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012 ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ Δίνονται τα εξής πρότυπα: [ ] [ ] [ ] [ ] Άσκηση η (3 μονάδες) Χρησιμοποιώντας το κριτήριο της ομοιότητας να απορριφθεί ένα χαρακτηριστικό με βάση το συντελεστή συσχέτισης. (γράψτε ποιο

Διαβάστε περισσότερα

Μαθηματικά A Δημοτικού. Πέτρος Κλιάπης Σεπτέμβρης 2007

Μαθηματικά A Δημοτικού. Πέτρος Κλιάπης Σεπτέμβρης 2007 Μαθηματικά A Δημοτικού Πέτρος Κλιάπης Σεπτέμβρης 2007 Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση ΌΧΙ απομνημόνευση Αξιοποίηση

Διαβάστε περισσότερα

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1 Συστήματα αρίθμησης Δεκαδικό σύστημα αρίθμησης 1402 = 1000 + 400 +2 =1*10 3 + 4*10 2 + 0*10 1 + 2*10 0 Γενικά σε ένα σύστημα αρίθμησης με βάση το b N, ένας ακέραιος αριθμός με n ψηφία παριστάνεται ως:

Διαβάστε περισσότερα

Δύο λόγια από τη συγγραφέα

Δύο λόγια από τη συγγραφέα Δύο λόγια από τη συγγραφέα Τα μαθηματικά ή τα λατρεύεις ή τα μισείς! Για να λατρέψεις κάτι πρέπει να το κατανοήσεις, για τη δεύτερη περίπτωση τα πράγματα μάλλον είναι λίγο πιο απλά. Στόχος αυτού του βιβλίου

Διαβάστε περισσότερα

4.3 Δραστηριότητα: Θεώρημα Fermat

4.3 Δραστηριότητα: Θεώρημα Fermat 4.3 Δραστηριότητα: Θεώρημα Fermat Θέμα της δραστηριότητας Η δραστηριότητα αυτή εισάγει το Θεώρημα Fermat και στη συνέχεια την απόδειξή του. Ακολούθως εξετάζεται η χρήση του στον εντοπισμό πιθανών τοπικών

Διαβάστε περισσότερα

Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά. Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων

Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά. Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων Εισαγωγή Η χώρα μας απέκτησε Νέα Προγράμματα Σπουδών και Νέα

Διαβάστε περισσότερα

4.2 ΑΝΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας 112 114

4.2 ΑΝΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας 112 114 1. ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας 11 11 A Ομάδας 1. Να μετατρέψετε σε γινόμενα παραγόντων τα τριώνυμα: x 3x + x 3x Δ ( 3). 1. 9 8 1 > 0 Ρίζες: x Άρα ( 3) 1.1 3 1 3 1 ή 31 x 3x +

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ Θέμα Διδασκαλίας Προβλήματα με πρόσθεση και αφαίρεση κλασμάτων (Κεφάλαιο 23 ο ) Σχολείο: 2 ο

Διαβάστε περισσότερα

ΔΥΣΚΟΛΙΕΣ ΚΑΙ ΑΝΤΙΛΗΨΕΙΣ ΤΩΝ ΜΑΘΗΤΩΝ ΚΑΤΑ ΤΟ ΠΕΡΑΣΜΑ ΑΠΟ ΤΗΝ ΑΡΙΘΜΗΤΙΚΗ ΣΤΗΝ ΑΛΓΕΒΡΑ

ΔΥΣΚΟΛΙΕΣ ΚΑΙ ΑΝΤΙΛΗΨΕΙΣ ΤΩΝ ΜΑΘΗΤΩΝ ΚΑΤΑ ΤΟ ΠΕΡΑΣΜΑ ΑΠΟ ΤΗΝ ΑΡΙΘΜΗΤΙΚΗ ΣΤΗΝ ΑΛΓΕΒΡΑ Το παρακάτω άρθρο δημοσιεύτηκε στο περιοδικό ΕΥΚΛΕΙΔΗΣ Γ το 1996. Η πλήρης αναφορά είναι η εξής: Χ. Λεμονίδης (1996). Δυσκολίες και αντιλήψεις των μαθητών κατά το πέρασμα από την αριθμητική στην άλγεβρα.

Διαβάστε περισσότερα

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; Μονόμετρα ονομάζονται τα μεγέθη τα οποία, για να τα προσδιορίσουμε πλήρως, αρκεί να γνωρίζουμε

Διαβάστε περισσότερα

ΟΙ ΣΤΡΑΤΗΓΙΚΕΣ ΠΡΟΣΘΕΣΗΣ ΚΑΙ ΑΦΑΙΡΕΣΗΣ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20

ΟΙ ΣΤΡΑΤΗΓΙΚΕΣ ΠΡΟΣΘΕΣΗΣ ΚΑΙ ΑΦΑΙΡΕΣΗΣ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20 ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΑΘΗΓΗΤΗΣ Χ. ΛΕΜΟΝΙΔΗΣ ΟΙ ΣΤΡΑΤΗΓΙΚΕΣ ΠΡΟΣΘΕΣΗΣ ΚΑΙ ΑΦΑΙΡΕΣΗΣ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20 Στη διδασκαλία συνήθως τα παιδιά αρχικά διδάσκονται τις

Διαβάστε περισσότερα

Διδακτική των Φυσικών Επιστημών Ενότητα 2: Βασικό Εννοιολογικό Πλαίσιο

Διδακτική των Φυσικών Επιστημών Ενότητα 2: Βασικό Εννοιολογικό Πλαίσιο Διδακτική των Φυσικών Επιστημών Ενότητα 2: Βασικό Εννοιολογικό Πλαίσιο Χρυσή Κ. Καραπαναγιώτη Τμήμα Χημείας Αντικείμενο και Αναγκαιότητα Μετασχηματισμός της φυσικοεπιστημονικής γνώσης στη σχολική της εκδοχή.

Διαβάστε περισσότερα

ΦΟΙΤΗΤΡΙΑ: ΠΑΤΣΑΤΖΑΚΗ ΕΛΕΝΗ, ΑΕΜ:3196 ΕΡΓΑΣΙΑ ΣΤΟ ΜΑΘΗΜΑ : ΥΕ258 ΕΝΑΛΛΑΚΤΙΚΕΣ ΜΟΡΦΕΣ ΑΞΙΟΛΟΓΗΣΗΣ ΤΩΝ ΓΛΩΣΣΙΚΩΝ ΔΕΞΙΟΤΗΤΩΝ

ΦΟΙΤΗΤΡΙΑ: ΠΑΤΣΑΤΖΑΚΗ ΕΛΕΝΗ, ΑΕΜ:3196 ΕΡΓΑΣΙΑ ΣΤΟ ΜΑΘΗΜΑ : ΥΕ258 ΕΝΑΛΛΑΚΤΙΚΕΣ ΜΟΡΦΕΣ ΑΞΙΟΛΟΓΗΣΗΣ ΤΩΝ ΓΛΩΣΣΙΚΩΝ ΔΕΞΙΟΤΗΤΩΝ 2015 ΕΡΓΑΣΙΑ ΣΤΟ ΜΑΘΗΜΑ : ΥΕ258 ΕΝΑΛΛΑΚΤΙΚΕΣ ΜΟΡΦΕΣ ΑΞΙΟΛΟΓΗΣΗΣ ΤΩΝ ΓΛΩΣΣΙΚΩΝ ΔΕΞΙΟΤΗΤΩΝ ΦΟΙΤΗΤΡΙΑ: ΠΑΤΣΑΤΖΑΚΗ ΕΛΕΝΗ, ΑΕΜ:3196 ΕΠΙΒΛΕΠΟΥΣΑ ΚΑΘΗΓΗΤΡΙΑ: ΓΡΙΒΑ ΕΛΕΝΗ 5/2/2015 ΕΙΣΑΓΩΓΗ Αυτό το portfolio φτιάχτηκε

Διαβάστε περισσότερα

ΑΝΤΙΣΤΡΟΦΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΑΝΤΙΣΤΡΟΦΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1 ΑΝΔΡΕΑΣ Λ. ΠΕΤΡΑΚΗΣ ΑΡΙΣΤΟΥΧΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΔΙΔΑΚΤΩΡ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΝΤΙΣΤΡΟΦΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΤΑ ΚΟΙΝΑ ΣΗΜΕΙΑ ΤΩΝ ΓΡΑΦΙΚΩΝ ΤΟΥΣ ΠΑΡΑΣΤΑΣΕΩΝ, ΑΝ ΥΠΑΡΧΟΥΝ, ΒΡΙΣΚΟΝΤΑΙ ΜΟΝΟ ΠΑΝΩ ΣΤΗΝ ΕΥΘΕΙΑ y = x ΔΕΥΤΕΡΗ

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΚΕΦΑΛΑΙΟ Ο : ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ - ΕΝΟΤΗΤΕΣ :.... ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΜΕΘΟΔΟΛΟΓΙΑ : ΠΡΑΓΜΑΤΙΚΟ & ΦΑΝΤΑΣΤΙΚΟ ΜΕΡΟΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Έστω ένας μιγαδικός αριθμός,

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 1) Δίνεται η εξίσωση x 2-2(λ + 2) χ + 2λ 2-17 = 0. Να βρείτε το λ ώστε η εξίσωση να έχει μία ρίζα διπλή. Υπολογίστε τη ρίζα. Aσκήσεις στις εξισώσεις Β βαθμού Για να έχει η εξίσωση μία ρίζα διπλή πρέπει:

Διαβάστε περισσότερα

Μαθηματικά Ε Δημοτικού

Μαθηματικά Ε Δημοτικού Μαθηματικά Ε Δημοτικού Πέτρος Κλιάπης 2014 Πέτρος Κλιάπης 12η Περιφέρεια Θεσσαλονίκης Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 3 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 0 ΘΕΩΡΙΑ ΜΕΘΟΔΟΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Βαγγέλης Α Νικολακάκης Μαθηματικός . ΠΡΑΞΕΙΣ ΠΡΑΓΜΑΤΙΚΩΝ ΒΑΣΙΚΗ ΘΕΩΡΙΑ. ΠΡΟΣΘΕΣΗ ΟΜΟΣΗΜΩΝ- ΕΤΕΡΟΣΗΜΩΝ Σε ομόσημους κάνω πρόσθεση και βάζω το κοινό

Διαβάστε περισσότερα

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πληροφορική Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης

Διαβάστε περισσότερα

Συνέχεια συνάρτησης σε κλειστό διάστημα

Συνέχεια συνάρτησης σε κλειστό διάστημα 8 Συνέχεια συνάρτησης σε κλειστό διάστημα Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 1 Μια συνάρτηση f θα λέμε ότι είναι: i Συνεχής σε ένα ανοιχτό διάστημα (α,β) όταν είναι συνεχής σε κάθε σημείο του διαστήματος (α,β)

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 6 KΕΦΑΛΑΙΟ 3 ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ Η θεωρία μεγίστων και ελαχίστων μιας πραγματικής συνάρτησης με μια μεταβλητή είναι γνωστή Στο κεφάλαιο αυτό θα δούμε τη θεωρία μεγίστων και ελαχίστων

Διαβάστε περισσότερα

Συνεχή Κλάσματα. Εμμανουήλ Καπνόπουλος Α.Μ 282

Συνεχή Κλάσματα. Εμμανουήλ Καπνόπουλος Α.Μ 282 Συνεχή Κλάσματα Εμμανουήλ Καπνόπουλος Α.Μ 282 5 Νοεμβρίου 204 Ορισμός και ιδιότητες: Ορισμός: Έστω a 0, a, a 2,...a n ανεξάρτητες μεταβλητές, n N σχηματίζουν την ακολουθία {[a 0, a,..., a n ] : n N} όπου

Διαβάστε περισσότερα

ΛΧ1004 Μαθηματικά για Οικονομολόγους

ΛΧ1004 Μαθηματικά για Οικονομολόγους ΛΧ1004 Μαθηματικά για Οικονομολόγους Μάθημα 1 ου Εξαμήνου 2Θ+2Φ(ΑΠ) Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΠΡΟΤΕΙΝΟΜΕΝΟ ΒΙΒΛΙΟ ΕΦΑΡΜΟΓΕΣ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

Διαβάστε περισσότερα

Γεωμετρία, Αριθμοί και Μέτρηση

Γεωμετρία, Αριθμοί και Μέτρηση 1. Εισαγωγή Γεωμετρία, Αριθμοί και Μέτρηση Μαθαίνω Γεωμετρία και Μετρώ Παίζω με τους αριθμούς Βρίσκω τα πολλαπλάσια Το εκπαιδευτικό λογισμικό «Γεωμετρία, Αριθμοί και Μέτρηση» δίνει τη δυνατότητα στα παιδιά

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ Μαθηματικά ΣT Δημοτικού 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - ΣΤ Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 201, Εκδόσεις Κυριάκος

Διαβάστε περισσότερα

Κατανόηση γραπτού λόγου

Κατανόηση γραπτού λόγου Κατανόηση γραπτού λόγου Επίπεδο Α (αρχάριο) Τρίτη διδακτική πρόταση Μικρές Αγγελίες Ενδεικτική διάρκεια: Ομάδα στόχος: Διδακτικός στόχος: Στρατηγικές: Ενσωμάτωση δεξιοτήτων: Υλικό: 1 διδακτική ώρα παιδιά

Διαβάστε περισσότερα

Για τα παιδιά (αλλά και για τους γονείς)...

Για τα παιδιά (αλλά και για τους γονείς)... Eισαγωγικό σημείωμα: «Οι κατ οίκον εργασίες στη διδασκαλία των μαθηματικών» Οι εργασίες «για το σπίτι» ή όπως λέγονται στις παιδαγωγικές επιστήμες οι κατ οίκον εργασίες αποτελούν αναπόσπαστο κομμάτι της

Διαβάστε περισσότερα

Στόχοι Προϋπάρχουσες γνώσεις

Στόχοι Προϋπάρχουσες γνώσεις Στόχοι Να παραστήσουν την αφαίρεση με τη χρήση αντικειμένων, εικόνων και μαθηματικών προτάσεων. Να ερμηνεύουν προβλήματα αφαίρεσης βασισμένα σε εικόνες Να φτιάχνουν δικά τους προβλήματα βασισμένα σε εικόνες.

Διαβάστε περισσότερα

4 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΓΕΝΙΚΟΣ ΣΚΟΠΟΣ :

4 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΓΕΝΙΚΟΣ ΣΚΟΠΟΣ : 4 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΓΕΝΙΚΟΣ ΣΚΟΠΟΣ : Σκοπός του συγκεκριμένου φύλλου εργασίας είναι ο μαθητής να εξοικειωθεί με τις συναρτήσεις, τις αριθμητικές πράξεις καθώς και την επισήμανση κελιών υπό όρους με στόχο

Διαβάστε περισσότερα

Προσδιορισμός ενός επίπεδου απλού αρμονικού κύματος από τις ταλαντώσεις σημείων του

Προσδιορισμός ενός επίπεδου απλού αρμονικού κύματος από τις ταλαντώσεις σημείων του A A N A B P Y T A ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΠΙΠΕΔΑ ΑΠΛΑ ΑΡΜΟΝΙΚΑ ΚΥΜΑΤΑ 9 5 0 Προσδιορισμός ενός επίπεδου απλού αρμονικού κύματος από τις ταλαντώσεις σημείων του Περιεχόμενα Εισαγωγή και παραδείγματα

Διαβάστε περισσότερα

Δάσκαλοι και μαθητές Παίζουμε και μαθαίνουμε!

Δάσκαλοι και μαθητές Παίζουμε και μαθαίνουμε! Δάσκαλοι και μαθητές Παίζουμε και μαθαίνουμε! Συντελεστές: Γιάννης Π. Κρόκος - Μαθηματικός Βασίλης Τσιλιβής Μαθηματικός Φιλίππια Γαλιατσάτου - Δασκάλα Πολιτικός Μηχανικός «Η επίλυση των προβλημάτων & των

Διαβάστε περισσότερα

Μαθημα 1. Η λατρεία στη ζωή των πιστών σήμερα

Μαθημα 1. Η λατρεία στη ζωή των πιστών σήμερα Μαθημα 1. Η λατρεία στη ζωή των πιστών σήμερα ΣΤΟΧΟΙ: Οι μαθητές να 1. Διατυπώνουν τους προβληματισμούς τους γύρω από τη λατρεία. 2. Υποστηρίζουν με επιχειρήματα ότι στη χριστιανική θρησκεία η λατρεία

Διαβάστε περισσότερα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα 5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα Θέμα της δραστηριότητας Η δραστηριότητα εισάγει τους μαθητές στο ολοκλήρωμα Riemann μέσω του υπολογισμού του εμβαδού ενός παραβολικού χωρίου. Στόχοι

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 2 Φυσικοί

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β.

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β. ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη

Διαβάστε περισσότερα

μαθηματικά β γυμνασίου

μαθηματικά β γυμνασίου μαθηματικά β γυμνασίου Κάθε αντίτυπο φέρει την υπογραφή ενός εκ των συγγραφέων Σειρά: Γυμνάσιο, Θετικές Επιστήμες Μαθηματικά Β Γυμνασίου, Βασίλης Διολίτσης Ιωάννα Κοσκινά Νικολέττα Μπάκου Θεώρηση Κειμένου:

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 1: Εισαγωγή- Χαρακτηριστικά Παραδείγματα Αλγορίθμων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα